2020年云南省高等职业技术教育招生考试数学(标准)模拟卷
- 格式:pdf
- 大小:194.89 KB
- 文档页数:6
2020年云南省高考数学模拟试卷(理科)(4月份)一、选择题(共12小题,每小题5分,满分60分)1. 已知集合S ={x|2x =1},T ={x|ax =1}.若S ∩T =T ,则常数a 的值为( ) A.0或2 B.0或12C.2D.122. 已知i 为虚数单位,若(2+3i)z =1+i ,则复数z 在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3. 为得到函数y =6sin (2x +π3)的图象,只需要将函数y =6cos 2x 的图象( )A.向右平行移动π6个单位B.向左平行移动π6个单位C.向右平行移动π12个单位D.向左平行移动π12个单位4. 某班星期三上午要上五节课,若把语文、数学、物理、历史、外语这五门课安排在星期三上午,数学必须比历史先上,则不同的排法有( ) A.60种 B.30种 C.120种 D.24种5. 执行如图所示的程序框图.若输入的S =0,则输出的S =( )A.20B.40C.62D.776. 一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的体积为( )A.32−4πB.32−2πC.64−4πD.64−2π7. 已知实数x ,y 满足约束条件{−3≥x −4y3x +5y ≤25x ≥1,则z =2x +y 的最大值等于( )A.10B.12C.16D.228. 已知抛物线C:y 2=4x 的焦点为F ,经过点Q(−1, 0)作直线l ,l 与抛物线C 在第一象限交于A 、B 两点.若点F 在以AB 为直径的圆上,则直线l 的斜率为( ) A.√33B.√22C.12D.19. 已知tan (π−α)=2,则sin 4αsin (π2+2α)=( )A.±85B.85C.−85D.−6510. 已知正△ABC 的顶点都在球O 的球面上,正△ABC 的边长为2√3.若球心O 到△ABC 所在平面的距离为√5,则球O 的表面积为( ) A.36π B.32πC.36√3πD.32√3π11. 已知双曲线C:x 2a2−y 2b 2=1(a >0, b >0)的左、右焦点分别为F 1、F 2,点A 是双曲线C 的右顶点,点M 是双曲线C 的右支上一点,|MF 1|=5a .若△F 2MA 是以∠AMF 2为顶角的等腰三角形,则双曲线C 的离心率为( ) A.3 B.√52C.√31−12D.√33−1212. 已知平行四边形ABCD 的面积为9√3,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为( )A.√11B.3C.√7D.√5二、填空题:本题共4小题,每小题5分,共20分. 在(√x 3−√x)8的二项展开式中,x 的系数等于________(用数字作答).已知离散型随机变量X的分布列如下:若X的数学期望等于4118,则a=________.已知f(x)=13x3+m2x2−6x+1在(−1, 1)单调递减,则m的取值范围为________.在锐角△ABC中,内角A,B,C对的边分别为a,b,c.若a2+b(b−√3a)=1,c=1,则√3a−b的取值范围为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.某老师为了研究某学科成绩优良是否与学生性别有关系,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩(单位:分),得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定不低于80分为成绩优良.其中30名男生该学科成绩分成以下六组:[40, 50),[50, 60),[60, 70),[70, 80),[80, 90),[90, 100].(1)请完成下面的列联表(单位:人):(2)根据(1)中的列联表,能否有90%的把握认为该学科成绩优良与性别有关系?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)其中n=a+b+c+d.已知数列{a n}的前n项和为S n,a1=2,S n=a n+1,设b n=S n(1+S n)(1+S n+1),数列{b n}的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:T n<13.如图,在三棱柱ABC−A1B1C1中,AB=AC,M、N、D分别是A1B1、A1C1、BC的中点.(1)求证:AD⊥MN;(2)若三棱柱ABC−A1B1C1是直三棱柱,AB=AA1,∠ABC=π6,求二面角M−AD−N的正弦值.已知e是自然对数的底数,函数f(x)=ax2−(a+1)x(ln x−1),g(x)=e x2−ax2.(1)若a=e,求曲线y=f(x)g(x)在点(1, 0)处的切线方程;(2)若g(x)在(−1, 0)单调递增,判断函数f(x)是否有零点.若有,有多少个?若没有,说明理由.已知椭圆E的中心为坐标原点O,焦点在x轴上,离心率为√32,F1,F2分别为椭圆E的左、右焦点,点P在椭圆E上,以线段F1F2为直径的圆经过点P,线段F1P与y轴交于点B,且|F1P|⋅|F1B|=6.(1)求椭圆E的方程;(2)设动直线l与椭圆E交于M、N两点,且OM→⋅ON→=0.在平面直角坐标系xOy中,是否存在定圆Q,动直线l与定圆Q都相切?若存在,求出圆Q所有的方程;若不存在,说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosαy=sinα(α为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程ρ=√3+cos 2θ−sin2θ.(1)直接写出曲线C2的普通方程;(2)设A是曲线C1上的动点,B是曲线C2上的动点,求|AB|的最大值.[选修4-5:不等式选讲](10分)已知f(x)=|2x+1|+|2x+3|,m是f(x)的最小值.(1)求m;(2)若a>0,b>0,且a+b=√3ab,求证:1a2+2b2≥m.参考答案与试题解析2020年云南省高考数学模拟试卷(理科)(4月份)一、选择题(共12小题,每小题5分,满分60分)1.【答案】A【考点】交集及其运算【解析】根据S∩T=T可得出T⊆S,并得出S={12},从而可讨论a是否为0:a=0时,显然满足条件;a≠0时,可得出1a =12,从而可得出a的值.【解答】∵S∩T=T,∴T⊆S,且S={12},T={x|ax=1},∴ ①a=0时,T=⌀,满足T⊆S;②a≠0时,T={1a },则1a=12,解得a=2,综上得,a的值为0或2.2.【答案】D【考点】复数的代数表示法及其几何意义【解析】把已知等式变形,再由复数代数形式的乘除运算化简,求得z的坐标得答案.【解答】由(2+3i)z=1+i,得z=1+i2+3i =(1+i)(2−3i)(2+3i)(2−3i)=513−113i,∴复数z在复平面内对应的点的坐标为(513,−113),位于第四象限.3.【答案】C【考点】函数y=Asin(ωx+φ)的图象变换【解析】由诱导公式先将y=6cos2x转化成y=6sin2x,然后在将y=6sin2x平移得到y=6sin(2x+π3),先向右平移π4,再向左平移π6,即向右平移π12.【解答】∵y=6cos2x,∴6cos2(x−π4)=6cos(2x−π2)=6cos(π2−2x)=6sin2x∴y=6cos2x先向由平移π4个单位得到y=6sin2x,∵y=6sin(2x+π3)=6sin2(x+π6)是将y=6sin2x向作平移π6个单位,综上所述将y=6cos2x向右平移π12个单位得到y=6sin(2x+π3),4.【答案】A【考点】排列、组合及简单计数问题【解析】根据题意,先计算五门课程任意排列的情况数目,又由数学排在历史之前和数学排在历史之后的情况数目是相同的,据此分析可得答案.【解答】根据题意,把语文、数学、物理、历史、外语这五门课安排在星期三上午,将五门课程任意排列,有A55=120种情况,其中数学排在历史之前和数学排在历史之后的情况数目是相同的,则数学比历史先上的排法有1202=60种;5.【答案】B【考点】程序框图【解析】本题是一个直到型循环结构,算法功能是对数列{2n}、{n}求前4项的和.套公式计算即可.【解答】由题意可知,框图的算法功能是对数列{2n}、{n}求前4项的和,∴S=2(1−24)1−2+1+2+3+4=40.6.【答案】C【考点】由三视图求体积【解析】由三视图还原原几何体,可知该几何体为棱长为4的正方体挖去一个四分之一圆柱,圆柱的底面半径为2,高为4.再由棱柱与圆柱的体积公式求解.【解答】由三视图还原原几何体如图,该几何体为棱长为4的正方体挖去一个四分之一圆柱, 圆柱的底面半径为2,高为4.则该几何体的体积为4×4×4−14×π×22×4=64−4π. 7.【答案】 B【考点】 简单线性规划 【解析】先根据约束条件画出可行域,设z =2x +y ,再利用z 的几何意义求最值,只需求出直线z =2x +y 可行域内的点A 时,从而得到z =2x +y 的最值即可. 【解答】如图:作出可行域,目标函数:z =2x +y ,则y =−2x +z , 当目标函数的直线过点A 时,Z 有最大值.A 点坐标由方程组{−3=x −4y3x +5y =25 解得A(5, 2)Z max =2x +y =12.故z =2x +y 的最大值为:12; 8.【答案】 B【考点】 抛物线的性质直线与抛物线的位置关系 【解析】设出直线AB 的方程,与抛物线联立,利用点F 在以AB 为直径的圆上,结合韦达定理转化求解即可. 【解答】设AB 的斜率为k ,直线方程为:y =k(x +1),与抛物线y 2=4x 联立,可得k 2x 2+(2k 2−4)x +k 2=0, 设A(x 1, y 1),B(x 2, y 2),可得x 1+x 2=4−2k 2k 2,x 1x 2=1,则y 1y 2=√16x 1x 2=4, 点F 在以AB 为直径的圆上,FA →⋅FB →=0, 可得(x 1−1, y 1)⋅(x 2−1, y 2)=0, 即x 1x 2−(x 1+x 2)+1+y 1y 2=0, 即1+2k 2−4k 2+1+4=0,解得k =±√22, l 与抛物线C 在第一象限交于A 、B 两点.所以k =√22. 9.【答案】 C【考点】运用诱导公式化简求值 【解析】由已知利用诱导公式可求tan α,进而根据二倍角公式,诱导公式,同角三角函数基本关系式化简所求即可计算得解. 【解答】∵ tan (π−α)=−tan α=2, ∴ tan α=−2, ∴sin 4αsin (π2+2α)=2sin 2αcos 2αcos 2α=4sin αcos α=4sin αcos αsin 2α+cos 2α=4tan α1+tan 2α=4×(−2)1+(−2)2=−85.10.【答案】 A【考点】球的体积和表面积 【解析】由已知结合正弦定理可先求出三角形ABC 外接圆的半径,然后结合球的性质R 2=r 2+d 2可求R ,代入球的表面积公式即可求. 【解答】解;设正△ABC 的外接圆半径r , 由正弦定理可得,2√3sin 60=2r ,故r =2, 由球的性质可知,R 2=r 2+d 2=4+5=9, 所以球的表面积S =4π×9=36π. 11.【答案】 D【考点】双曲线的离心率 【解析】椭圆双曲线的定义,结合三角形是等腰三角形,列出关系式求解双曲线的离心率即可. 【解答】 双曲线C:x 2a2−y 2b 2=1(a >0, b >0)的左、右焦点分别为F 1、F 2,点A 是双曲线C 的右顶点,点M 是双曲线C 的右支上一点,|MF 1|=5a .若△F 2MA 是以∠AMF 2为顶角的等腰三角形, 可得:√25a 2−(3c+a 2)2=√9a 2−(c−a 2)2, 可得:8a 2=c 2+ac ,e 2+e −8=0,e >1, 解得e =√33−12. 12.【答案】 D【考点】平面向量的基本定理 【解析】可根据条件得出AF →=λAE →+(56−12λ)AD →,然后根据E ,F ,D 三点共线即可得出λ=13,从而得出AF →=13AB →+56AD →,然后根据条件可得出|AB →||AD →|=18,从而可得出AF →2=(13|AB →|)2+(56|AD →|)2−5,然后根据不等式a 2+b 2≥2ab 即可求出|AF →|的最小值. 【解答】如图,连接AE ,则:BE →=12AD →,AE →=AB →+12AD →,∴ AF →=λ(AB →+12AD →)+(56−12λ)AD →=λAE →+(56−12λ)AD →,且E ,F ,D 三点共线,∴ λ+56−12λ=1,解得λ=13, ∴ AF →=13AB →+56AD →,∵ 平行四边形ABCD 的面积为9√3,∠BAD =2π3,∴ |AB →||AD →|sin2π3=√32|AB →||AD →|=9√3,∴ |AB →||AD →|=18, ∴ AF →2=19AB →2+2536AD →2+59|AB →||AD →|cos2π3=(13|AB →|)2+(56|AD →|)2−5≥2⋅13⋅56⋅|AB →||AD →|−5=59×18−5=5,当且仅当13|AB →|=56|AD →|,即|AB →|=52|AD →|=3√5时取等号,∴ |AF →|的最小值为√5.二、填空题:本题共4小题,每小题5分,共20分.【答案】 28【考点】二项式定理及相关概念 【解析】利用二项展开式的通项公式求出第r +1项,令x 的指数为2求出展开式中x 2项的系数. 【解答】根据二项式定理(√x 3√x )8的通项为T r+1=C 8r ⋅(−1)r ⋅x16−5r6,16−5r 6=1,即r =2时,可得T 3=∁82x =28x ;即x 项的系数为28,【答案】754【考点】离散型随机变量的期望与方差 离散型随机变量及其分布列 【解析】先根据数学期望的计算方法求得b 的值,再根据分布列的性质,即概率和为1,即可求得a 的值. 【解答】由分布列的性质可知,a +13+112+b +512=1,数学期望E(X)=0×a +1×13+2×112+3×b +4×512=4118,解得,b =127,a =754,【答案】[−5, 5] 【考点】利用导数研究函数的单调性 【解析】f′(x)=x 2+mx −6,根据f(x)在(−1, 1)单调递减,可得f′(x)≤0在(−1, 1)上恒成立.利用二次函数的单调性即可得出. 【解答】f′(x)=x 2+mx −6, ∵ f(x)=13x 3+m2x 2−6x +1在(−1, 1)单调递减, ∴ f′(x)=x 2+mx −6≤0在(−1, 1)上恒成立.{m ≤01+m −6≤0 ,{m ≥01−m −6≤0 , 解得:−5≤m ≤5,则m 的取值范围为[−5, 5]. 【答案】 (1, √3) 【考点】 余弦定理 【解析】先根据余弦定理求得角C ,结合正弦定理把√3a −b 转化为2(√3sin A −sin B),再结合AB 之间的关系求出角A 的范围,与正弦函数相结合即可求得结论. 【解答】因为在锐角△ABC 中,内角A ,B ,C 对的边分别为a ,b ,c .∵ a 2+b(b −√3a)=1,c =1⇒a 2+b 2−√3ab =c 2⇒2cos C =√3⇒cos C =√32⇒C =30∘,∴ csin C =asin A =bsin B =1sin 30=2; ∴ a =2sin A ,b =2sin B ;∴√3a−b=2(√3sin A−sin B)=2[√3sin A−sin(150∘−A)]=2[√3sin A−(12cos A+√32sin A)]=2(√32sin A−12cos A)=2sin(A−30∘);∵0∘<A<90∘,0∘<B<90∘,A+B=150∘;∴60∘<A<90∘;∴30∘<A−30∘<60∘⇒2sin(A−30∘)∈(1, √3);故√3a−b∈(1, √3);三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】根据题意填写列联表如下;根据列联表中数据,计算K2=50×(9×9−21×11)220×30×30×20=258=3.125>2.706,所以有90%的把握认为该学科成绩优良与性别有关系.【考点】独立性检验【解析】(1)根据题意填写列联表即可;(2)根据列联表中数据计算K2,对照临界值得出结论.【解答】根据题意填写列联表如下;根据列联表中数据,计算K2=50×(9×9−21×11)220×30×30×20=258=3.125>2.706,所以有90%的把握认为该学科成绩优良与性别有关系.【答案】S n=a n+1,即为S n=S n+1−S n,即S n+1=2S n,则S n=S1⋅2n−1=a1⋅2n−1=2n;又a1=S1=2,当n≥2时,a n=S n−S n−1=2n−1,则数列{a n}的通项公式为a n={2,n=12n−1,n≥2,n∈N∗;证明:由(1)可得S n=2n,b n=S n(1+S n)(1+S n+1)=2n(1+2n)(1+2n+1)=11+2n−11+2n+1,则T n=11+2−11+22+11+22−11+23+⋯+11+2n−11+2n+1=13−11+2n+1,由n为正整数,可得11+2n+1>0,即13−11+2n+1<13,则T n<13.【考点】数列的求和数列递推式【解析】(1)由数列的递推式和等比数列的通项公式可得S n=2n,再由a1=S1,当n≥2时,a n=S n−S n−1,计算可得所求通项公式;(2)求得b n=2n(1+2n)(1+2n+1)=11+2n−11+2n+1,由数列的裂项相消求和和不等式的性质,即可得证.【解答】S n=a n+1,即为S n=S n+1−S n,即S n+1=2S n,则S n=S1⋅2n−1=a1⋅2n−1=2n;又a1=S1=2,当n≥2时,a n=S n−S n−1=2n−1,则数列{a n}的通项公式为a n={2,n=12n−1,n≥2,n∈N∗;证明:由(1)可得S n=2n,b n=S n(1+S n)(1+S n+1)=2n(1+2n)(1+2n+1)=11+2n−11+2n+1,则T n=11+2−11+22+11+22−11+23+⋯+11+2n−11+2n+1=13−11+2n+1,由n为正整数,可得11+2n+1>0,即13−11+2n+1<13,则T n<13.【答案】证明:∵D是BC的中点,AB=AC,∴AD⊥BC,∵M,N分别是A1B1、A1C1的中点,∴MN // B1C1,在三棱柱ABC−A1B1C1中,BC // B1C1,∴MN // BC,∴AD⊥MN.如图,设AA1=2,作AH // BC,由(1)知AD⊥BC,∴AD⊥AH,由已知得AH,AD,AA1两两互相垂直,由∠ABC=π6,得∠BAH=π6,∠BAD=π3,以A为坐标原点,建立如图所示的空间直角坐标系A−xyz,则A(0, 0, 0),A1(0, 0, 2),D(0, 1, 0),B(√3,1,0),B1(√3, 1, 2),C(−√3, 1, 0),C1(−√3, 1, 2),M(√32, 12, 2),N(−√32, 12, 2),AD→=(0, 1, 0),AM→=(√32, 12, 2),AN→=(−√32, 12, 2),设平面ADM的一个法向量为n→=(x, y, z),则{n→⋅AD→=y=0n→⋅AM→=√32x+12y+2z=0,取z=−√3,得n→=(4, 0, −√3),设平面ADN 的法向量m →=(a, b, c),则{m →⋅AD →=b =0m →⋅AN →=−√32a +12b +2c =0 ,取c =√3,得m →=(4, 0, √3), 设二面角M −AD −N 的平面角的大小为θ, 则|cos θ|=|m →⋅n →||m →|⋅|n →|=1319,∵ 0<θ<π,∴ sin θ=√1−cos 2θ=8√319, ∴ 二面角M −AD −N 的正弦值为8√319.【考点】二面角的平面角及求法 直线与平面垂直 【解析】(1)推导出AD ⊥BC ,MN // B 1C 1,BC // B 1C 1,从而MN // BC ,由此能证明AD ⊥MN .(2)设AA 1=2,作AH // BC ,由AD ⊥BC ,得AD ⊥AH ,以A 为坐标原点,建立如图所示的空间直角坐标系A −xyz ,利用向量法能求出二面角M −AD −N 的正弦值. 【解答】证明:∵ D 是BC 的中点,AB =AC ,∴ AD ⊥BC , ∵ M ,N 分别是A 1B 1、A 1C 1的中点,∴ MN // B 1C 1, 在三棱柱ABC −A 1B 1C 1中,BC // B 1C 1, ∴ MN // BC ,∴ AD ⊥MN . 如图,设AA 1=2,作AH // BC , 由(1)知AD ⊥BC ,∴ AD ⊥AH , 由已知得AH ,AD ,AA 1两两互相垂直, 由∠ABC =π6,得∠BAH =π6,∠BAD =π3,以A 为坐标原点,建立如图所示的空间直角坐标系A −xyz , 则A(0, 0, 0),A 1(0, 0, 2),D(0, 1, 0),B(√3,1,0),B 1(√3, 1, 2), C(−√3, 1, 0),C 1(−√3, 1, 2),M(√32, 12, 2),N(−√32, 12, 2), AD →=(0, 1, 0),AM →=(√32, 12, 2),AN→=(−√32, 12, 2), 设平面ADM 的一个法向量为n →=(x, y, z),则{n →⋅AD →=y =0n →⋅AM →=√32x +12y +2z =0,取z =−√3,得n →=(4, 0, −√3), 设平面ADN 的法向量m →=(a, b, c),则{m →⋅AD →=b =0m →⋅AN →=−√32a +12b +2c =0 ,取c =√3,得m →=(4, 0, √3), 设二面角M −AD −N 的平面角的大小为θ, 则|cos θ|=|m →⋅n →||m →|⋅|n →|=1319,∵ 0<θ<π,∴ sin θ=√1−cos 2θ=8√319, ∴ 二面角M −AD −N 的正弦值为8√319.【答案】若a =e ,y =f(x)g(x)=[ex 2−(e +1)x(ln x −1)](e x 2−ex 2),∴ y′=[ex 2−(e +1)x(ln x −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(ln x −1)](e x 2−ex 2)′=[ex 2−(e +1)x(ln x −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(ln x −1)](2xe x 2−2ex), ∴ 当x =1时,y′=0,…2分∴ 曲线y =f(x)g(x)在点(1, 0)处的切线的斜率k =0, ∴ 曲线y =f(x)g(x)在点(1, 0)处的切线方程为y =0...4分 函数f(x)没有零点.∵ g(x)在(−1, 0)单调递增,∴ 当x ∈(−1, 0)时,g′(x)=2xe x 2−2ax ≥0,即a ≥e x 2. ∴ a ≥e...6分由f(x)=ax 2−(a +1)x(ln x −1)得f′(x)=2ax −(a +1)ln x 且x >0, 设ℎ(x)=2ax −(a +1)ln x ,则ℎ′(x)=2a −a+1x=2a(x−a+12a)x,∴ 当0<x <a+12a时,ℎ′(x)<0,ℎ(x)单调递减;当x >a+12a时,ℎ′(x)>0,ℎ(x)单调递增;∴ 当x =a+12a时,ℎ(x)取得最小值,即[ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)ln a+12a⋯9分∵ a ≥e ,∴a+12a<a+a 2a,即0<a+12a<1,∴ [ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)lna+12a>0.∴ ℎ(x)>0,即f′(x)>0,∴ f(x)在定义域(0, +∞)单调递增. ∵ f(1)=2a +1>0, ∴ 当a >1时,f(x)>0,当0<x <1时,x(ln x −1)<0,f(x)=ax 2−(a +1)x(ln x −1)>0. ∴ 当x ∈(0, +∞)时,f(x)>0,∴ f(x)=0无实根,即函数f(x)没有零点.…12分 【考点】利用导数研究函数的单调性利用导数研究曲线上某点切线方程 【解析】(1)若a =e ,可得y′=[ex 2−(e +1)x(ln x −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(ln x −1)](2xe x 2−2ex),由x =1时,k =y′|x =1=0,即可求得曲线y =f(x)g(x)在点(1, 0)处的切线方程;(2)依题意,g(x)在(−1, 0)单调递增⇒a ≥e x 2,由f′(x)=2ax −(a +1)ln x 且x >0,设ℎ(x)=2ax −(a +1)ln x ,通过求导后,对x 分0<x <a+12a,x >a+12a及x =a+12a三类讨论,可求得[ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)lna+12a,再进一步分析即可得到函数f(x)没有零点.【解答】若a =e ,y =f(x)g(x)=[ex 2−(e +1)x(ln x −1)](e x 2−ex 2),∴ y′=[ex 2−(e +1)x(ln x −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(ln x −1)](e x 2−ex 2)′=[ex 2−(e +1)x(ln x −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(ln x −1)](2xe x 2−2ex), ∴ 当x =1时,y′=0,…2分∴ 曲线y =f(x)g(x)在点(1, 0)处的切线的斜率k =0, ∴ 曲线y =f(x)g(x)在点(1, 0)处的切线方程为y =0...4分 函数f(x)没有零点.∵ g(x)在(−1, 0)单调递增,∴ 当x ∈(−1, 0)时,g′(x)=2xe x 2−2ax ≥0,即a ≥e x 2. ∴ a ≥e...6分由f(x)=ax 2−(a +1)x(ln x −1)得f′(x)=2ax −(a +1)ln x 且x >0, 设ℎ(x)=2ax −(a +1)ln x ,则ℎ′(x)=2a −a+1x=2a(x−a+12a)x,∴ 当0<x <a+12a时,ℎ′(x)<0,ℎ(x)单调递减; 当x >a+12a时,ℎ′(x)>0,ℎ(x)单调递增; ∴ 当x =a+12a时,ℎ(x)取得最小值,即[ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)lna+12a⋯9分∵ a ≥e ,∴a+12a<a+a 2a,即0<a+12a<1,∴ [ℎ(x)]min =ℎ(a+12a)=a +1−(a +1)ln a+12a>0.∴ ℎ(x)>0,即f′(x)>0,∴ f(x)在定义域(0, +∞)单调递增.∵ f(1)=2a +1>0, ∴ 当a >1时,f(x)>0,当0<x <1时,x(ln x −1)<0,f(x)=ax 2−(a +1)x(ln x −1)>0. ∴ 当x ∈(0, +∞)时,f(x)>0,∴ f(x)=0无实根,即函数f(x)没有零点.…12分 【答案】设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),|F 1F 2|=2c ,∵ ∠BF 1O =∠PF 1F 2,∠F 1OB =∠F 1PF 2=π2,∴ △F 1BO ∽△F 1F 2P ,∴ |F 1B||F 1F 2|=|F 1O||F 1P|,即|F 1P||F 1B|=|F 1O||F 1F 2|=2c 2=6,∴ c =√3,根据e =c a=√32,解得a =2,所以b 2=a 2−c 2=1,则椭圆E 的方程为x 24+y 2=1;当动直线l 的斜率为0或不存在时,根据图象的对称性不难发现,若满足条件的定圆Q 存在,则圆心Q 只能为原点O ,设圆Q 的半径为r ,则斜率为0的动直线l 有两条,方程分别为y =r ,y =−r , 斜率不存在的动直线l 有两条,方程分别为x =r 和x =−r ,这四条直线与定圆Q 都相切, 则点(r, r)在椭圆E 上,∴ r 24+r 2=1,解得r 2=45,解得r =2√55, ∴ 若满足条件的定圆Q 存在,则其方程只能是x 2+y 2=45, 下面证明方程为x 2+y 2=45的圆满足题设要求,①当直线l 的斜率不存在时,显然直线l 与圆x 2+y 2=45相切,②当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,即kx −y +m =0, M(x 1, kx 1+m),N(x 2, kx 2+m), 联立{y =kx +m x 24+y 2=1得x 2+4(kx +m)2−4=0,即(4k 2+1)x 2+8kmx +4m 2−4=0,∵ 动直线l 与椭圆E 交于M ,N 两点,∴ △=64k 2m 2−4(4k 2+1)(4m 2−4)>0,即4k 2+1−m 2>0,且{x 1+x 2=−8km4k 2+1x 1x 2=4m 2−44k 2+1, ∵ OM →⋅ON →=0,∴ OM →⋅ON →=x 1x 2+(kx 1+m)(kx 2+m)=(1+k 2)x 1x 2+mk(x 1+x 2)+m 2 =(1+k 2)(4m 2−4)4k 2+1−8m 2k 24k 2+1+m 2=0, ∴ k 2+1=5m 24,∵ 圆心Q 即原点O 到直线l 的距离d =√k 2+1=√24=2√55=r ,∴ 直线l 与圆Q:x 2+y 2=45相切,综上,存在一个定圆Q ,动直线l 都与圆Q 相切,且圆Q 的方程为x 2+y 2=45.【考点】椭圆的标准方程 椭圆的应用直线与椭圆的位置关系 【解析】(1)作图,根据条件结合圆的性质可证得△F 1BO ∽△F 1F 2P ,则可得2c 2=6,再结合离心率可得a 的值; (2)考虑当直线l 的斜率不存在或者为0时,Q 存在,此时Q 的方程为x 2+y 2=45,下面证明方程为x 2+y 2=45的圆满足题设要求,①当直线l 的斜率不存在时,显然直线l 与圆x 2+y 2=45相切,②当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,利用根与系数关系已经点到直线距离证明即可. 【解答】 设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),|F 1F 2|=2c ,∵ ∠BF 1O =∠PF 1F 2,∠F 1OB =∠F 1PF 2=π2, ∴ △F 1BO ∽△F 1F 2P ,∴ |F 1B||F 1F 2|=|F 1O||F 1P|,即|F 1P||F 1B|=|F 1O||F 1F 2|=2c 2=6,∴ c =√3,根据e =ca =√32,解得a =2,所以b 2=a 2−c 2=1,则椭圆E 的方程为x 24+y 2=1;当动直线l 的斜率为0或不存在时,根据图象的对称性不难发现,若满足条件的定圆Q 存在,则圆心Q 只能为原点O ,设圆Q 的半径为r ,则斜率为0的动直线l 有两条,方程分别为y =r ,y =−r , 斜率不存在的动直线l 有两条,方程分别为x =r 和x =−r ,这四条直线与定圆Q 都相切, 则点(r, r)在椭圆E 上,∴ r 24+r 2=1,解得r 2=45,解得r =2√55, ∴ 若满足条件的定圆Q 存在,则其方程只能是x 2+y 2=45, 下面证明方程为x 2+y 2=45的圆满足题设要求,①当直线l 的斜率不存在时,显然直线l 与圆x 2+y 2=45相切,②当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,即kx −y +m =0, M(x 1, kx 1+m),N(x 2, kx 2+m), 联立{y =kx +m x 24+y 2=1得x 2+4(kx +m)2−4=0,即(4k 2+1)x 2+8kmx +4m 2−4=0,∵ 动直线l 与椭圆E 交于M ,N 两点,∴ △=64k 2m 2−4(4k 2+1)(4m 2−4)>0,即4k 2+1−m 2>0,且{x 1+x 2=−8km4k 2+1x 1x 2=4m 2−44k 2+1 , ∵ OM →⋅ON →=0,∴ OM →⋅ON →=x 1x 2+(kx 1+m)(kx 2+m)=(1+k 2)x 1x 2+mk(x 1+x 2)+m 2 =(1+k 2)(4m 2−4)4k 2+1−8m 2k 24k 2+1+m 2=0,∴ k 2+1=5m 24,∵ 圆心Q 即原点O 到直线l 的距离d =|m|√k 2+1=|m|√5m24=2√55=r ,∴ 直线l 与圆Q:x 2+y 2=45相切,综上,存在一个定圆Q ,动直线l 都与圆Q 相切,且圆Q 的方程为x 2+y 2=45.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号涂黑.[选修4-4:坐标系与参数方程] 【答案】曲线C 2的极坐标方程ρ=√2.整理得:3ρ2+3ρ2cos 2θ=4,转换为直角坐标方程为x 2+y 24=1.曲线C 1的参数方程为{x =2+2cos αy =sin α (α为参数).转换为直角坐标方程为(x −2)2+y 2=4,所以该曲线是以C(2, 0)为圆心2为半径的圆.A 是曲线C 1上的动点,B 是曲线C 2上的动点,设B(cos θ, 2sin θ),则|BC|=√(cos θ−2)2+4sin 2θ=√cos 2θ−4cos θ+4+4sin 2θ=√−3cos 2θ−4cos θ+8 =√−3(cos θ+23)2+283,当cos θ=−23时.|BC|max =√283=2√213, 所以求|AB|的最大值为2√213+2.【考点】圆的极坐标方程 圆的参数方程 【解析】1)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果. (2)利用直线和曲线的位置关系的应用建立等量关系,进一步求出最值. 【解答】曲线C 2的极坐标方程ρ=√2.整理得:3ρ2+3ρ2cos 2θ=4,转换为直角坐标方程为x 2+y 24=1.曲线C 1的参数方程为{x =2+2cos αy =sin α (α为参数).转换为直角坐标方程为(x −2)2+y 2=4,所以该曲线是以C(2, 0)为圆心2为半径的圆.A 是曲线C 1上的动点,B 是曲线C 2上的动点,设B(cos θ, 2sin θ),则|BC|=√(cos θ−2)2+4sin 2θ=√cos 2θ−4cos θ+4+4sin 2θ=√−3cos 2θ−4cos θ+8 =√−3(cos θ+23)2+283,当cos θ=−23时.|BC|max =√283=2√213, 所以求|AB|的最大值为2√213+2.[选修4-5:不等式选讲](10分)【答案】由绝对值不等式的性质得f(x)=|2x +1|+|2x +3|≥|(2x +1)−(2x +3)|=2, 又∵ f(−1)=2, ∴ m =2;证明:∵ a >0,b >0,a +b =√3ab , ∴ 1a +1b =√3, ∴ 1b =√3−1a , ∴ 1b 2=1a 2−2√3a +3,∴ 1a 2+2b 2=3a 2−4√3a+6=(√3a −2)2+2≥2,∴1a2+2b 2≥2=m .【考点】不等式的证明 绝对值三角不等式 【解析】(1)利用绝对值不等式的性质可得m =2; (2)根据题意1b =√3−1a ,进而1a 2+2b 2=3a 2−4√3a+6=(√3a −2)2+2≥2,由此得证.【解答】由绝对值不等式的性质得f(x)=|2x +1|+|2x +3|≥|(2x +1)−(2x +3)|=2, 又∵ f(−1)=2, ∴ m =2;证明:∵ a >0,b >0,a +b =√3ab ,∴ 1a +1b=√3,∴ 1b=√3−1a,∴1b 2=1a 2−2√3a +3,∴ 1a 2+2b 2=3a 2−4√3a+6=(√3a −2)2+2≥2,∴ 1a 2+2b 2≥2=m .。
2020年云南省高考数学模拟试卷(理科)(4月份)一、选择题(本大题共12小题,共60.0分)1. 已知集合S ={x|2x =1},T ={x|ax =1}.若S ∩T =T ,则常数a 的值为( )A. 0或2B. 0或12 C. 2 D. 12 2. 已知i 为虚数单位,若(2+3i)z =1+i ,则复数z 在复平面内对应的点位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 为得到函数y =6sin(2x +π3)的图象,只需要将函数y =6cos2x 的图象( )A. 向右平行移动π6个单位 B. 向左平行移动π6个单位 C. 向右平行移动π12个单位D. 向左平行移动π12个单位4. 某班星期三上午要上五节课,若把语文、数学、物理、历史、外语这五门课安排在星期三上午,数学必须比历史先上,则不同的排法有( ) A. 60种 B. 30种 C. 120种 D. 24种 5. 执行如图所示的程序框图.若输入的S =0,则输出的S =( )A. 20B. 40C. 62D. 77 6. 一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的体积为( )A. 32−4πB. 32−2πC. 64−4πD. 64−2π7. 已知实数x ,y 满足约束条件{−3≥x −4y3x +5y ≤25x ≥1,则z =2x +y 的最大值等于( )A. 10B. 12C. 16D. 228. 已知抛物线C :y 2=4x 的焦点为F ,经过点Q(−1,0)作直线l ,l 与抛物线C 在第一象限交于A 、B 两点.若点F 在以AB 为直径的圆上,则直线l 的斜率为( )A. √33B. √22C. 12D. 19. 已知tan (π−α)=2,则sin4αsin (π2+2α)=( )A. ±85B. 85C. −85D. −6510. 已知正△ABC 的顶点都在球O 的球面上,正△ABC 的边长为2√3.若球心O 到△ABC 所在平面的距离为√5,则球O 的表面积为( ) A. 36π B. 32π C. 36√3π D. 32√3π 11. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点A 是双曲线C 的右顶点,点M 是双曲线C 的右支上一点,|MF 1|=5a.若△F 2MA 是以∠AMF 2为顶角的等腰三角形,则双曲线C 的离心率为( )A. 3B. √52C. √31−12D. √33−1212. 已知平行四边形ABCD 的面积为9√3,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +56AD ⃗⃗⃗⃗⃗ ,则|AF ⃗⃗⃗⃗⃗ |的最小值为( ) A. √11B. 3C. √7D. √5二、填空题(本大题共4小题,共20.0分)13. 在(√x 3−√x )8的二项展开式中,x 的系数等于______(用数字作答). 14. X1234P a 13112b512若X的数学期望等于4118,则a=______.15.已知f(x)=13x3+m2x2−6x+1在(−1,1)单调递减,则m的取值范围为______.16.在锐角△ABC中,内角A,B,C对的边分别为a,b,c.若a2+b(b−√3a)=1,c=1,则√3a−b的取值范围为______.三、解答题(本大题共7小题,共82.0分)17.某老师为了研究某学科成绩优良是否与学生性别有关系,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩(单位:分),得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定不低于80分为成绩优良.其中30名男生该学科成绩分成以下六组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].成绩优良人数成绩非优良人数总计男生30女生20总计50附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)其中n=a+b+c+d.P(K2≥k0)0.150.100.050.0250.010.005 k0 2.072 2.706 3.841 5.024 6.6357.87918.已知数列{a n}的前n项和为S n,a1=2,S n=a n+1,设b n=S n(1+S n)(1+S n+1),数列{b n}的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:T n <13.19. 如图,在三棱柱ABC −A 1B 1C 1中,AB =AC ,M 、N 、D 分别是A 1B 1、A 1C 1、BC 的中点.(1)求证:AD ⊥MN ;(2)若三棱柱ABC −A 1B 1C 1是直三棱柱,AB =AA 1,∠ABC =π6,求二面角M −AD −N 的正弦值.20. 已知e 是自然对数的底数,函数f(x)=ax 2−(a +1)x(lnx −1),g(x)=e x 2−ax 2.(1)若a =e ,求曲线y =f(x)g(x)在点(1,0)处的切线方程; (2)若g(x)在(−1,0)单调递增,判断函数f(x)是否有零点.若有,有多少个?若没有,说明理由.21. 已知椭圆E 的中心为坐标原点O ,焦点在x 轴上,离心率为√32,F 1,F 2分别为椭圆E 的左、右焦点,点P 在椭圆E 上,以线段F 1F 2为直径的圆经过点P ,线段F 1P 与y 轴交于点B ,且|F 1P|⋅|F 1B|=6.(1)求椭圆E 的方程;(2)设动直线l 与椭圆E 交于M 、N 两点,且OM⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =0.在平面直角坐标系xOy 中,是否存在定圆Q,动直线l与定圆Q都相切?若存在,求出圆Q所有的方程;若不存在,说明理由.22.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosαy=sinα(α为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程ρ=√3+cos2θ−2θ.(1)直接写出曲线C2的普通方程;(2)设A是曲线C1上的动点,B是曲线C2上的动点,求|AB|的最大值.23.已知f(x)=|2x+1|+|2x+3|,m是f(x)的最小值.(1)求m;(2)若a>0,b>0,且a+b=√3ab,求证:1a2+2b2≥m.-------- 答案与解析 --------1.答案:A解析:解:∵S ∩T =T ,∴T ⊆S ,且S ={12},T ={x|ax =1}, ∴①a =0时,T =⌀,满足T ⊆S ; ②a ≠0时,T ={1a },则1a =12,解得a =2, 综上得,a 的值为0或2. 故选:A .根据S ∩T =T 可得出T ⊆S ,并得出S ={12},从而可讨论a 是否为0:a =0时,显然满足条件;a ≠0时,可得出1a =12,从而可得出a 的值.本题考查了描述法、列举法的定义,交集的定义及运算,子集的定义,分类讨论的思想方法,考查了计算能力,属于基础题. 2.答案:D解析:解:由(2+3i)z =1+i ,得z =1+i2+3i =(1+i)(2−3i)(2+3i)(2−3i)=513−113i , ∴复数z 在复平面内对应的点的坐标为(513,−113),位于第四象限.故选:D .把已知等式变形,再由复数代数形式的乘除运算化简,求得z 的坐标得答案.本题考查复数的代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题. 3.答案:C解析:解:∵y =6cos2x ,∴6cos2(x −π4)=6cos(2x −π2)=6cos(π2−2x)=6sin2x ∴y =6cos2x 先向由平移π4个单位得到y =6sin2x ,∵y =6sin(2x +π3)=6sin2(x +π6)是将y =6sin2x 向作平移π6个单位, 综上所述将y =6cos2x 向右平移π12个单位得到y =6sin(2x +π3), 故选:C .由诱导公式先将y =6cos2x 转化成y =6sin2x ,然后在将y =6sin2x 平移得到y =6sin(2x +π3),先向右平移π4,再向左平移π6,即向右平移π12.本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,函数y =Asin(ωx +φ)的图象变换规律,属于基础题.解析:解:根据题意,把语文、数学、物理、历史、外语这五门课安排在星期三上午, 将五门课程任意排列,有A 55=120种情况,其中数学排在历史之前和数学排在历史之后的情况数目是相同的, 则数学比历史先上的排法有1202=60种;故选:A .根据题意,先计算五门课程任意排列的情况数目,又由数学排在历史之前和数学排在历史之后的情况数目是相同的,据此分析可得答案.本题考查排列组合的应用,涉及倍分法的使用,属于基础题. 5.答案:B解析:解:由题意可知,框图的算法功能是对数列{2n }、{n}求前4项的和, ∴S =2(1−24)1−2+1+2+3+4=40.故选:B .本题是一个直到型循环结构,算法功能是对数列{2n }、{n}求前4项的和.套公式计算即可. 本题考查了程序框图与数列求和问题,同时考查了学生的运算能力和逻辑推理能力.难度不大. 6.答案:C解析:解:由三视图还原原几何体如图,该几何体为棱长为4的正方体挖去一个四分之一圆柱, 圆柱的底面半径为2,高为4.则该几何体的体积为4×4×4−14×π×22×4=64−4π.故选:C .由三视图还原原几何体,可知该几何体为棱长为4的正方体挖去一个四分之一圆柱,圆柱的底面半径为2,高为4.再由棱柱与圆柱的体积公式求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题. 7.答案:B解析:解:如图:作出可行域,目标函数:z =2x +y ,则y =−2x +z , 当目标函数的直线过点A 时,Z 有最大值.A 点坐标由方程组{−3=x −4y3x +5y =25解得A(5,2)Z max =2x +故z =2x +y 的最大值为:12; 故选:B .先根据约束条件画出可行域,设z =2x +y ,再利用z 的几何意义求最值,只需求出直线z =2x +y 可行域内的点B 时,从而得到z =2x +y 的最值即可.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定. 8.答案:B解析:解:设AB 的斜率为k ,直线方程为:y =k(x +1),与抛物线y 2=4x 联立,可得k 2x 2+(2k 2−4)x +k 2=0,设A(x 1,y 1),B(x 2,y 2),可得x 1+x 2=4−2k 2k 2,x 1x 2=1,则y 1y 2=√16x 1x 2=4,点F 在以AB 为直径的圆上,FA⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =0, 可得(x 1−1,y 1)⋅(x 2−1,y 2)=0, 即x 1x 2−(x 1+x 2)+1+y 1y 2=0, 即1+2k 2−4k 2+1+4=0,解得k =±√22, l 与抛物线C 在第一象限交于A 、B 两点.所以k =√22.故选:B .设出直线AB 的方程,与抛物线联立,利用点F 在以AB 为直径的圆上,结合韦达定理转化求解即可. 本题考查直线与抛物线的位置关系的综合应用,抛物线的简单性质的应用,考查转化思想以及计算能力,是中档题. 9.答案:C解析:解:∵tan (π−α)=−tanα=2, ∴tanα=−2, ∴sin4αsin (π2+2α)=2sin2αcos2αcos2α=4sinαcosα=4sinαcosαsin2α+cos2α=4tanα1+tan2α=4×(−2)1+(−2)2=−85.故选:C .由已知利用诱导公式可求tanα,进而根据二倍角公式,诱导公式,同角三角函数基本关系式化简所求即可计算得解.本题主要考查了二倍角公式,诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 10.答案:A解析:解;设正△ABC 的外接圆半径r , 由正弦定理可得,2√3sin60°=2r ,故r =2,由球的性质可知,R 2=r 2+d 2=4+5=9,所以球的表面积S =4π×9=36π. 故选:A .由已知结合正弦定理可先求出三角形ABC 外接圆的半径,然后结合球的性质R 2=r 2+d 2可求R ,代入球的表面积公式即可求.本题主要考查了球的性质及球的表面积公式的简单应用,属于基础试题. 11.答案:D解析:解:双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点A 是双曲线C 的右顶点,点M 是双曲线C 的右支上一点,|MF 1|=5a.若△F 2MA 是以∠AMF 2为顶角的等腰三角形, 可得:√25a 2−(3c+a 2)2=√9a 2−(c−a 2)2, 可得:8a 2=c 2+ac ,e 2+e −8=0,e >1, 解得e =√33−12.故选:D .椭圆双曲线的定义,结合三角形是等腰三角形,列出关系式求解双曲线的离心率即可. 本题考查双曲线的简单性质的应用,是基本知识的考查,是中档题. 12.答案:D解析:解:如图,连接AE ,则:BE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ ,∴AF ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ )+(56−12λ)AD ⃗⃗⃗⃗⃗ =λAE ⃗⃗⃗⃗⃗ +(56−12λ)AD ⃗⃗⃗⃗⃗ ,且E ,F ,D 三点共线, ∴λ+56−12λ=1,解得λ=13, ∴AF ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +56AD ⃗⃗⃗⃗⃗ ,∵平行四边形ABCD 的面积为9√3,∠BAD =2π3,∴|AB ⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗ |sin2π3=√32|AB ⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗|=9√3,∴|AB⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗ |=18, ∴AF ⃗⃗⃗⃗⃗ 2=19AB ⃗⃗⃗⃗⃗ 2+2536AD ⃗⃗⃗⃗⃗ 2+59|AB ⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗ |cos 2π3=(13|AB ⃗⃗⃗⃗⃗ |)2+(56|AD ⃗⃗⃗⃗⃗ |)2−5≥2⋅13⋅56⋅|AB ⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗ |−5=59×18−5=5,当且仅当13|AB ⃗⃗⃗⃗⃗ |=56|AD ⃗⃗⃗⃗⃗ |,即|AB ⃗⃗⃗⃗⃗ |=52|AD ⃗⃗⃗⃗⃗ |=3√5时取等号, ∴|AF⃗⃗⃗⃗⃗ |的最小值为√5. 故选:D .可根据条件得出AF ⃗⃗⃗⃗⃗ =λAE ⃗⃗⃗⃗⃗ +(56−12λ)AD ⃗⃗⃗⃗⃗ ,然后根据E ,F ,D 三点共线即可得出λ=13,从而得出AF ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +56AD ⃗⃗⃗⃗⃗ ,然后根据条件可得出|AB⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗ |=18,从而可得出AF ⃗⃗⃗⃗⃗ 2=(13|AB ⃗⃗⃗⃗⃗ |)2+(56|AD ⃗⃗⃗⃗⃗ |)2−5,然后根据不等式a 2+b 2≥2ab 即可求出|AF⃗⃗⃗⃗⃗ |的最小值. 本题考查了向量加法、数乘的几何意义,三点A ,B ,C 共线,且OB ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOC ⃗⃗⃗⃗⃗ 时,可得出λ+μ=1,三角形的面积公式,向量数量积的运算及计算公式,不等式a 2+b 2≥2ab 的应用,考查了计算能力,属于中档题. 13.答案:28解析:解:根据二项式定理(√x 3√x )8的通项为T r+1=C 8r ⋅(−1)r ⋅x 16−5r6,16−5r 6=1,即r =2时,可得T 3=∁82x =28x ;即x 项的系数为28, 故答案为:28.利用二项展开式的通项公式求出第r +1项,令x 的指数为2求出展开式中x 2项的系数. 本题考查二项式定理的运用,注意二项式系数与某一项的系数的区别.14.答案:754解析:解:由分布列的性质可知,a +13+112+b +512=1, 数学期望E(X)=0×a +1×13+2×112+3×b +4×512=4118, 解得,b =127,a =754, 故答案为:754.先根据数学期望的计算方法求得b 的值,再根据分布列的性质,即概率和为1,即可求得a 的值. 本题考查分布列的性质和数学期望的计算方法,考查学生的运算能力,属于基础题. 15.答案:[−5,5]解析:解:f′(x)=x 2+mx −6, ∵f(x)=13x 3+m 2x 2−6x +1在(−1,1)单调递减,∴f′(x)=x 2+mx −6≤0在(−1,1)上恒成立. {m ≤01+m −6≤0,{m ≥01−m −6≤0, 解得:−5≤m ≤5,则m 的取值范围为[−5,5]. 故答案为:[−5,5].f′(x)=x 2+mx −6,根据f(x)在(−1,1)单调递减,可得f′(x)≤0在(−1,1)上恒成立.利用二次函数的单调性即可得出.本题考查了利用导数研究函数的单调性、方程与不等式的解法、二次函数的单调性,考查了推理能力与计算能力,属于中档题. 16.答案:(1,√3)解析:解:因为在锐角△ABC 中,内角A ,B ,C 对的边分别为a ,b ,c . ∵a 2+b(b −√3a)=1,c =1⇒a 2+b 2−√3ab =c 2⇒2cosC =√3⇒cosC =√32⇒C =30°,∴c sinC=a sinA=b sinB=1sin30∘=2;∴a =2sinA ,b =2sinB ;∴√3a −b =2(√3sinA −sinB)=2[√3sinA −sin (150°−A)]=2[√3sinA −(12cosA +√32sinA)]=2(√32sinA −12cosA)=2sin(A −30°);∵0°<A <90°,0°<B <90°,A +B =150°;∴60°<A <90°;∴30°<A −30°<60°⇒2sin(A −30°)∈(1,√3); 故√3a −b ∈(1,√3); 故答案为:(1,√3).先根据余弦定理求得角C ,结合正弦定理把√3a −b 转化为2(√3sinA −sinB),再结合AB 之间的关系求出角A 的范围,与正弦函数相结合即可求得结论.本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.(2)根据列联表中数据,计算K 2=50×(9×9−21×11)220×30×30×20=258=3.125>2.706,所以有90%的把握认为该学科成绩优良与性别有关系.解析:(1)根据题意填写列联表即可;(2)根据列联表中数据计算K 2,对照临界值得出结论.本题考查了列联表与独立性检验的问题,也考查了运算求解能力,是基础题. 18.答案:解:(1)S n =a n+1,即为S n =S n+1−S n ,即S n+1=2S n ,则S n =S 1⋅2n−1=a 1⋅2n−1=2n ;又a 1=S 1=2,当n ≥2时,a n =S n −S n−1=2n−1, 则数列{a n }的通项公式为a n ={2,n =12n−1,n ≥2,n ∈N ∗;(2)证明:由(1)可得S n =2n , b n =S n(1+Sn )(1+S n+1)=2n(1+2n )(1+2n+1)=11+2n −11+2n+1, 则T n =11+2−11+22+11+22−11+23+⋯+11+2n −11+2n+1=13−11+2n+1,由n 为正整数,可得11+2n+1>0,即13−11+2n+1<13, 则T n <13.解析:(1)由数列的递推式和等比数列的通项公式可得S n =2n ,再由a 1=S 1,当n ≥2时,a n =S n −S n−1,计算可得所求通项公式;(2)求得b n =2n(1+2n )(1+2n+1)=11+2n −11+2n+1,由数列的裂项相消求和和不等式的性质,即可得证. 本题考查数列的递推式的运用,等比数列的通项公式和数列的裂项相消求和,考查化简运算能力和推理能力,属于基础题.19.答案:解:(1)证明:∵D 是BC 的中点,AB =AC ,∴AD ⊥BC , ∵M ,N 分别是A 1B 1、A 1C 1的中点,∴MN//B 1C 1, 在三棱柱ABC −A 1B 1C 1中,BC//B 1C 1, ∴MN//BC ,∴AD ⊥MN .(2)解:如图,设AA 1=2,作AH//BC , 由(1)知AD ⊥BC ,∴AD ⊥AH ,由已知得AH ,AD ,AA 1两两互相垂直, 由∠ABC =π6,得∠BAH =π6,∠BAD =π3,以A 为坐标原点,建立如图所示的空间直角坐标系A −xyz ,则A(0,0,0),A 1(0,0,2),D(0,1,0),B(√3,1,0),B 1(√3,1,2), C(−√3,1,0),C 1(−√3,1,2),M(√32,12,2),N(−√32,12,2), AD ⃗⃗⃗⃗⃗ =(0,1,0),AM ⃗⃗⃗⃗⃗⃗ =(√32,12,2),AN ⃗⃗⃗⃗⃗⃗ =(−√32,12,2), 设平面ADM 的一个法向量为n⃗ =(x,y ,z), 则{n ⃗ ⋅AD ⃗⃗⃗⃗⃗ =y =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =√32x +12y +2z =0,取z =−√3,得n ⃗ =(4,0,−√3), 设平面ADN 的法向量m⃗⃗ =(a,b ,c), 则{m ⃗⃗ ⋅AD⃗⃗⃗⃗⃗ =b =0m ⃗⃗ ⋅AN⃗⃗⃗⃗⃗⃗ =−√32a +12b +2c =0,取c =√3,得m⃗⃗ =(4,0,√3), 设二面角M −AD −N 的平面角的大小为θ, 则|cosθ|=|m⃗⃗⃗ ⋅n ⃗ ||m⃗⃗⃗ |⋅|n ⃗ |=1319, ∵0<θ<π,∴sinθ=√1−cos 2θ=8√319, ∴二面角M −AD −N 的正弦值为8√319.解析:(1)推导出AD ⊥BC ,MN//B 1C 1,BC//B 1C 1,从而MN//BC ,由此能证明AD ⊥MN .(2)设AA 1=2,作AH//BC ,由AD ⊥BC ,得AD ⊥AH ,以A 为坐标原点,建立如图所示的空间直角坐标系A −xyz ,利用向量法能求出二面角M −AD −N 的正弦值.本题考查线线垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:解:(1)若a =e ,y =f(x)g(x)=[ex 2−(e +1)x(lnx −1)](e x 2−ex 2), ∴y′=[ex 2−(e +1)x(lnx −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(lnx −1)](e x 2−ex 2)′=[ex 2−(e +1)x(lnx −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(lnx −1)](2xe x 2−2ex), ∴当x =1时,y′=0,…2分∴曲线y =f(x)g(x)在点(1,0)处的切线的斜率k =0, ∴曲线y =f(x)g(x)在点(1,0)处的切线方程为y =0…4分 (2)函数f(x)没有零点.∵g(x)在(−1,0)单调递增,∴当x ∈(−1,0)时,g′(x)=2xe x 2−2ax ≥0,即a ≥e x 2. ∴a ≥e …6分由f(x)=ax 2−(a +1)x(lnx −1)得f′(x)=2ax −(a +1)lnx 且x >0, 设ℎ(x)=2ax −(a +1)lnx ,则ℎ′(x)=2a −a+1x=2a(x−a+12a)x,∴当0<x <a+12a时,ℎ′(x)<0,ℎ(x)单调递减;当x >a+12a时,ℎ′(x)>0,ℎ(x)单调递增;∴当x =a+12a时,ℎ(x)取得最小值,即[ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)ln a+12a…9分∵a ≥e ,∴a+12a<a+a2a,即0<a+12a<1,∴[ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)lna+12a>0.∴ℎ(x)>0,即f′(x)>0,∴f(x)在定义域(0,+∞)单调递增.∵f(1)=2a +1>0, ∴当a >1时,f(x)>0,当0<x <1时,x(lnx −1)<0,f(x)=ax 2−(a +1)x(lnx −1)>0. ∴当x ∈(0,+∞)时,f(x)>0,∴f(x)=0无实根,即函数f(x)没有零点.…12分解析:(1)若a =e ,可得y′=[ex 2−(e +1)x(lnx −1)]′(e x 2−ex 2)+[ex 2−(e +1)x(lnx −1)](2xe x 2−2ex),由x =1时,k =y′|x=1=0,即可求得曲线y =f(x)g(x)在点(1,0)处的切线方程; (2)依题意,g(x)在(−1,0)单调递增⇒a ≥e x 2,由f′(x)=2ax −(a +1)lnx 且x >0,设ℎ(x)=2ax −(a +1)lnx ,通过求导后,对x 分0<x <a+12a,x >a+12a及x =a+12a三类讨论,可求得[ℎ(x)]min =ℎ(a+12a )=a +1−(a +1)lna+12a,再进一步分析即可得到函数f(x)没有零点.本题考查了利用导数研究函数的单调性及导数的几何意义,突出考查等价转化思想、分类讨论思想的应用,考查了抽象思维、逻辑推理能力与综合运算能力,属于难题. 21.答案:解:(1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),|F 1F 2|=2c ,∵∠BF 1O =∠PF 1F 2,∠F 1OB =∠F 1PF 2=π2, ∴△F 1BO∽△F 1F 2P ,∴|F 1B||F 1F 2|=|F 1O||F 1P|,即|F 1P||F 1B|=|F 1O||F 1F 2|=2c 2=6,∴c =√3,根据e =ca =√32,解得a =2,所以b 2=a 2−c 2=1,则椭圆E 的方程为x 24+y 2=1;(2)当动直线l 的斜率为0或不存在时,根据图象的对称性不难发现,若满足条件的定圆Q 存在,则圆心Q 只能为原点O ,设圆Q 的半径为r ,则斜率为0的动直线l 有两条,方程分别为y =r ,y =−r , 斜率不存在的动直线l 有两条,方程分别为x =r 和x =−r ,这四条直线与定圆Q 都相切, 则点(r,r)在椭圆E 上,∴r 24+r 2=1,解得r 2=45,解得r =2√55, ∴若满足条件的定圆Q 存在,则其方程只能是x 2+y 2=45, 下面证明方程为x 2+y 2=45的圆满足题设要求,①当直线l 的斜率不存在时,显然直线l 与圆x 2+y 2=45相切,②当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,即kx −y +m =0,M(x 1,kx 1+m),N(x 2,kx 2+m), 联立{y =kx +m x 24+y 2=1得x 2+4(kx +m)2−4=0,即(4k 2+1)x 2+8kmx +4m 2−4=0,∵动直线l 与椭圆E 交于M ,N 两点,∴△=64k 2m 2−4(4k 2+1)(4m 2−4)>0,即4k 2+1−m 2>0,且{x 1+x 2=−8km4k 2+1x 1x 2=4m 2−44k 2+1, ∵OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ =0, ∴OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =x 1x 2+(kx 1+m)(kx 2+m)=(1+k 2)x 1x 2+mk(x 1+x 2)+m 2 =(1+k 2)(4m 2−4)4k 2+1−8m 2k 24k 2+1+m 2=0,4∵圆心Q 即原点O 到直线l 的距离d =√k 2+1=√5m 24=2√55=r ,∴直线l 与圆Q :x 2+y 2=45相切,综上,存在一个定圆Q ,动直线l 都与圆Q 相切,且圆Q 的方程为x 2+y 2=45.解析:(1)作图,根据条件结合圆的性质可证得△F 1BO∽△F 1F 2P ,则可得2c 2=6,再结合离心率可得a 的值;(2)考虑当直线l 的斜率不存在或者为0时,Q 存在,此时Q 的方程为x 2+y 2=45,下面证明方程为x 2+y 2=45的圆满足题设要求,①当直线l 的斜率不存在时,显然直线l 与圆x 2+y 2=45相切,②当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,利用根与系数关系已经点到直线距离证明即可. 本题是直线与椭圆、圆的综合,涉及圆的相关性质,直线与椭圆相交,直线与圆相切等知识点,属于中档偏难题.22.答案:解:(1)曲线C 2的极坐标方程ρ=√3+cos2θ−2θ.3ρ2+3ρ2cos 2θ=4,转换为直角坐标方程为x 2+y 24=1.(2)曲线C 1的参数方程为{x =2+2cosαy =sin α(α为参数).转换为直角坐标方程为(x −2)2+y 2=4,所以该曲线是以C(2,0)为圆心2为半径的圆.A 是曲线C 1上的动点,B 是曲线C 2上的动点,设B(cosθ,2sinθ),则|BC|=√(cosθ−2)2+4sin 2θ=√cos 2θ−4cosθ+4+4sin 2θ=√−3cos 2θ−4cosθ+8 =√−3(cosθ+23)2+283,当cosθ=−23时.|BC|max =√283=2√213, 所以求|AB|的最大值为2√213+2.解析:(1)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果. (2)利用直线和曲线的位置关系的应用建立等量关系,进一步求出最值.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.答案:解:(1)由绝对值不等式的性质得f(x)=|2x +1|+|2x +3|≥|(2x +1)−(2x +3)|=2,又∵f(−1)=2, ∴m =2;(2)证明:∵a >0,b >0,a +b =√3ab , ∴1a +1b =√3,b a∴1b2=1a2−2√3a+3,∴1a2+2b2=3a2−4√3a+6=(√3a−2)2+2≥2,∴1a2+2b2≥2=m.解析:(1)利用绝对值不等式的性质可得m=2;(2)根据题意1b =√3−1a,进而1a+2b=3a−4√3a+6=(√3a−2)2+2≥2,由此得证.本题考查绝对值不等式的性质,以及利用配方法证明不等式,考查了换元思想,函数思想的运用,属于基础题.。
15cm D . c2013 年云南省高等职业技术教育招生考试试题6. 二次函数 y = -11(x -6)2+ 8 的顶点坐标,对称轴分别为( )数学一.单项选择题(在每小题给出的四个选项中,只有一个是符合题目A . (-6,8) ,C . (6,8) ,x = -6y = 8B . (6,8) ,D . (-6,8) ,x = 6y = 8要求的,请用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
本大题7. 定义域为 R 的任意偶函数 f (x ) 对任何 x ∈ R 都有共 20 小题,每小题 4 分,共 80 分)1.集合 A={(x , y ) x + y = 1} ,集合 B={(x , y ) 2x - y = 5},则 A ⋂ B = ( )A . f (x ) + f (-x ) ≥ 0C . f (x ) f (-x ) ≥ 0B . f (x ) + f (-x ) ≤ 0D . f (x ) f (-x ) ≤ 0A .{(1,0)}B .{(3,1)}C . {2,-1}D .{(2,-1)}8. 圆的半径为 2cm ,圆心角为60︒ 时,对应的弧长为( )2.设a + a -1= 3,则a 2+ a -2= ( ) A .120cm B .60cm C . 2m 3 39.如果< < 3,那么 1 1 - cos 2应为( )A .3B .7C .9D .112 tan3. 已知 a < 2, b < 2,则a + b + b - a 为( )A. cosB. - c osC. sinD. - sin10.函数 y = 2 s in( x + x) 的最小正周期为( )A .=1B . > 4C . < 4D .以上结论都不对3 44. 设函数是反比例函数,且 f (-1) > 0 ,则( )A. 2B. 3C. 6D. 2A. 函数 y =f (x )在(-∞.0) ⋃ (0,+∞+) 是调增函数11.过点M (-2,3), 斜率为- 5 的直线方程是( )B. 函数 y =f (x )在(-∞.0) ⋃ (0,+∞+) 是调减数A . y + 5x + 7 = 0B . y + 5x + 1 = 0C . y - 5x - 7 = 0D .C .函数 y =f (x )在(-∞.0) ⋃ (0,+∞+) 既不是调增函数,也不是调减函数 5 y + x + 4 = 0→ → → →D .函数 y = f (x )在(-∞.0) 上调增函数,在(0,+∞) 是调减函数12. a = (1,- 3), b = (0,1), 且则〈a , b 〉 =( )A . 30︒B . 60︒C .120︒D .150︒5. 函数 y =的定义域为( )13.点 A(6,4)到直线4 y - 3x + 1 = 0 的距离等于( )A. - log 2 (2x + 3) 3 < x ≤ 3B. - 3 < x ≤ 3 且 x ≠ -1 A. 135B. 12C. 13 25D. 1252 C . -3 < x < 3 且 x ≠ -1 2 D . -9 - 3 ≤ x ≤ 3 且 x ≠ -114. 圆方程 x 2+y2+ 4x - 8 y + 5 = 0 对应的圆心和半径分别为( )2 2A . (-2,4),15B . (-2,-4),5C . (-2,-4),D .27 - 3x2 22 n134(-2,4), 22.复数3 - 3 3i 的指数形式是。
2024年云南高等职业技术教育数学模拟试题数学部分题目一、选择题1.已知全集U=N,集合A={x∈N|x>5},则C U A=A.{x|x<5}B.{x|x≤5}C.{0,1,2,3,4,5}D.{0,1,2,3,4}2.不等式x2≤4的解集是A.[2,+∞)B.(−∞,±2)C.[−2,2]D.(−∞,−2]∪[2,+∞)3.如果角α是第三象限的角,则√cos2α=A.cosαB.−cosαC.sinαD.−sinα4.已知角α终边上的一点P(3,4),则sinα+cosα+tanα=A.4115B.3915C.1541D.1539,α∈(0,π),那么tanα=5.如果sinα=35A.43B.34C.±34D.±436.函数y=log a(x+2)+3的图像一定经过点A.(1,0)B.(−2,−3)C.(−1,3)D.(0,3)7.已知α,β为锐角,且cosα>sinβ,则有A.0<α+β<π2B.α+β>π2C.α+β=π2D.π2<α+β<π8.已知两点A(0,3),B(−7,6),则线段AB的中点坐标为A.(72,−92)B.(−72,9 2 )C.(−72,3 2 )D.(−7,9)9.已知两点A(0,a),B(1,−2),且|AB|=√10,则a=A.5或1B.−5或−1C.5或−1D.−5或110.已知直线l的倾斜角为450,且经过点(0,3),则l的方程为A.x+y−3=0B.x+y+3=0C.x−y−3=0D.x−y+3=011.倾斜角为π3,在y轴上的截距为4的直线的方程是A.y=√33x−4B.y=√3x+4C.y=√33x+4D.y=√3x−412.直线x−y=0与圆x2+(y−3)2=25的位置关系是A.相交且过圆心B.相交且不过圆心C.相切D.相离13.圆心为点C(−5,3),且与x轴相切的圆的方程为A.(x−5)2+(y+3)2=25B.(x+5)2+(y−3)2=25C.(x−5)2+(y+3)2=9D.(x+5)2+(y−3)2=914.长方体的全面积为11,所有棱长之和为24,则这个长方体的一条对角线长为A.2√3B.√14C.6D.515.已知圆的半径为2,圆心角450,则此圆心角所对的弧长为A.π4B.45C.π2D.9016.正方体的内切球和外接球的半径之比为A.√3:1B.√3:2C.2:√3D.1:√317.已知a,b∈R,(a−1)+2i=(1−3a)+(1−b)i,则A.b=−2aB.b=2aC.a=−2bD.a=2b)的图像经过_____的操作可以得到y=2sin2x的图像18.把函数y=2sin(2x+π6A.向左平移π个单位12个单位B. 向右平移π12C. 向左平移π个单位6个单位D. 向与右平移π619.已知sinθ+sin2θ=1,则cos2θ+cos4θ=A.1B.2C.√2D.√320.在ΔABC中,已知A=300,a=8,b=8√3,SΔABC=A.32√3B.16C.32√3或16D.32√3或16√3二、填空题21.函数y=sin x cos x的最小正周期是=22.若tanα=2,则2sinα+cosαsinα−cosα23.圆x2+y2+8x−6y=0的圆心坐标为24.复数z=−√3−i的三角形式是25.如果向量a⃗=(3,2),b⃗⃗=(−1,2),则(2a⃗+b⃗⃗)⋅(a⃗−b⃗⃗)=三、解答题26.求过点A(2,3)且垂直于直线l:2x+y−5=0的直线方程,并化成一般方程27.位于A处的信息中心获悉:在其正东方向相距40海里的处有一艘渔船遇险,在原地等待营救。
2020年云南省高等职业技术教育招生考试试题一、选择题(本大题共20个小题,每小题2分,满分40分,在每小题给出的四个选项中,选出一个符合题目要求的。
)1.若实数b a 、在数轴上的位置如右图所示,则化简=--2a b a . A.b - B.b a -2 C.b D.b a +22.已知两数的和为6,这两个数的差的绝对值为8,那么以这两个数为根的一元二次方程是 .A.0862=+-x xB.0762=--x xC.0862=-+x xD.0762=++x x3.已知命题甲:“x >3”,命题乙:“x >3”,则甲是乙的 .4.若54-a >56-a ,则a 的取值范围是 .A.0<a <1B.a >0C.a >1D.a <15.函数()431ln 2+--+=x x x y 的定义域为 .A.()1,4--B.](1,4-C.()1,1-D.](1,1-6.已知()21312+=-x x f ,则=⎪⎭⎫ ⎝⎛32f . A. 5 B. 3 C.1 D.217.设集合{}R x x x M ∈=,1<<0,{}R x x x N ∈=,2<,则下面选项中,正确的是 .A. M N M =B. N N M =C. M N M =D. R N M =8.一钟(表)的时针经过40分钟所转过得角是 .A.π34B. π34-C.9πD.9π-9.已知△ABC 中,125tan -=A ,则=A cos . A.1312 B.135 C.1312- D.135- 10.已知,542cos =⎪⎭⎫ ⎝⎛-απ则()=-απ2cos . A. 257 B. 257- C.2524 D.2524- 11.已知βα、为锐角,且βαcos >cos ,则有 .A.2<<0πβα+ B. 2>πβα+ C.2πβα=+ D. πβαπ<<2+12.在△ABC 中,∠B=45°,∠C =60°,1=c ,则最短的边长等于 . A.23 B.26 C.21 D.36 13.直线042=--y x 绕它与x 轴的交点,沿逆时针方向旋转4π,所得的直线方程是 .A. 042=+-y xB. 063=+-y xC. 042=-+y xD.063=-+y x13.圆0202422=-+-+y x y x 被直线5=x 所截,截得的弦长等于 .A. 4B. 6C. 8D. 1014.圆0202422=-+-+y x y x 被直线5=x 所截,截得的弦长等于 .A. 4B. 6C. 8D.1015.函数⎪⎭⎫ ⎝⎛+=32sin 3πx y 的图象可将函数x y 2sin 3=的图象作 变换得到.A. 向左平移6π个单位 B.向右平移6π个单位 C.向左平移3π个单位 D.向右平移3π个单位 16.如果双曲线上的一点P 到两个焦点()()0,20,2、-的距离之差是2,则此双曲线方程是 .A. 1322=-y xB. 1322=-x yC.1322=-x yD.1322=-y x 17.已知数列{}n a 中,1331=-+n n a a ,且11=a ,则=31a .A. 10B. 11C. 12D.1318.已知向量()y a ,3-= ,()7,x b = ,b a ⊥,则=yx . 19.根据欧拉公式:θθθi e i =+sin cos ,可将复数()θθsin cos i r +表示成ϑi re 的指数形式,那么将i 31-表示成指数形式为 . A.π352i e B.32πi e C. π352i e D.32πi e20.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a ,则三棱锥A -BCD 的体积是 . A. 3123a B.3122a C.3121a D.361a 二、填空题(本大题共5小题,每小题3分,满分15分。
2020年高职高考数学试卷一、选择题,2分每题1.若实数,a b在数轴上的位置如图所示,则化简___a b -=.A b - .2B a b - .C b .2D a b +2. 已知两数的和为6,这两数的差的绝对值为8,那么以这两个数为根的一元二次方程是___2.680A x x -+= 2.670B x x --=2.680C x x +-= 2.670D x x ++=3.已知命题甲:“3x >”,。
命题乙:3x >”,则命题甲是乙的_______.A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件4.若46--55aa >则a 的取值范围是____________ .01A a << .0B a > .1C a > .1D a <5.函数y =的定义域为____________ ().-4-1A , .(4,1]B -- ().1,1C - .(1,1]D -6.已知1(21)32f x x -=+则2()3f =____________ .5A .3B .1C 1.2D 7.已知集合{}{}01,,2,M x x x R N x x x R =<<∈=<∈则下面选项中正确的是______ .A M N M ⋂= .B M N N ⋂= .C M N M ⋃= .D M N R ⋃=8. 一钟(表)的时针经过40分钟所转过的角是_______4.3A π 4.3B π- .9C π .9D π- 9.已知ABC 中,5tan 12A =-则cos A =____________ 12.13A 5.13B 12.13C - 5.13D - 10.已知4cos()25πα-=,则()cos 2πα-=____________ 7.25A 7.25B - 24.25C 24.25D -11.已知αβ,是锐角,且cos sin αβ>则有____________.02A παβ<+< .2B παβ+>.2C παβ+= .2D παβπ<+<12.在ABC 中,45,60,1,B C c ∠=∠==则最短边的长为____________2A .2B 1.2C 3D 13.直线240x y --=绕它与x 轴的交点,沿逆时针方向旋转4π,所得直线方程是_______ .240A x y -+= .360B x y -+= .240C x y +-= .360D x y +-=14.圆2242200x y x y +-+-=被直线5x =所截,截得的弦长等于__________A B 1.2C D 15.函数3sin(2)3y x π=+的图象可将函数3sin2y x =的函数图象作______变换得到.6A π向左平移个单位 .6B π向右平移个单位 .3C π向左平移个单位 .3D π向右平移个单位 16.如果双曲线上的一点P 到两个焦点()()2,0,2,0-的距离之差是2,则双曲线的方程是___ 22.13x A y -= 22.13y B x -= 22.13x C y -= 22.13y D x -= 17.已知数列{}n a 中,111,331n n a a a +=-=则31a =____________.10A .11B .12C .13D18.已知向量()()3,,,7,,a y b x a b =-=⊥则x y=____________7.3A - 3.7B - 3.7C 7.3D 19.根据欧拉公式:cos sin i i e θθθ+=,可将复数(cos sin )r i θθ+,表示成i e θ的指数形式,那么将1-表示成指数形式为___________53.2i A e π 3.2i B e π 53i C π 3i D π20.将边长为a 的正方形ABCD 沿对角线AC 使,BD a =则三棱锥A BCD -的体积是___3.12A 3.12B a 31.12C a 31.6D a 二、填空题(每题3分)21.不等式3112x x-≥-的解集是______________ 22.已知函数2()22(1)f x x x x =++<,则1(2)f-=______________ 23.已知圆柱的轴截面积为210cm π,则此圆柱的侧面积是___________24.若椭圆22214x y m +=,过点(-,则其焦距为_______________ 25.若1log 38a =,则a =_______________ 三、解答题(9分每题) 26.已知二次函数2(0,0)y x bx kb k =++≠≠的图像交x 轴于,M N 两点,2MN =,函数y kx b =+的图像经过线段MN 的中点,求,b k 的值及该二次函数的解析式.27. 一圆锥的母线与底面所成的角为30,它的侧面积是2,求该圆锥的体积28.已知1sin sin 446ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭求sin4α的值. 29.设等差数列{}n a 的前n 项和为n S ,已知4121315,0,0,a S S =><求公差d 的取值范围。
数学试题一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.第1题:已知集合{}10,=S ,集合{}0=T ,Φ表示空集,那么=T S (A )Φ(B ){}0(C ){}10,(D ){}010,,本题考查集合的概念和运算.解: ∵{}10,=S ,{}0=T , ∴=T S {}10,. 故选C .第2题:抛物线281x y =的焦点坐标为 (A ))2,0( (B ))321,0((C ))0,2((D ))0,321(本题考查抛物线的标准方程. 解: ∵281x y =, ∴y y x 4282⨯==. ∴281x y =的焦点坐标为)2,0(. 故选A.答题分析:解答本题首先要把抛物线的方程281x y =化为标准方程28x y =,这样才能得出正确答案.这也是考生容易出错的地方.第3题:一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为(A )1 (B )2(C )3(D )4本题考查等比数列的概念及其相关运算.解:设此数列的公比为q ,根据题意得0>q ,且q q a q q a --=--1)1(51)1(2141, 解得2=q . 故选B.答题分析:考生容易忽视条件“一个由正数组成的等比数列”,如果改为填空题,考生容易得出错误答案2q =±.第4题:已知平面向量)2,1(=,)1,(x =,如果向量2+与-2平行,那么与的数量积⋅等于(A )2-(B )1-(C )23(D )25 本题考查向量的概念及其与运算,考查向量平行,考查两个向量的数量积. 解:∵)2,1(=,)1,(x =,∴)4,212x +=+(,)3,2(2x -=-.∵ 2+与-2平行,∴0)2(4)21(3=--+x x ,解得21=x . ∴)1,21(=.∴⋅25=. 故选D.第5题:如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为1的半圆,俯视图是半径为1的圆,则该几何体的体积等于 (A )π4(B )34π(C )32π(D )3π 本题以半球为载体,考查由三视图还原几何体的能力.正视图俯视图侧视图解: 由三视图知几何体是半球,体积为32314213ππ=⨯⨯. ∴故选C .第6题:曲线x x x x y ln 3)2)(1(---=在点)0,1(处的切线方程为 (A )044=--y x (B )044=-+y x(C )033=--y x(D )033=-+y x本题考查导函数的求法,考查曲线上一点处的切线方程的求法. 解: ∵xx x x x x y 3])2)(1[()2)(1(-'--+--=' xx x x x x x 3)1()2()2)(1(--+-+--=, ∴当1=x 时,4-='y .∴曲线x x x x y ln 3)2)(1(---=在点)0,1(处的切线方程为044=-+y x .∴故选B.答题分析:1.题中涉及三项乘积的导数的求法,一些考生不能把它转化为两项乘积的导数来求解.2.也可以把三项的乘积展开后再求导数,即[](1)(2)x x x '--()()23223232362x x x x x x x x ''⎡⎤=-+=-+=-+⎣⎦. 第7题:已知i 是虚数单位,如果复数z 满足i z z +=+1,那么=z (A )i(B )i -(C )i +1(D )i -1本题考查复数,考查复数的基本运算,考查方程的思想方法. 解: 设yi x z +=,x 、y 都是实数,则yi x y x z z +++=+22, ∵i z z +=+1,∴⎩⎨⎧=++=1122x y x y ,解方程得⎩⎨⎧=++=1122x y x y .∴=z i . ∴故选A.答题分析:本题解题方法是利用复数相等条件来列等式,求出未知数.复数 不能比较大小,但复数可以相等.本题体现了这一思想.第8题:已知直线l 经过点)3,2(M ,当l 截圆9)3()2(22=++-y x 所得弦长 最长时,直线l 的方程为 (A )042=+-y x(B )01843=-+y x(C )03=+y (D )02=-x 本题考查直线和圆的基本知识.解: ∵l 截圆9)3()2(22=++-y x 所得弦长最长,∴直线l 经过圆9)3()2(22=++-y x 的圆心)3,2(-. 由已知得直线l 经过点)3,2(M 和圆心)3,2(-. ∴直线l 的方程为02=-x . ∴故选D.第9题:从分别写有1,2,3,4,5的五张卡片中任取两张,假设每张卡片被 取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和 为偶数的概率为 (A )54 (B )2516(C )2513(D )52 本题考查概率的古典概型,考查用枚举法求概率.解: 从分别写有1,2,3,4,5的五张卡片中任取两张,总的情况为: )2,1(,)3,1(,)4,1(,)5,1(,)1,2(,)3,2(,)4,2(,)5,2(,)1,3(,)2,3(,)4,3(,)5,3(,)1,4(,)2,4(,)3,4(,)5,4(, )1,5(,)2,5(,)3,5(,)4,5(共20种情况.两张卡片上的数字之和为偶数的有:)3,1(,)5,1(, )4,2(,)1,3(,)5,3(,)2,4(,)1,5(,)3,5(共8种情况.∴从分别写有1,2,3,4,5的五张卡片中任取两张,这两张卡片上的数字之和为偶数的概率52208==P . 故选D.第10题:已知)(x f 是定义域为实数集R 的偶函数,01≥∀x ,02≥∀x ,若21x x ≠,则0)()(1212<--x x x f x f .如果43)31(=f ,3)log (481>x f ,那么x 的取值范围为(A ))21,0( (B ))2,21((C )),2(]1,21(∞+(D ))2,21()81,0( 本题综合考查函数的奇偶性、单调性. 解:∵01≥∀x ,02≥∀x ,21x x ≠,则0)()(1212<--x x x f x f ,∴定义在实数集R 上的偶函数)(x f 在),0[∞+上是减函数.∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >. ∴,31log ,0log 8181⎪⎩⎪⎨⎧<≥x x 或,31log ,0log 8181⎪⎩⎪⎨⎧-><x x 解得121≤<x 或21<<x . ∴221<<x . 故选B ..答题分析:1.本题首先要看出函数)(x f 在),0[∞+上是减函数. 2.根据函数的单调性“去f ”:∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >,但这个不等式并不等价于181log 3x <,原因是函数)(x f 在),0[∞+上是减函数,但在(),0-∞上却是增函数.事实上,∵)(x f 是定义域为实数集R 的偶函数,∴上式可化为181log 3f x f ⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭,即181log 3x >,接下来分类讨论去绝对值即可.。
数学试题第20题:(本小题满分12分)已知1F 、2F 分别是椭圆E : )0(12222>>=+b a b y a x 的左、右焦点,点)3,2(P 在直线ba x 2=上,线段1PF 的垂直平分线经过点2F .直线m x k y +=与椭圆E 交于不同的两点A 、B ,且椭圆E 上存在点M ,使OM OB OA λ=+,其中O 是坐标原点,λ是实数.(Ⅰ)求λ的取值范围;(Ⅱ)当λ取何值时,ABO ∆的面积最大?最大面积等于多少? 本题综合考查直线和椭圆的相关问题,综合考查考生的运算求解能力. 解:(Ⅰ)设椭圆E 的半焦距为c ,根据题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+-====,,3)2()2(,222222222212c b a c PF c F F b a 解方程组得⎪⎩⎪⎨⎧===.2,1,1a b c ∴椭圆E 的方程为1222=+y x . 由⎩⎨⎧=++=22,22y x m kx y ,得0224)21(222=-+++m kmx x k . 根据已知得关于x 的方程0224)21(222=-+++m kmx x k 有两个不相等的实数根.∴0)21(8)22)(21(416222222>-+=-+-=∆m k m k m k , 化简得:2221m k >+. 设),(11y x A 、),(22y x B ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+.2122,2142221221k m x x k km x x 221212122)(k mm x x k y y +=++=+.(1)当0=λ时,点A 、B 关于原点对称,0=m ,满足题意; (2)当0≠λ时,点A 、B 关于原点不对称,0≠m .由OA OB OM λ+=,得⎪⎪⎩⎪⎪⎨⎧+=+=),(1),(12121y y y x x x M M λλ 即⎪⎪⎩⎪⎪⎨⎧+=+-=.)21(2,)21(422k m y k km x M M λλ∵M 在椭圆E 上,∴1])21(2[])21(4[212222=+++-k m k km λλ, 化简得:)21(4222k m +=λ. ∵2221m k >+,∴2224m m λ>. ∵0≠m ,∴42<λ,即22<<-λ且0≠λ.综合(1)、(2)两种情况,得实数λ的取值范围是)2,2-(.(Ⅱ)当0=λ时,0=m ,此时,A 、B 、O 三点在一条直线上,不构成ABO ∆.∴为使ABO ∆的面积最大,0≠λ.∵⎪⎪⎩⎪⎪⎨⎧+-=+-=+,22212212122,214k m x x k km x x ∴2122124)(1x x x x kAB -++=22222121122k m k k +-++=.∵原点O 到直线m x k y +=的距离21km d +=,∴AOB ∆的面积d AB S ⋅=2122221212k m k m +-+=.∵)21(4222k m +=λ,0≠λ, ∴222421λm k =+.∴4424142442422222222λλλλλλ-=-=-=m m m mS )4(4222λλ-=. ∵224)4(2222=-+≤-λλλλ,∴22≤S . “=” 成立⇔224λλ-=,即2±=λ.∴当2±=λ时,ABO ∆的面积最大,最大面积为22.答题分析:1.由于题目较长,一些考生不能识别有效信息,未能救出椭圆E 的方程求.2. 第(Ⅰ)问,求λ的取值范围.其主要步骤与方法为:由0∆>,得关于k 、m 的不等式2221m k >+…… ①.由根与系数的关系、OM OB OA λ=+,M 在椭圆E 上,可以得到关于k 、m 、λ的等式)21(4222k m +=λ…… ②.把等式②代入①,可以达到消元的目的,但问题是这里一共有三个变量,就是消了m ,那还有关于k 和λ的不等式,如何求出λ的取值范围呢?这将会成为难点.事实上,在把等式②代入①的过程中,k 和m 一起被消掉,得到了关于λ的不等式.解之即可.3.第(Ⅱ)问要把ABO ∆的面积函数先求出来.用弦长公式求底,用点到直线的距离公式求高,得到AOB ∆的面积d AB S ⋅=2122221212km k m +-+=,函数中有两个自变量k 和m ,如何求函数的最大值呢?这又成为难点.这里很难想到把②代入面积函数中,因为②中含有三个变量,即使代入消掉一个后,面积函数依然有两个自变量.但这里很巧合的是:代入消掉k 后,事实上,m 也自动地消除了,于是得到了面积S 和自变量λ的函数关系S )4(4222λλ-=,再由第(Ⅰ)中所得到的λ的取值范围)2,2-(,利用均值不等式,即可求出面积的最大值了.4.解析几何的难点在于运算的繁杂,本题较好地体现了解解析几何题设题要求.对此,考生要有足够的心理准备.5.解答本题给我们的启示:不能死抱一些“结论”,比如两个未知数需要两个方程才能解出来等等.事实上,当那方程比较特殊的时候,即便是有多个未知数,也是可以把所有未知数都解出来的.很多时候的巧,会给我们山重水复疑无路,柳暗花明又一村的惊喜!第21题:(本小题满分12分)已知常数a 、b 、c 都是实数,函数16)(23-++=x c x b x a x f 的导函数为)(x f ',0)(≥'x f 的解集为{}32≤≤-x x .(Ⅰ)若)(x f 的极大值等于65,求)(x f 的极小值;(Ⅱ)设不等式06)(≥+'x a x f 的解集为集合T ,当T x ∈时,函数16)()(+-=ma x f x F 只有一个零点,求实数m 的取值范围.本题通过导数综合考查函数的单调性、极值、零点、比较大小等知识. 解:(Ⅰ)∵16)(23-++=x c x b x a x f ,∴c bx ax x f ++='23)(2. ∵不等式0)(≥'x f 的解集为{}32≤≤-x x ,∴不等式0232≥++c bx ax 的解集为{}32≤≤-x x .∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+-<,332,3232,0a c a b a 即⎪⎩⎪⎨⎧-=-=<.18,23,0a c a b a∴161823)(23---=ax x a x a x f , )2)(3(31833)(2+-=--='x x a a ax ax x f .∴当)2,(-∞-∈x 或),3(∞+∈x 时,0)(<'x f ,即)(x f 为单调递减函数; 当)3,2(-∈x 时,0)(>'x f ,即)(x f 为单调递增函数. ∴当3=x 时,)(x f 取得极大值,当2-=x 时,)(x f 取得极小值. 由已知得65165422727)3(=---=a aa f ,解得2-=a . ∴163632)(23-++-=x x x x f . ∴)(x f 的极小值60)2(-=-f .(Ⅱ)∵0<a ,a ax ax x f 1833)(2--=',06)(≥+'ax x f ,∴062≤-+x x ,解得23≤≤-x ,即{}23≤≤-=x x T . ∵16)()(+-=ma x f x F ,∴)()(x f x F '='.∴当)2,(-∞-∈x 或),3(∞+∈x 时,0)(<'x F ,即)(x F 为单调递减函数; 当)3,2(-∈x 时,0)(>'x F ,即)(x F 为单调递增函数. ∴当)2,3(--∈x 时,)(x F 为单调递减函数; 当)2,2(-∈x 时,)(x F 为单调递增函数. ∵ma ama f F -=+--=-22716)3()3(, ma a ma f F --=+-=3416)2()2(,0<a ,∴)2()3(F F <-.∴)(x F 在]2,3[-上只有一个零点⎩⎨⎧≥<-⇔,0)2(,0)3(F F 或0)2(=-F .由⎩⎨⎧≥<-,0)2(,0)3(F F 得22734<≤-m ;由0)2(=-F ,即016)2(=+--ma f ,得22=m . ∴实数m 的取值范围为22734<≤-m 或22=m . ∴当22734<≤-m 或22=m 时,函数16)()(+-=ma x f x F 在]2,3[-上只有一个零点.答题分析:1.第(Ⅰ)的解答还是要破费周折的. 首先要求出导函数c bx ax x f ++='23)(2.然后根据0)(≥'x f 的解集为{}32≤≤-x x ,通过解混合组,得到⎪⎩⎪⎨⎧-=-=<.18,23,0a c a b a 进而得到161823)(23---=ax x a x a x f . 接下来通过研究函数()f x 的单调性,由)(x f 的极大值等于65,可解得2-=a ,这样就可以求出()f x 的极小值60)2(-=-f .2.第(Ⅱ)问先由不等式06)(≥+'x a x f 的解集为集合T ,可以解得{}23≤≤-=x x T .然后研究16)()(+-=ma x f x F 的单调性,值得注意的是)()(x f x F '=',换句话说方程两边对x 求导数,m 、a 应看作是常数.单调性弄清楚后,还要比较(3)F -、(2)F 的大小.然后根据()F x 只有一个零点,列出(3)0,(2)0,F F -<⎧⎨≥⎩或0)2(=-F ,最后解之即可.值得注意的是,很多考生漏了0)2(=-F。
数学试题二.填空题:本大题共4小题,每小题5分.第16题:已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,若1222=-+bca c b,12c b =+B tan 的值等于 .本题考查解三角形,涉及正余弦定理、三角变换.解: 根据余弦定理得:212cos 222=-+=bc a c b A . ∵A 是三角形的内角, ∴3π=A .在ABC ∆中,B B A C -=--=32ππ. ∴B B C sin 21cos 23sin +=. 根据正弦定理和已知得:321sin sin 21cos 23sin sin +=+=B BB BC . ∴B B cos 23sin 3=. ∴21tan =B . 答题分析:1.解答本题的一个关键是要从1222=-+bca cb 看出这是关于角A 的余弦定理,可得出3π=A .2.因为()sin 120sin 1sin sin 2B cC b B B ︒-===+,这个式子展开后,得cos 112sin 22B B +=+.三.解答题:解答应写出文字说明,证明过程或演算步骤.第17题:(本小题满分12分)已知21cos 2sin 23)(2+-=x x x f . (Ⅰ)写出)(x f 的最小正周期T ;(Ⅱ)若)(x f y =的图象关于直线m x =对称,并且65<<m ,求m 的值. 本题考查三角函数的化简计算,考查三角函数的周期性和对称性. 解:(Ⅰ)∵)(x f )62sin(2cos 212sin 23π-=-=x x x , ∴)(x f 的最小正周期ππ==22T .(Ⅱ)∵)(x f y =的图象关于直线m x =对称,∴262πππ+=-k m ,Z k ∈.∴32ππ+=k m ,Z k ∈. ∵65<<m ,∴611π=m .第18题:(本小题满分12分)某投资公司年初用98万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出12万元,第二年需要支出16万元,第三年需要支出20万元,……,每年都比上一年增加支出4万元,而每年的生产收入都为50万元.假设这套生产设备投入使用n 年,*∈N n ,生产成本等于生产设备购置费与这n 年生产产品相关的各种配套费用的和,生产总利润)(n f 等于这n 年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:(Ⅰ)若0)(≥n f ,求n 的值;(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:方案一:当年平均生产利润取得最大值时,以26万元的价格出售该套设备; 方案二:当生产总利润)(n f 取得最大值时,以8万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.本题考查考生的阅读和建模能力,综合考查考生运用函数、数列、均值不等式等知识和方法解决实际问题能力.解:(Ⅰ)由题意知该公司这n 年需要支出与生产产品相关的各种配套费用是以12为首项,4为公差的等差数列的前n 项和.∴()5098[1216(48)]f n n n =--++++984022-+-=n n .由()0f n ≥得0984022≥-+-n n ,解得51105110+≤≤-n . ∵*∈N n ,∴3=n ,4,5,……,17. ∴0)(≥n f 的解集为{}173,≤≤∈*n N n n .(Ⅱ)(1) 由已知得年平均生产利润为)49(240)(nn n n f +-=. ∵122840)49(240)(=-≤+-=nn n n f , “=”成立⇔)(49*∈=N n nn ,即7=n , ∴当7=n 时,年平均生产利润取得最大值,若执行方案一,总收益为11026127=+⨯(万元).(2) ∵)(n f 984022-+-=n n 102)10(22+--=n ,*∈N n ,∴当10=n 时,生产总利润取得最大值,若执行方案二,总收益为1108102=+(万元).∴无论执行方案一还是方案二,总收益都为110万元. ∵107<,∴从投资收益的角度看,方案一比方案二更合算.注:第(Ⅱ)问答案不唯一,只要言之有理即可.答题分析:1.由于文字叙述较长,很多考生对题意不甚了了,所建立的函数模型也是错误百出,从而导致本题的得分是很低的.2.第(Ⅰ)问中,很多考生在求()f n 的时候,都把等差数列的前n 项和错误理解为第n 项n a 了,即()()5098[1241]f n n n =--+-.3.第(Ⅱ)问中,一些考生不理解“年平均生产利润取得最大值”、“生产总利润)(n f 取得最大值”的含义,从而无法建立模型.4. 第(Ⅱ)问中,所建立的模型是对的,并且也求出了n 分别等于7和11,但之后就不知道应该选择哪一个量作为标准,来判断哪个方案更好. 第19题:(本小题满分12分)如图,在长方体ABCD D C B A -1111中,a AB =,b AD =,c AA =1,M 是线段11D B 的中点.(Ⅰ)求证://BM 平面AC D 1; (Ⅱ)求平面AC D 1把长方体ABCD D C B A -1111分成的两 部分的体积比.本题考查空间线面位置关系,考查线面平行,考查三棱锥体积的求法. (Ⅰ)证明:设AC 的中点为O ,连接1OD ,BD .根据题意得AC BD O ⋂=, BO 1//MD ,且BO 1MD =.∴四边形M BOD 1是平行四边形. ∴1//OD BM .∵⊄BM 平面AC D 1,⊂1OD 平面AC D 1, ∴//BM 平面AC D 1. (Ⅱ)解:∵63111abc D D S V ADC ADC D =⨯⨯=∆-, abc D D DC AD V D C B A ABCD =⨯⨯=-11111,∴空间几何体ABC D C B A 1111的体积=V AD C D D C B A ABCD V V ---11111656abc abc abc =-=. ∴5:1:1=-V V AD C D 或1:5:1=-AD C D V V ,即平面AC D 1把长方体ABCD D C B A -1111分成的两部分的体积比为5:1或1:5.答题分析:1. 第(Ⅰ)问有一点难度,需要作辅助线,这几乎是用几何法证明线面平行、线面垂直的必经之路了,对此考生要有意识.D 1C 1B 1A 1ACDMD 1C 1A 1ABCODM2.第(Ⅱ)问的解决比较简单,并且不依赖于第(Ⅰ)问,有的考生第(Ⅰ)问没有做出来,但第(Ⅱ)问做出来了,这是一种好的现象,说明考生能够把会做的做对了.。
数学试题一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.第11题:某学校高一年级、高二年级、高三年级共有学生3500人,其中高三年级学生数是高一年级学生数的两倍,高二年级学生比高一年级学生多300人,现按年级用分层抽样的方法从高一年级、高二年级、高三年级抽取一个学生样本. 如果在这个样本中,有高三年级学生32人,那么为得到这个样本,在从高二年级抽取学生时,高二年级每个学生被取到的概率为 (A )201(B )301(C )501(D )1001本题考查统计中分层抽样的计算. 解: 设高三学生数为x ,则高一学生数为2x ,高二学生数为3002+x, ∴有350030022=+++xx x ,解得1600=x ,高三学生数为1600. ∵在这个样本中,高三年级学生有32人, ∴每个学生被抽到的概率为.501160032= 故选C .答题分析:本题不是求高二年级这一层将抽到多少学生,这是与以往不同的地方.我们所学习的三种抽样方法都是等概率抽样,即每个个体被抽到的概率都相等,据此便可解答本题.第12题:在三棱锥ABC P -中,PC PB PA ==,底面ABC ∆是正三角形,M 、N 分别是侧棱PB 、PC 的中点. 若平面⊥AMN 平面PBC ,则侧棱PB 与平面ABC 所成角的正切值是(A )52(B )32O(C )22 (D )63本题考查空间线面的位置关系,考查线面角的求法.解: 设MN 的中点为D ,BC 的中点为E ,连接AD ,AE ,PE .∵PC PB PA ==,∴P 在平面ABC 内的射影是等边ABC ∆的中心O . ∴PBO ∠是侧棱PB 与平面ABC 所成的角.由已知得AN AM =,设MN 的中点为D ,则MN AD ⊥. ∵平面⊥AMN 平面PBC , ∴⊥AD 平面PBC .∵M ,N 分别是侧棱PB ,PC 的中点, ∴D 是PE 的中点. ∵⊥AD PE , ∴AE PA =.设等边ABC ∆的边长为a ,侧棱长为b ,则a b 23=. ∵6153,3322a ab PO a BO =-==, ∴25tan ==∠BO PO PBO . ∴故选A.答题分析:1.本题的关键在于对空间线面位置关系进行正确而有效的转化,只要哪一步思维卡壳,就很难做下去了.2.首先要找到侧棱PB 与平面ABC 所成角PBO ∠.接下来要用面面垂直推出线面垂直,进而推出线线垂直.然后再逆用等腰三角形的性质,得出AE PA =.从而找到底面正三角形边长a 和侧棱长b 之间的等量关系.最后才是计算PBO ∠的正切值.3.本题的难点在于:首先要找出所求的线面角,其次如何根据条件找到底面边长a 和侧棱长b 的等量关系.二.填空题:本大题共4小题,每小题5分.第13题:如果执行下列程序框图,那么输出的S = .本题考查程序框图,考查等差数列前n 项和的求法.解:根据程序框图的意义,得()212202021420S =⨯+++=⨯=.第14题:已知ABC ∆的面积等于S ,在ABC ∆的边AB 上任取一点P ,则PBC ∆的面积不小于7S的概率等于 .本题考查几何概型的计算.解:设ABC ∆底边AB 上的高为h ,1P 在ABC ∆的边AB 上,且71ABB P =, 761ABAP =. 则有1111111..227727P BC AB S PB h h AB h S ∆=⋅⋅==⋅⋅⋅=, 同理有167P ACS S ∆=. ∵PBC ∆的面积不小于7S,开始 k =1S =20?k ≤是 2S S k =+1k k =+否输出S 结束∴点P 只能在线段1AP 上. ∴PBC ∆的面积不小于7S的概率等于76.答题分析:1.几何概型是将概率问题转化为几何图形问题.本题是将面积概率问题转化为线段长问题,由于线段1CP 上有无数个点P ,在线段1CP 上任取一点P ,都有7PBC SS ∆>.由于总面积S 相当于线段长BC ,PBC S ∆相当于线段长1PC ,所以得PBC ∆的面积不小于7S的概率等于76.解题时应注意体会几何概型事件的无限性与古典概型事件的有限性.2.有的考生填写的是17,可能是把“不小于”看成了“小于”.这提示我们,读题要慢,审题要细,只有这样才能减少失分.第15题:设1F 、2F 为双曲线1222=-y ax 的两个焦点,点P 在此双曲线上,021=⋅PF PF ,如果此双曲线的离心率等于25,那么点P 到x 轴的距离等于 .本题考查双曲线,考查双曲线的焦点三角形,离心率等知识和方法.解法一: ∵ 1222=-y a x 的离心率等于25,∴45122=+a a .∴42=a . ∵021=⋅PF PF , ∴21PF PF ⊥. ∴21PF PF ⊥.∵点P 在双曲线1422=-y x 上, ∴16)(221=-PF PF .∴162212221=-+PF PF PF PF . ∴162)14(421=-+⨯PF PF . ∴221=PF PF .设点P 到x 轴的距离等于d ,则21142PF PF d =⨯+. ∴55=d . 解法二(方程思想):∵1222=-y ax ,∴()1,0F c -,()2,0F c .∵ 1222=-y a x 的离心率等于25,∴45122=+a a ,42=a ,c =∴,双曲线方程为2244x y -=. 设(),P m n ,则 2244m n -=①由021=⋅PF 得()()22,,50c m n c m n m n ---⋅--=-+=②解得5n =,从而点P 到x 轴的距离等于5.。
2020年云南省高等职业技术教育招生考试试题数 学本试题纸共3页,满分100分。
考试时间120分钟一、单项选择题(本大题共20小题,每小题2分,满分40分。
在每小题给出的四个选项中选出一项符合题目要求的)1、若实数a ,b 在数轴上的位置如右图所示,则化简=--2a b a 。
A. b -B. b a -2C. bD. b a +22、已知两数的和为6,这两个数的差的绝对值为8,那么以这两个数为根的一元二次方程是 。
A. 0862=+-x xB. 0762=--x xC. 0862=-+x xD. 0762=++x x3、已知命题甲:”“3>x ,命题乙”“3>x ,那么命题甲是乙的 。
A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件4、若4655a a -->,则a 的取值范围是 。
A. 10<<aB.0>aC.1>aD.1<a 5、函数43)1ln(2+--+=x x x y 的定义域为 。
A. )(1,4--B. ]1,4-(C. )(1,1-D.]1,1-( 6、已知213)12(+=-x x f ,则=)32(f 。
A. 5 B. 3 C. 1 D.21 7、设集合},10{R x x x M ∈<<=,},2{R x x x N ∈<=则下面选项中,正确的是 。
A. M N M =B. N N M =C. M N M =D. R N M =8、一钟(表)的时针经过40分钟所转过的角度是 。
A.34π B. 34π- C. 9π D. 9π- 9、已知ABC ∆中,125tan -=A ,则=A cos 。
A. 1312 B. 135 C. 1312- D. 135- 10、已知54)2cos(=-απ,则=-)2cos(απ 。
A. 257 B. 257- C. 2524 D. 2524-11、已知α,β为锐角,且βαsin cos >,则有 。
2020年云南省高考数学模拟试卷(理科)(4月份)一、单项选择题(本大题共12小题,共60.0分)1.设集合S={x|1≤x≤3},T={x|21−x<1},则S∩T=()A. [0,+∞)B. (1,3]C. [3,+∞)D. [1,3]2.在复平面内,复数z=−1+2i(i为虚数单位)对应的点所在象限是()A. 一B. 二C. 三D. 四3.函数y=sin(2x+π4)的图象的一个对称中心为()A. (−π4,0) B. (−π8,0) C. (π8,0) D. (π2,0)4.某班一天中有6节课,上午3节课,下午3节课,要排出此班一天中语文、数学、英语、物理、体育、艺术6堂课的课程表,要求数学课排在上午,艺术课排在下午,不同排法种数为()A. 72B. 216C. 320D. 7205.执行如图所示的程序框图,若输入a的值为1,则输出S=()A. 256B. 318C. 5710D. 71126.某几何体的三视图如图所示,则该几何体的体积为()A. 163B. 203C. 169D. 2097.已知xy满足约束条件{x+2y−7≤0x−y≤0x∈N,y∈N,则z=2x+y的最大值为()A. 4B. 5C. 6D. 78. 过抛物线y 2=16x 焦点F 的直线l 与抛物线相交于A ,B 两点,若以线段AB 为直径的圆与直线x =13相切,则直线l 的方程为( )A. y =2√2x −8√2或y =−2√2x +8√2B. y =4x −16或y =−4x +16C. y =2x −8或y =−2x +8D. y =x −4或y =−x +49. 已知sin(π6+α)=14,则cos(2π3−2α)=( )A. 1516B. −1516C. 78D. −7810. 已知边长为2的正方形ABCD 的四个顶点在球O 的球面上,球心O 到平面ABCD 的距离为√3,则球O 的体积为( )A. 20√53πB. 64√23πC. 20πD. 32π11. 已知F 1,F 2分别是双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点,点P 在C 的右支上,|PF 1|,|PF 2|,|F 1F 2|成等差数列,且∠PF 1F 2=120°,则该双曲线的离心率是( )A. 32B. √3C. 2D. 312. 在△ABC 中,AP ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ,且|CP ⃗⃗⃗⃗⃗ |=2√3,|CA ⃗⃗⃗⃗⃗ |=8,∠ACB =2π3,则CP ⃗⃗⃗⃗⃗ ⋅CA⃗⃗⃗⃗⃗ =( )A. 24B. 12C. 24√3D. 12√3二、填空题(本大题共4小题,共20.0分)13. 在二项式(x 2−1x )5的展开式中,二项式系数之和是_____,含x 4的项的系数_______. 14. 已知某随机变量X 的分布列如下,其中x >0,y >0,随机变量X 的方差D(X)=12,则x +y =________.15.若f(x)=x3−ax2+1在(1,3)上单调递减,则实数a的取值范围是________.16.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a2+b2<c2,且sin C=√3,则C=_______.2三、解答题(本大题共7小题,共82.0分)17.某大学学生会为了调查了解该校大学生参与校健身房运动的情况,随机选取了100位大学生进行调查,调查结果统计如下:(1)根据已知数据,把表格数据填写完整;(2)能否有99.5%的把握认为参与校健身房运动与性别有关?请说明理由.,其中n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)18.已知数列{a n}中,其前n项的和为S n,且满足S n−2a n=n−4.(Ⅰ)求证:数列{S n−n+2}是等比数列;(Ⅱ)求数列{S n}的前n项和T n.19.如图,在三棱柱ABC—A1B1C1中,侧面ACC1A1是边长为4的菱形,且∠A1AC=π,面ACC1A1⊥3面ABC,A1A⊥BC,BC=4.(1)求证:BC⊥面ACC1A1;(2)求二面角A—A1B—C的余弦值.20.已知函数f(x)=x2+ax−lnx(其中e是自然对数的底数,a∈R).e x(I)若曲线f(x)在x=l处的切线与x轴不平行,求a的值;(Ⅱ)若函数f(x)在区间(0,1]上是单调函数,求a的最大值.21.已知椭圆E:x2a2+y2b2=1(a>b>0)一个焦点和抛物线了y2=4x的焦点重合,且过点(1,−32),椭圆E的长轴的两端点为A、B.(1)求椭圆E的方程;(2)点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点以MN为直径的圆是否经过x轴上的定点?若存在,求定点坐标;若不存在,说明理由.22.在直角坐标系xOy中,直线l经过点P(−2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ−4cosθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求x+√3y的取值范围.23.已知函数f(x)=x2+2|x−1|.(1)求不等式f(x)>|2x|的解集;x(2)若f(x)的最小值为N,且a+b+c=N,(a,b,c∈R).求证:√a2+b2+√b2+c2+√c2+a2≥√2.【答案与解析】1.答案:B解析:解:T={x|x>1};∴S∩T=(1,3].故选:B.可求出集合T,然后进行交集的运算即可.考查描述法的定义,指数函数的单调性,以及交集的运算.2.答案:B解析:本题考查了复数的代数表示及其几何意义,属于基础题.先得出复数z=−1+2i的对应坐标,可得结论.解:复数z=−1+2i(i为虚数单位)对应的点坐标为(−1,2),在第二象限,故选B.3.答案:B解析:解:对于函数y=sin(2x+π4),令2x+π4=kπ,k∈z,求得x=kπ2+π8,即函数的对称中心为(kπ2−π8,0),k∈z.结合所给的选项,故选:B.对于函数y=sin(2x+π4),令2x+π4=kπ,k∈z,求得x的值,可得函数的对称中心.本题主要考查正弦函数的对称中心,属于基础题.4.答案:B解析:先排数学、体育,再排其余4节,利用乘法原理,即可得到结论.本题考查排列知识,考查学生分析解决问题的能力,属于基础题.解:由题意,要求数学课排在上午(前3节),体育课排在下午(后3节),有C31C31=9种再排其余4节,有A44=24种,根据乘法原理,共有9×24=216种方法,故选B.5.答案:D解析:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得程序框图的功能是计算并输出S=11+32+53+74的值,计算可得:S=11+32+53+74=7112.故选D.6.答案:B解析:本题考查三视图还原后,几何体的体积,将三视图还原,为底部为菱形的四棱柱截去一角,则体积为四棱柱的体积减去三棱锥的体积.解:还原三视图,几何体为底部为菱形的四棱柱截去一角,所以V=12×2×4×2−13×2×12×2×2=203.故选B.7.答案:C解析:本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解:由x,y满足约束条件{x+2y−7≤0x−y≤0x∈N,y∈N作出可行域如图:化目标函数z=2x+y为y=−2x+z,由图形可知A(2,2),当直线y=−2x+z过A(2,2)时,直线在y 轴上的截距最大,z 有最大值为6. 故选:C .8.答案:B解析:本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,是中档题.分情况:当直线l 垂直时,可得以AB 为直径的圆与直线x =13相离,不满足条件;当直线l 的斜率存在时,设A(x 1,y 1),B(x 2,y 2),直线l 的方程为y =k(x −4)(k ≠0),联立抛物线方程,利用韦达定理可求出答案.解:当直线l 垂直与x 轴时,{y 2=16x x =4,解得y =±8,以AB 为直径的圆为(x −4)2+y 2=64与直线x =13相离, 故直线x =4不满足题意;当直线l 的斜率存在时,设A(x 1,y 1),B(x 2,y 2),直线l 的方程为y =k(x −4)(k ≠0), 则{y =k(x −4),y 2=16x,化简得k 2x 2−(8k 2+16)x +16k 2=0, x 1+x 2=8+16k 2,x 1x 2=16. 圆的半径为|AB|2=x 1+x 22+p 2=8+8k 2,圆心到直线x =13的距离为13−x 1+x 22=9−8k 2=8+8k 2,解得k =±4,故直线l 的方程为y =4x −16或y =−4x +16. 故选B .9.答案:D解析:本题重点考查了诱导公式、二倍角的余弦函数公式等知识在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.由已知利用诱导公式可求cos(α−π3)=14,进而利用二倍角的余弦函数公式即可计算得解. 解:∵sin(π6+α)=sin[π2+(α−π3)]=cos(α−π3)=14,∴cos(2π3−2α)=cos(2α−2π3)=cos2(α−π3 )=2cos2(α−π3)−1=2×(14)2−1=−78,故选D.10.答案:A解析:本题考查的知识点是球的体积,根据已知求出球的半径是解答的关键.根据已知求出球的半径,代入球的体积公式,可得答案.解:∵边长为2的正方形ABCD的顶点在球O的球面上,∴正方形ABCD外接圆半径r=√2,又由球心O到平面ABCD的距离d=√3,∴球O的半径R=√(√2)2+(√3)2=√5,故球的体积V=43πR3=20√53π.故选A.11.答案:A解析:解:设|PF1|=m,|PF2|=n,则∵点P在C的右支上,∴m−n=2a,∵|PF1|,|PF2|,|F1F2|成等差数列,∴2n=m+2c,∴m=4a+2c,n=2a+2c,∵∠PF 1F 2=120°,∴(4a +2c)2=(2c)2+(2a +2c)2−2⋅2c ⋅(2a +2c)cos120°, 整理得3a 2+ac −2c 2=0, ∴2e 2−e −3=0, ∵e >1, ∴e =32. 故选:A .利用双曲线的定义,结合等差数列的性质,求出|PF 1|、|PF 2|,再利用余弦定理,建立a ,c 的关系,即可求出双曲线的离心率.本题考查双曲线的性质,考查等差数列的性质,考查学生的计算能力,属于中档题.12.答案:A解析:本题主要考查向量的数量积,向量的加减法的法则以及其几何意义,难度不大,属于基础题.设|CB ⃗⃗⃗⃗⃗ |=x ,根据∠ACB =2π3,用x 表示出,由AP⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ,可知点P 为AB 的中点,所以2CP ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +CB⃗⃗⃗⃗⃗ ,即可得到4|CP ⃗⃗⃗⃗⃗ |2=|CA ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2+2CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,代数数值即可得到|CB ⃗⃗⃗⃗⃗ |,再根据CP ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =12(CB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ )⋅CA ⃗⃗⃗⃗⃗ 即可求解. 解:设|CB ⃗⃗⃗⃗⃗ |=x , 因为∠ACB =2π3,所以,因为AP⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ , 所以点P 为AB 的中点, 所以2CP ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +CB⃗⃗⃗⃗⃗ , 所以4|CP⃗⃗⃗⃗⃗ |2=|CA ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2+2CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ , 所以48=64+x 2−8x ,即(x −4)2=0, 所以|CB⃗⃗⃗⃗⃗ |=x =4, 所以CP ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =12(CB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ )⋅CA ⃗⃗⃗⃗⃗ =12|CA ⃗⃗⃗⃗⃗ |2+12CB ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =32−8=24,故选A.13.答案:32;10解析:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.在二项展开式的通项公式中,令x的幂指数等于4,求出r的值,即可求得含x4的项的系数.解:在二项式(x2−1x)5的展开式中,二项式系数之和是25=32,通项公式为T r+1=C5r⋅(−1)r⋅x10−3r,令10−3r=4,求得r=2,可得含x4的项的系数是C52=10,故答案为32;10.14.答案:34解析:本题考查离散型随机变量的分布列,期望与方差,属于基础题.利用分布列中概率之和为1、期望公式和方差公式列方程组求解即可.解:由题意,得2x+y=1.E(X)=x+2y+3x=4x+2y=4x+2(1−2x)=2,D(X)=12=(1−2)2x+(2−2)2(1−2x)+(3−2)2x,即2x=12,解得x=14.∴y=1−2×14=12.∴x+y=14+12=34.15.答案:a≥92解析:本题考查利用导数研究函数的单调性,属于基础题.直接根据题意求出f(x)的导数,再列式求解即可.解:因为函数f(x)=x3−ax2+1在(1,3)上单调递减,所以f′(x)=3x2−2ax≤0在(1,3)上恒成立,即a≥32x在(1,3)上恒成立.因为32<92,所以a≥92.故答案为a≥92.16.答案:2π3解析:本题考查了余弦定理,由余弦定理可得cosC<0,所以C>π2,由sinC=√32,可得C.解:因为a2+b2<c2,所以cosC=a2+b2−c22ab<0,所以三角形是钝角三角形,且C>π2.又因为sinC=√32,所以C=2π3.故答案为2π3.17.答案:解:(1)表格如下(2)K2=100×(30×35−15×20)245×55×50×50=10011≈9.09>7.879,所以有99.5%的把握认为参与校健身房运动与性别有关.解析:本题考查了列联表与独立性检验的应用问题,是基础题.(1)根据题意填写列联表即可;(2)由表中数据计算观测值,对照临界值得出结论.18.答案:解:(Ⅰ)证明:S n−2a n=n−4,可得a1=S1,即有S1−2a1=−3,可得a1=3;n≥2时,a n=S n−S n−1,可得S n−2(S n−S n−1)=n−4,即为S n−n+2=2[S n−1−(n−1)+2],可得数列{S n−n+2}是首项为4,2为公比的等比数列;(Ⅱ)S n−n+2=4⋅2n−1=2n+1,即S n=2n+1+n−2,前n项和T n=(4+8+⋯+2n+1)+(1+2+⋯+n)−2n=4(1−2n)1−2+n(n+1)2−2n=2n+2−4+n2−3n2.解析:(Ⅰ)由数列的递推式:a1=S1,n≥2时,a n=S n−S n−1,化简后结合等比数列的定义,即可得证;(Ⅱ)由等比数列的通项公式可得S n−n+2=4⋅2n−1=2n+1,即S n=2n+1+n−2,再由数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算可得所求和.本题考查等比数列的定义和通项公式、求和公式的运用,考查数列的求和方法:分组求和,考查化简运算能力,属于中档题.19.答案:解:(1)证明:在菱形ACC1A1中,过A1点作A1H⊥AC于H,∵平面A1C1CA⊥平面ABC,平面A1C1CA∩平面ABC=AC,∴A1H⊥BC,∵A1A⊥BC,A1A∩A1H=A1,∴BC⊥平面A1C1CA.(2)解:在菱形A1C1CA中,连结AC1,设AC1∩A1C=M,BC⊥平面A1C1CA,∴BC⊥AM,则AM⊥面A1BC,∴AM⊥A1B,过点M作MN⊥A1B于点N,连结AN,则A1B⊥平面AMN,∴A1B⊥AN,∴∠MNA为二面角A−A1B−C的平面角,设大小为θ,在Rt△A1CB中,BC=CA1=4,且∠A1CB=π2,∴MN=√2,则tanθ=AMMN =√3√2=√6,∴cosθ=√7=√77,∴二面角A−A1B−C的余弦值为√77.解析:本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)在菱形ACC1A1中,过A1点作A1H⊥AC于H,则A1H⊥BC,再由A1A⊥BC,能证明BC⊥平面A1C1CA.(2)连结AC1,设AC1∩A1C=M,则BC⊥AM,AM⊥面A1BC,AM⊥A1B,过点M作MN⊥A1B于点N,连结AN,则A1B⊥平面AMN,A1B⊥AN,从而∠MNA为二面角A−A1B−C的平面角,由此能求出二面角A−A1B−C的余弦值.20.答案:解:(Ⅰ)依题意,f′(x)=−x2+(2−a)x+a−1x+lnxe x,f′(1)=0,且曲线f(x)在x=1处的切线方程为y=1+ae,∵切线与x轴不平行,故切线与x轴重合,∴1+ae=0,即a=−1;(Ⅱ)f′(x)=−x2+(2−a)x+a−1x+lnxe x,设ℎ(x)=−x2+(2−a)x+a−1x ,则ℎ′(x)=−2x+(2−a)+1x2+1x.ℎ′(x)在(0,1]上是减函数,从而ℎ′(x)>ℎ′(1)=2−a.①当2−a≥0,即a≤2时,ℎ′(x)≥0,ℎ(x)在区间(0,1)上为增函数.∵ℎ(1)=0,∴ℎ(x)≤0在(0,1]上恒成立,即f′(x)≤0在(0,1]上恒成立.∴f(x)在(0,1]上是减函数.∴a≤2满足题意;②当2−a<0,即a>2时,设函数ℎ′(x)的唯一零点为x1,则ℎ(x)在(0,x1)上递增,在(x1,1)上递减.又∵ℎ(1)=0,∴ℎ(x1)>0.又∵ℎ(e−a)=−e−2a+(2−a)e−a+a−e a+lne−a=−e−2a+(2−a)e−a−e a<0,∴ℎ(x)在(0,1)内由唯一一个零点x′,当x∈(0,x′)时,ℎ(x)<0,当x∈(x′,1)时,ℎ(x)>0.从而f(x)在(0,x′)上递减,在(x′,1)上递增,与在区间(0,1]上是单调函数矛盾.∴a >2不合题意. 综上,a 的最大值为2.解析:(Ⅰ)求出原函数的导函数,可得f′(1)=0,得到曲线f(x)在x =1处的切线方程为y =1+a e,结合切线与x 轴不平行,可得1+a e=0,从而求得a 值;(Ⅱ)由f′(x)=−x 2+(2−a)x+a−1x+lnxe x,设ℎ(x)=−x 2+(2−a)x +a −1x ,求出ℎ′(x),可知ℎ′(x)在(0,1]上是减函数,从而ℎ′(x)>ℎ′(1)=2−a .然后分当2−a ≥0,和2−a <0分类研究函数的单调性得答案.本题考查利用导数研究函数的单调性,考查了利用导数求曲线上某点处的切线方程,体现了分类讨论的数学思想方法,考查逻辑思维能力及推理运算能力,属难题.21.答案:解:(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),由题设得{1a 2+94b 2=1a 2=b 2+1,∴{a 2=4b 2=3,椭圆T 的方程是x 24+y 23=1.(2)∵a =2,∴A(−2,0),B(2,0), 设PA.PB 的斜率分别为k 1,k 2,P(x 0,y 0), 则k 1=y 0x 0+2,k 2=y 0x 0−2,k 1k 2=y 02x 02−4=3(1−x 024)x 02−4=3⋅4−x 024x 0−4 =−34,由l PA :y =k 1(x +2),知M(4,6k 1), 由l PB :y =k 2(x −2),知N(4,2k 2), ∴MN 的中点为G(4,3k 1+k 2).∴以MN 为直径的圆的方程(x −4)2+(y −3k 1−k 2)2=14(6k 1−2k 2)2=(3k 1−k 2)2.令y =0,得x 2−8x +16+9k 2+6k 1k 2+k 22=9k T 2−6k 1k 2+k 22, 化简得x 2−8x +16+12k 1k 2=0.将k 1k 2=−34代入,得x 2−8x +16+12×(−34)=0, 即x 2−8x +7=0,解得x =7或x =1.∴以MN 为直径的圆经过x 轴上的定点(1,0),(7,0).解析:(1)设椭圆的方程为x2a2+y2b2=1(a>b>0),利用已知条件看看方程组,求出a,b然后求解椭圆方程.(2)设PA.PB的斜率分别为k1,k2,P(x0,y0),求出直线l PA:y=k1(x+2),得到M(4,6k1),l PB:y=k2(x−2),得到N(4,2k2),推出以MN为直径的圆的方程,令y=0,化简通过韦达定理,转化求解以MN为直径的圆经过x轴上的定点.本题考查椭圆方程,直线与椭圆的位置关系的应用,考查转化思想以及计算能力,是难题.22.答案:解:(Ⅰ)由曲线C的极坐标方程得ρ2−4ρcosθ=0,又x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为x2+y2−4x=0,即(x−2)2+y2=4.∴曲线C是圆心为C(2,0),半径为2的圆.∵直线l过点P(−2,0),当l的斜率不存在时,l的方程为x=−2与曲线C没有公共点,∴直线l的斜率存在,设直线l:y=k(x+2),即kx−y+2k=0.直线l与圆有公共点,则圆心C到直线l的距离d=√k2+1≤2,得−√33≤k≤√33,α∈[0,π),∴α的取值范围是[0,π6]∪[5π6,π).(Ⅱ)由(Ⅰ)曲线C的直角坐标方程为(x−2)2+y2=4,故其参数方程为{y=2sinθx=2+2cosθ(θ为参数).∵M(x,y)为曲线C上任意一点,∴x+√3y=2+2cosθ+2√3sinθ=2+4sin(θ+π6),−1≤sin(θ+π6)≤1.∴−2≤2+4sin(θ+π6)≤6,因此,x+√3y的取值范围是[−2,6].解析:本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的最值得应用.(Ⅰ)直接把参数方程和极坐标方程与直角坐标方程的转化;(Ⅱ)利用三角函数关系式的恒等变换,进一步利用正弦型函数的最值求出结果.23.答案:解:(1)当x <0时,f(x)>|2x|x等价于x 2+2|x −1|>−2,该不等式显然成立;当0<x ≤1时,f(x)>|2x|x等价于{0<x ≤1x 2−2x >0,此时不等组的解集为⌀,当x >1时,f(x)>|2x|x等价于{x >1x 2+2x −4>0,∴x >√5−1,综上,不等式f(x)>|2x|x的解集为(−∞,0)∪(√5−1,+∞).(2)当x ≥1时,f(x)=x 2+2x −2=(x +1)2−3; 当x =1时,f(x)取得最小值为1;当x <1时,f(x)=x 2−2x +2=(x −1)2+1>1, ∴f(x)最小值为1,∴a +b +c =N =1, ∵a 2+b 2≥a 22+b 22+ab =(a+b)22,∴√a 2+b 2≥√2|a+b|2≥√2(a+b)2, 同理√b 2+c 2≥√2(b+c)2,√c 2+a 2≥√2(c+a)2, ∴√a 2+b 2+√b 2+c 2+√c 2+a 2≥√2(a +b +c)=√2.解析:(1)根据f(x)>|2x|x,分x <0,0<x ≤1和x >1三种情况解不等式即可;(2)先求出f(x)的最小值为1,从而得到a +b +c =N =1,然后根据a 2+b 2≥a 22+b 22+ab =(a+b)22,进一步证明√a 2+b 2+√b 2+c 2+√c 2+a 2≥√2成立.本题考查了绝对值不等式的解法和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.。
2020年云南省高等职业技术教育招生考试数学(标准)模拟卷
试卷总分:100
出卷时间:2020-03-1514:41
答题时间:120分钟
一、单项选择题(本大题共20小题,每小题2分,满分40分。
在每小题给出的四个选项中,选出一项符合题目要求的。
)
1.(2017)定义:对于任意实数都有⊙=2017-(),例如:2⊙5=2017-
(2+5)=2010,那么12⊙(6⊙7)=[2分]
A.0
B.1
C.2
D.3
2.(2017)若集合A是空集,则[2分]
A.
B.
C.
D.
3.(2016)设为实数,且,则()[2分]
A.0
B.1
C.2
D.4
4.(2019)设集合A=,B=,
则()[2分]
A.{0,1}
B.{0,1,2}
C.{0,1,3}
D.{0,1,2,3}
5.(2019)已知命题p:“”,命题q:“”,那么命题P是q的[2分]
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
6.(2019)下列函数中,是奇函数且在定义域内单调递增的是()[2分]
A.
B.
C.
D.
7.(2019)已知函数,那么它的反函数的定义域是()[2分]
A.R
B.
C.
D.
8.(2016)已知,则()[2分]
A.
B.
C.
D.
9.(2017)函数的值域是[2分]
A.[-7,7]
B.[-3,3]
C.[-4,4]
D.[-5,5]
10.(2016)角终边过点,则()[2分]
A.
B.
C.
D.
11.(2017)设是方程的解,则=[2分]
A.9
B.10
C.11
D.12
12.(2016)已知向量,则()[2分]
A.(-1,5)
B.(-5,3)
C.(4,9)
D.(-4,-9)
13.(2018)已知则向量与向量的夹角为()[2分]
A.
B.
C.
D.
14.(2016)如果方程表示双曲线,则()[2分]
A.2
B.3
C.4
D.5
15.(2017)设直线的方程为,且直线在轴上的截距是-3,则()[2分]
A.
B.
C.3
D.-1
16.(2017)已知三点不共线,则过A,B,C三点的圆的半径为()[2分]
A.1
B.3
C.5
D.7
17.(2016)在等比数列中,,则()[2分]
A.2
B.8
C.16
D.32
18.(2017)已知数列的前项和,则数列的通项公式为[2分]
A.
B.
C.
D.
19.(2015)数列的一个通项公式为()[2分]
A.
B.
C.
D.
20.(2014)复数的辐角主值为()[2分]
A.
B.
C.
D.
二、填空题(本大题共5小题,每小题3分,满分15分.)
21.(2019)不等式的解集是____[3分]
22.(2015)已知函数是定义在实数域上的奇函数,且,
则[每空3分]
23.(2015)已知向量,则两向量的夹角为_______[3分]
24.(2015)设为等比数列,,则公比。
[每空3分]
25.(2014)以的虚部为实部,以的实部为虚部,构成的新复数为————[3分]
三、解答题(本大题共5小题,满分45分。
解答时应写出推理、演算步骤)。
26.(2016)求方程的解[9分]
27.(2018)在△ABC中最大角C是最小角B的二倍,三边长成等差数列,求.[9分]
28.(2017)取什么值时,方程组有一个实数解?并求出这时方程组的解[9分]
29.在-2和7之间插入个数之后,构成与首项为-2的等差数列,且,
求的值和从第几项开始.[9分]
30.(13分)设等比数列的各项均为正数,且,
①(6分)求数列的通项公式;
②(4分)设,求数列的通项;
③(3分)求数列的前项和。
[9分]。