纳米材料及应用简介
- 格式:ppt
- 大小:6.83 MB
- 文档页数:71
纳米材料的特性及应用摘要系统阐述了纳米材料的特性,并重点介绍了纳米材料在陶瓷领域,医学上,皮革制品上,环境保护等方面的应用。
并对纳米材料未来的应用前景进行了展望。
关键词:纳米材料特性应用前言纳米,是一个物理学上的度量单位,1纳米是1米的十亿分之一,相当于万分之一头发丝粗细。
当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。
这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料即为纳米材料[1]。
纳米材料处在原子簇和宏观物体交界的过渡区域,既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,即接近于分子或原子的临界状态。
在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料跟普通的金属、陶瓷,和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
由于纳米材料从根本上改变了材料的结构,使得它成为当今新材料研究领域最富有活力、对未来经济和社会发展有着十分重要影响的研究对象[2]。
近年来,纳米材料取得了引人注目的成就。
例如,存储密度达到每平方厘米400G的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世[3]。
充分显示了纳米材料在高技术领域应用的巨大应用潜力。
纳米材料诞生多年来所取得的成就及对各个领域的影响和渗透一直引人注目。
进入90年代后,纳米材料研究的内涵不断扩大,领域逐渐拓宽。
一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。
纳米材料专业纳米材料是指至少在一个空间尺度上具有至少一种尺寸小于100纳米的材料。
由于其特殊的尺寸效应和表面效应,纳米材料在材料科学、物理学、化学、生物学等领域都有着广泛的应用前景。
本文将从纳米材料的特性、制备方法、应用领域等方面进行介绍。
首先,纳米材料具有许多特殊的物理化学性质。
由于其尺寸效应和表面效应,纳米材料的光学、电子、磁学、力学等性质都表现出与宏观材料不同的特性。
例如,纳米金属颗粒的等离子共振效应使得其具有优异的光学性能,纳米碳材料的量子效应使得其具有优异的电子传输性能。
这些特殊性质使得纳米材料在传感器、催化剂、电子器件等领域有着广泛的应用。
其次,纳米材料的制备方法多种多样。
目前,常见的纳米材料制备方法包括物理方法、化学方法、生物方法等。
物理方法主要包括惰性气体凝聚法、溅射法、机械合金化等;化学方法主要包括溶胶-凝胶法、水热法、溶剂热法等;生物方法主要包括生物合成法、生物模板法等。
不同的制备方法可以得到不同形貌和结构的纳米材料,从而满足不同领域的需求。
此外,纳米材料在许多领域都有着广泛的应用。
在材料科学领域,纳米材料被用于制备高性能复合材料、高强度纳米结构材料等;在能源领域,纳米材料被用于制备高效的太阳能电池、储能材料等;在生物医学领域,纳米材料被用于制备药物载体、生物成像材料等。
纳米材料的应用领域还在不断扩展,其在材料、能源、生物医学等领域的应用前景十分广阔。
总之,纳米材料作为一种新型材料,在材料科学、物理学、化学、生物学等领域都有着广泛的应用前景。
通过深入研究其特性、制备方法和应用领域,可以更好地发挥纳米材料的优异性能,推动其在各个领域的应用和发展。
希望本文的介绍可以对纳米材料专业的研究者和从业者有所帮助。
纳米材料的纳米花及其应用随着科技的不断发展,纳米材料的应用越来越广泛。
纳米材料具有比传统材料更高的强度、硬度、韧性、耐腐蚀性和导电性等优良的性质,因此被广泛应用于化学、能源、生物医学、电子学等领域。
其中,纳米花是一种新型的纳米材料结构,其特殊形状的花瓣状结构和高表面积对其性能和应用具有很大的影响。
本文将介绍纳米花的制备、性质和应用,以及未来的展望。
一、纳米花的制备纳米花是一种自组装纳米结构,其制备方法主要有两种:溶剂热法和电沉积法。
1.溶剂热法溶剂热法是一种简单的、低成本的制备方法。
研究人员制备纳米花时通常采用有机溶剂或水溶液的混合溶剂,并将溶剂蒸发至一定程度,在一定条件下形成纳米结构。
溶剂热法与传统的热沉淀法、水热法相比,可以获得更高的结晶度和更为均匀的纳米结构。
例如,用溶剂热法制备的镍氢氧化物纳米花,其表面积比球状结构高出数倍,具有优异的电化学性能和高的比电容。
2.电沉积法电沉积法是将金属离子沉积到电极表面的一种制备方法。
通过控制电沉积条件,如电流密度、电解液组成等,可以制备出具有不同形状和尺寸的纳米结构,包括纳米花。
例如,用电沉积法可以制备出多种金属和氧化物的纳米花,如铜纳米花、钯纳米花、锰氧化物纳米花等。
二、纳米花的性质纳米花由纳米线或纳米片组成,具有较高的表面积和特殊的形状和结构,因此具有许多独特的性质。
1.高比表面积纳米花具有比球状纳米颗粒更高的比表面积,可以提高催化活性、电化学性能等,因此广泛应用于催化剂、电化学电池等领域。
例如,用纳米花作为催化剂可将某些化学反应速度提高到原来的数倍。
2.特殊的形状和结构纳米花通常具有花瓣状的结构,这种结构具有更多的活性表面和更好的分散性,使其在光电、生物医学和磁性等领域具有广泛的应用前景。
例如,用金纳米花、金纳米片制备的表面增强拉曼光谱传感器可以检测非常微小的分子,广泛应用于生命科学、医学等领域。
3.优异的性能纳米花具有许多优异的性能,如高催化活性、高灵敏度和高选择性等,这些性能使其在能源、光电和生物医学等领域具有广泛的应用前景。
纳米材料是指什么材料
纳米材料是指至少在一个空间尺度上具有纳米级别特征尺寸的材料。
换句话说,纳米材料是在纳米尺度范围内具有特殊性能和特征的材料。
纳米材料的尺寸范围通常在1-100纳米之间,这使得它们在许多方面都具有与传统材料不同的特性和应用
潜力。
首先,纳米材料具有较大的比表面积。
由于其纳米级尺寸,纳米材料的比表面
积通常非常大,这意味着单位质量的纳米材料拥有更多的表面原子或分子,从而赋予其优异的化学反应活性和吸附能力。
这也使得纳米材料在催化剂、吸附剂和传感器等领域具有广泛的应用前景。
其次,纳米材料表现出与宏观材料不同的光学、电学、磁学等性质。
由于量子
尺度效应的存在,纳米材料在光学、电学和磁学等方面表现出许多新颖的特性,如量子尺寸效应、表面等离子共振效应、量子限域效应等。
这些特性使得纳米材料在纳米电子学、纳米光学和纳米磁学等领域具有巨大的应用潜力。
此外,纳米材料还表现出优异的力学性能。
纳米材料由于其纳米级尺寸和晶格
结构的特殊性,通常表现出优异的力学性能,如高强度、高韧性和高弹性模量等。
这使得纳米材料在材料强化、纳米复合材料和纳米传感器等领域具有广泛的应用前景。
总的来说,纳米材料是指至少在一个空间尺度上具有纳米级别特征尺寸的材料,具有较大的比表面积、与宏观材料不同的光学、电学、磁学等性质,以及优异的力学性能。
纳米材料的特殊性质使得它们在催化剂、吸附剂、传感器、纳米电子学、纳米光学、纳米磁学、材料强化和纳米复合材料等领域具有广泛的应用前景。
随着纳米技术的不断发展和成熟,纳米材料必将在未来的科技领域发挥越来越重要的作用。
纳米材料种类及应用纳米材料是指材料的尺寸在纳米量级的材料,具有特殊的物理、化学以及力学性质。
纳米材料种类繁多,根据材料的组成、结构和性质可以分为无机纳米材料、有机纳米材料和生物纳米材料等。
下面将就一些常见的纳米材料种类及其应用进行介绍。
1. 纳米金属颗粒:金属纳米颗粒具有独特的电子结构和表面物理性质,广泛用于催化、传感、光学、电子学等领域。
例如,纳米银颗粒具有优异的导电和抗菌性能,可应用于导电胶、导电墨水、抗菌涂料等领域。
纳米金颗粒还可以用于纳米电子器件和磁性材料中。
2. 纳米氧化物:氧化物纳米颗粒具有独特的光学和电学性质,广泛应用于催化、能源存储、传感、环境治理等领域。
例如,二氧化钛纳米颗粒具有良好的光催化性能,可用于光催化水分解、废水处理等。
纳米氧化铁颗粒在废水处理、磁性材料等领域也有广泛应用。
3. 纳米碳材料:纳米碳材料包括纳米碳管和石墨烯等。
纳米碳管具有优异的力学、导电和导热性能,可应用于电子器件、储能器件等。
石墨烯则因其出色的导电性、透明性和力学性能,在柔性显示器、锂离子电池、传感器等方面有广泛应用。
4. 纳米复合材料:纳米复合材料由纳米颗粒和基底材料组成,具有较高的强度、硬度和耐磨性。
纳米复合材料被广泛应用于电子器件、汽车制造、建筑材料等领域。
例如,纳米陶瓷材料可用于制作高性能陶瓷刀具、陶瓷齿轮等。
纳米纤维增强复合材料则可用于制作航空航天领域的结构件。
5. 纳米生物材料:纳米生物材料是将纳米材料应用于生物医学领域的一种材料。
例如,纳米药物载体可以用于精准给药,提高药物的生物利用度;纳米生物传感器可用于检测生物标志物,诊断疾病;纳米生物图像剂可用于改善生物影像学性能。
总之,纳米材料具有独特的物理、化学和力学性质,广泛应用于催化、能源、传感、医学、环境等领域。
随着纳米科技的不断发展,纳米材料的应用前景将更加广阔。
纳米材料在化工中的应用及二维纳米材料的结构优势和应用前景1、约束材料概述及其在化工中的应用纳米材料的结构由表面(界面)结构组元构成,粒径介于原子团簇与常规粉体之间,一般不超过100nm,与电子的德布罗意波长相当。
粒径越小的纳米材料,其界面组元的比值越高,低动量电子散射量越大。
纳米材料的界面组元中含有相当量的不饱和配位键、端键及悬键。
由于不同的纳米材料各具独特效应,如界面效应、小尺寸效应\量子尺寸效应以及宏观量子隧道效应等,进而导致在声、光、电、磁、热、化学作用及力场下,呈现各自不同的特异性能,从而作为吸波材料(隐型材料)、高性能磁记录材料、磁性液体、复合材料、超导材料、新型高效催化剂、发光材料、特种涂料及新型医用材料等逐步应用于国民经济诸多领域。
纳米材料在化工中的应用主要住以下几方面:催化作用方面:纳米粒子由于粒径小,比表面大,故表面活性中心数量多,其催化活性和选择性会加大,产物收率会增高。
加用粒径为300nm的Ni作环辛二烯加氢生成环辛烯反应的催化剂,选择性为210,而用传统的Ni催化剂时,选择性仅为24。
高分子材料改性:利用纳米粒子的特性对高分子材料进行改性,可以得到具有特殊性能的高分子材料或使高分子材料的性能更加优异,同时也拓宽了高分子材料改性理论。
A.在橡胶改性中的应用:炭黑纳米粒子加入到橡胶中后可显着提高橡胶的强度、耐磨性、抗老化性,这一技术早已在橡胶工业中运用。
纳米技术在制造彩色橡胶中也发挥了独特的作用,以往的橡胶制品一般为黑色(纳米级的炭黑较易得到)。
若要制造彩色橡胶可选用白色纳米级的粒子(加白炭黑)作补强剂和使用纳米粒子级着色剂,此时橡胶制品的性能优异。
B.在塑料改性中的应用:(1)对塑料的增韧作用:添加纳米粒子到塑料中后对增加塑料韧性有较大的作用。
用纳米级SiC/Si3N4粒子经钦酸醋处理后填充LDPE,当添加量为5%冲击强度最大,制品冲击强度为55.7kJ/m2,是纯LDPE的2倍多;拉伸到625%仍未断裂,为纯LDPE的5倍。
纳米材料的特性和应用摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。
关键词纳米材料;分类;特性;应用;发展1 引言有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。
国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。
德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。
同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。
日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。
2 纳米材料及其分类纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。
粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。
3 纳米材料的特性13.1 小尺寸效应当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。
如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。
3.2 表面效应纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。
纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比表面积高达80~110 m2/g 2。
教学研究纳米SiO2的简单了解和应用王 凯(福建省南平市顺昌县金桥学校,福建 南平 353200)纳米SiO2是纳米材料中的重要一员,为无定形白色粉末,是一种无毒、无味、无污染的非金属材料,微观结构呈絮状和网状的准颗粒结构,为球形。
具有广阔的应用前景和巨大的商业价值,并为其他相关工业领域的发展提供了新材料基础和技术保证,享有“工业味精”,“材料科学的原点”之美誉。
自问世以来,已成为当今世界材料学中最能适应时代要求和发展最快的品种之一。
一、 纳米SiO2简介(一)纳米SiO2的微观结构纳米SiO2的分子结构呈现三维链状结构(或称三维网状结构,三维硅石结构等),表面存在不饱和的残键和不同键合状态的羟基,如图所示。
(二)纳米SiO2的性能1.光学性能纳米SiO2颗粒的小尺寸效应使其具有独特的光学性能对紫外、红外和可见光具有极强的反射特性,对波长在280-300 nm的紫外光反射率达80 %以上;对波长在300-800 nm的可见光反射率达85 %以上;对波长在800-1300 nm的红外光反射率达80 %以上。
2.化学性能纳米SiO2颗粒具有体积效应和量子隧道效应,使其产生游渗功能,可深入到高分子化合物兀键的附近与其电子云发生重叠,形成空间网状结构,从而大幅度提高高分子材料的力学强度、韧性、耐磨性和耐老化性等性能。
二、 纳米SiO2颗粒的制备技术纳米SiO2颗粒制备方法分为物理法和化学法。
物理法一般指机械粉碎法,利用超气流粉碎机或高能球磨机对纳米SiO2的聚集体进行粉碎,可获得粒径为1-5 μm的超细粉体。
化学法包括化学气相法(CVD)、化学沉淀法、溶胶一凝胶法(Sol-Gel)和微乳法等。
(一)溶胶-凝胶法溶胶-凝胶法就是将金属醇盐溶解在有机溶剂中,通过水解聚合反应形成均匀的溶胶(Sol),进一步反应并失去大部分有机溶剂转化成凝胶(Gel),再通过热处理,制备成膜的化学方法。
纳米SiO2的颗粒粒径易受反应物的影响,如水和NH3H20的浓度、硅酸酷的类型、不同的醇、催化剂的种类及不同的温度等,对这些影响因素的调控,可以获得各类结构的纳米SiO2。
纳米固体材料的特性及应用第一篇:纳米固体材料的特性及应用纳米固体材料的特性及应用摘要本文阐述了纳米固体材料的概念及历史,说明了纳米固体材料的结构和由它引起的特性,介绍了纳米固体材料的各种应用。
关键词:纳米固体材料特性应用纳米材料是目前材料科学研究的一个热点, 是21 世纪最有前途的领域。
由于纳米材料具有特异的光、电、磁、热、声、力、化学等性能, 广泛应用于宇航、国防工业、磁记录材料、计算机工程、环境保护、化工、医药、建材、生物工程和核工业等领域, 其市场前景相当广阔。
目前我国从事纳米材料生产的企业有100 多家, 并建立了几个纳米材料研究基地, 有关科研部门和生产企业还对纳米复合塑料、纳米涂料、纳米橡胶和纤维的改性以及纳米材料在能源和环保等方面的应用进行了深入的研究和开发, 并取得一定的成果。
近年来一些重大的研究成果不断问世, 如成功合成世界最长的碳纳米管, 制成性能优良的纳米扫描显微镜, 合成出高质量的储氢碳纳米材料等, 具有国际领先水平。
我国已能生产铁、镍、锌、银、铜、铝、钴等金属纳米粉和氧化物粉末以及陶瓷粉末等30 多种, 有些产品已达国际先进水平。
中国科学院化学研究所工程塑料国家重点实验室用天然粘土矿物蒙脱土作为分散相, 成功开发以聚酰胺、聚酯、聚乙烯、聚苯乙烯、环氧树脂、聚氨酯等为基材的一系列纳米材料, 并实现了部分纳米塑料的工业化生产。
纳米材料一般分为:纳米微粒、纳米薄膜(多层膜和颗粒膜)、纳米固体。
其中纳米固体材料是一类有广阔应用前景的新型材料,它是由纳米量级的超细微粒压制烧结而成的人工凝聚态固体。
这种材料具有新型的固态结构,其性质与处于晶态或非晶态的同种材料大不一样,因此将它称为纳米固体材料。
1963年,日本名古屋大学教授田良二首先用蒸发冷凝法获得了表面清洁的纳米粒子。
1984年,由德国H.格莱特教授领导的小组首先研制成第一批人工金属固体(Cu、Pa、Ag和Fe)。
同年美国阿贡实验室研制成TiO2纳米固体。
纳米材料的研究及应用纳米材料的讨论及应用纳米材料的讨论及应用魏方芳( 福建师范高校化学与材料学院重点试验室. 福建 3 0 0 ) 5 摘要: 介绍纳米材料的范围、定义、四个基本效应及应用领城。
关镶词: 纳来材并; 基本效应; 应用1 概述纳米材料是近年来进展起来的一种新型高性能材料。
纳米材料 ( 又称超微小粒) 是处在原子簇和宏观物体交界过渡区域的一种典型系统,依据其形象即为外表效应[ 。
主 1 3 要表现为熔点降低、比热增大。
超微颗粒的外表具有很高的活性,在空气中金属颗粒会快速氧化而燃烧。
如要防止自燃,可采纳外表包覆或有意识地掌握氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保外表稳定化。
利用外表活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。
态分为零维、一可维、二维和三维纳米材料t 。
l纳米材料的晶粒尺寸、晶界尺寸、缺陷尺寸均在l o nm 以下,随着晶格数量大幅度增加,材料的强度、韧性和超塑性都大为提高,对材料的电学、磁学、光学等性能产生重要的影响。
目前对纳米材料的定义为: 粒径为1一100nm 的纳米粉,直径为 1一10O 的纳米线,厚度为 1一lo n 的纳米薄 m n o m 2。
小尺寸效应 2 在肯定条件下,颗粒尺寸的量变,会引起颗粒的质变。
由于颖粒尺寸变小所引起的宏观物理性质膜,且现米应材 [ 。
并出纳效的料 1 22 纳米材料的基本特性纳米材料有四个基本的效应,即小尺寸效应、外表与界面效应、量子尺寸效应、宏观量子隧道效应,因此消失常规材料所没有的一些特殊性能,如的改变称为小尺寸效应4]。
对超微颐粒而言,尺【寸变小,同时比外表积亦显著增加,从而产生一系列新颖的性质。
) 1 热学性质改变大尺寸固态物质经过超微小化后,发觉其熔点将显著降低,当颗粒小于 1 纳米量级时尤为显著。
0 例如,金的常规熔点为1 64℃,当颗粒尺寸减小 0 到 10 纳米尺寸时,则降低 27℃,2 纳米尺寸时的熔点仅为32 ℃左右; 银的常规熔点为67 ℃,而 7 0 超微银颗粒的熔点可低于100℃。
纳米碳材料的研究及应用前景随着科技的不断进步,纳米技术逐渐成为了一个热门的领域。
而其中,纳米碳材料作为其中的一种,其研究与应用也日趋广泛。
一、纳米碳材料的定义纳米碳材料,指的是一种在纳米尺度下制备的碳材料。
这种材料的尺寸精确到了纳米级别,其大小约为1~10纳米。
二、纳米碳材料的种类纳米碳材料分为多种,如纳米碳管、石墨烯、烯类化合物等。
其中,纳米碳管是最早被发现的一种纳米碳材料。
它的结构可以看做是一种圆柱形,由碳原子组成,并且可以通过碳纤维或电弧等多种方式制备。
石墨烯则是一种由碳原子形成的平面单层晶体,由于其很好的电导率和高比表面积等性质,在能源、生命科学等领域都拥有着广泛的应用前景。
烯类化合物则是由多个碳原子形成蜂窝状的结构,其具有高强度、高导热率等特性,也被广泛用于材料科学的研究与创新中。
三、纳米碳材料的研究与应用1.石墨烯由于石墨烯的高导电性、高透明度、高比表面积等特质,使得它在能源领域得到了广泛的应用。
例如,石墨烯可以用于制造太阳能电池、储能电池等能源相关的材料,通过石墨烯的导电特性,可以提高太阳能电池的转换效率和电池的储能效率。
此外,石墨烯还可以用于生命科学领域的研究。
例如研究人员可以将纳米石墨烯纳入到药物颗粒中,利用其高比表面积将药物粒子的分散度更加均匀,从而实现药效的提高。
2.纳米碳管纳米碳管的导电性、强度、光学性质等特点,使得它在电子器件、生命科学和储能等领域都有着广泛的应用。
例如,纳米碳管可以形成纳米级别的集成电路,能够用于高速电信传输和高效储存晶体管的核心电荷。
在生命科学领域,纳米碳管的可控性制造和分散性,可以将其应用于药物递送、细胞成像、生物传感器等领域。
在储能方面,纳米碳管阴极储能器可以有效地提高锂电池的储能密度和功率密度。
总体而言,纳米碳材料的研究与应用在众多领域取得了显著的进步,并对未来的科技发展产生了深远的影响。
ZnO纳米材料的研究一、ZnO纳米材料简介纳米粒子也叫超微颗粒,一般是指尺寸在1100nm间的粒子,它处在原子簇和宏观物体交界的过渡区域,是一种典型的介观系统,具有表面效应、小尺寸效应和宏观量子隧道效应。
纳米材料研究成为跨世纪材料研究的新热点。
纳米材料的制备与性能研究是当前纳米材料科学领域的前沿和热点。
在这些材料中,氧化物半导体纳米材料又受到了特殊的关注,这不仅是因为形态各异的纳米结构被不断制备出来,更因为以这些纳米结构为原型的纳米器件在光、电、磁、热、传感等领域有着广泛的应用前景。
ZnO纳米材料被称为第三代半导体材料,由于其不仅具有相近的晶格特性和电学特性而且具有很高的激子束缚能(60 meV),激子在室温或者更高的温度下不会被电离的特点以及高热导率、高的压电效应、较强抗辐射能力和较大的剪切模量等优越的物理、化学特性,因此更容易实现高效率的激光发射,在很大程度上影响了半导体产业的迅速发展。
ZnO纳米材料由于其优异的性质,受到了人们的广泛关注。
二、纳米氧化锌的简介纳米氧化锌是一种多功能性精细的新型无机材料, 又称为超微细ZnO。
由于颗粒尺寸的细微化, 使得纳米ZnO产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和久保效应等。
新型无机材料近年来在催化光学磁学力学等方面展现出许多特殊功能,使其在陶瓷化工电子光学生物医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。
ZnO是目前为止II-Ⅵ族半导体材料中最硬的一种,这意味着ZnO 可避免其它II-VI材料在应用于光发射器件中出现缺陷的增殖现象;ZnO作为UV探测器具有很低的暗电流,最大响应波长可达350 nm;ZnO材料在0.4-2μm的波长范围内透明,且具有压电、光电等效应,因而提供了将电学、光学及声学器件,如光源、探测器、调制器、光波导、滤波器及相关电路等进行单片集成的可能性。
因此引起了很多研究人员的兴趣。
三、纳米氧化锌的结构ZnO晶体属六方晶系纤锌矿结构,晶格常数为a=3.296Å,c=5.2065 Å。