2019初三数学二次函数解题方法
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
解二次函数的方法解二次函数的方法有以下几种:1. 因式分解法:对于形如y = ax^2 + bx + c的二次函数,当a≠0时,可以尝试以因式分解的方式将其拆解成两个一次函数的乘积形式。
具体步骤如下:- 将二次项ax^2分解成两个一次函数的乘积形式,即找到两个数m和n,使得:m*n = a 且m + n = b;- 根据上述分解结果,将二次函数y = ax^2 + bx + c写成因式乘积形式,即y = (mx + p)(nx + q);- 求解得到m、n、p、q的值,得到最终的因式分解结果。
2. 完全平方公式法:通过完全平方公式,可以将二次函数表示成一个平方项加上一个常数的形式。
具体步骤如下:- 将二次函数y = ax^2 + bx + c变形成y = a(x-h)^2 + k的形式;- 根据变形后的形式可得,h = -b/(2a),k = c - b^2/(4a);- 根据上述求得的h和k的值,将二次函数写成完全平方的形式。
3. 配方法:对于一般形如y = ax^2 + bx + c的二次函数,当a≠0时,可以通过配方法来解。
具体步骤如下:- 首先将二次函数的二次项系数a提取出来,并将方程变形为y = a(x^2 + (b/a)x) + c;- 进一步变形为y = a(x^2 + (b/a)x + b^2/(4a^2)) + c - b^2/(4a);- 再次变形为y = a(x + b/(2a))^2 + (4ac - b^2)/(4a);- 根据上述变形,可以将二次函数表示为(x + b/(2a))^2的形式,并求出平移向量及其他信息。
4. 求根公式法:对于一般形如y = ax^2 + bx + c的二次函数,可以通过求根公式来解。
求根公式是利用一元二次方程的求根公式,得到二次函数的根的表达式。
一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a) ;根据上述公式,可以求得二次函数的根的值。
二次函数与线段最值问题.填空题.一..... .... 2 . ......... .. 一,,,,_ ____ ______1.如图,P是抛物线y= - x+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A, B,则四边形OAPB周长的最大值为 .2.已知函数y= (m+2) x2+ kx+ n.(1)若此函数为一次函数;①m, k, n的取值范围;②当-2WxW 1时,0WyW3,求此函数关系式;③当-2W xw 3时,求此函数的最大值和最小值(用含k, n的代数式表示);(2)若m=- 1, n = 2,当-2WxW 2时,此函数有最小值-4,求实数k的值.3.如图,二次函数y= - x2+2 (m-2) x+3的图象与x、y轴交于A、B、C三点,其中A (3, 0),抛物线的顶点为D .(1)求m的值及顶点D的坐标;31-(2)当awxwb时,函数y的最小值为4最大值为4,求a, b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A (t, 1)为函数y= ax2+bx+4 (a, b为常数,且aw 0)与y=x图象的交点. (1)求t;(2)若函数y=ax 2+bx+4的图象与x 轴只有一个交点,求 a, b;1—<(3)若1waW2,设当2 xW2时,函数y= ax 2+bx+4的最大值为 m,最小值为n,求m - n 的最 小值. 5.已知y 关于x 的函数y=nx2-2 (m+1) x+m+3(1)若m=n= - 1时,当-1WxW3时,求函数的最大值和最小值; (2)若n=1,当m 取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m 的值,当xvk 时,y 随x 的增大而减小,求 k 的最大整数; (4)若m=2nw0,求抛物线与x 轴两个交点之间的最短距离. 6.如图,二次函数 y= - x 2+2 (m-2) x+3的图象与x,y 轴交于A, B, C 三点,其中 A (3, 0),抛物线的顶点为D.(1)求m 的值及顶点D 的坐标.(2)连接AD, CD, CA,求△ ACD 外接圆圆心 E 的坐标和半径;13" — <一(3)当 2 xwn 时,函数y 所取得的最大值为 4,最小值为 母,求n 的取值范围.3X =一直线 2 .点M 为线段AB 上一点,过 于点C.(1)求直线AC 及抛物线的解析式;3PM = -(2)若2,求PC 的长;(3)过P 作PQ// AB 交抛物线于点 Q,过Q 作QN^x 轴于N,若点P 在Q 左侧,矩形PMNQ 的周长记为d,求d 的最大值.7.如图,抛物线 y=ax 2+bx+2与x 轴交于A 、B 两点,点A 的坐标为(- 1,0),抛物线的对称轴为M 作x 轴的垂线交抛物线于 P,交过点A 的直线y= - x+n8.如图,抛物线 y=ax 2+bx+2与x 轴交于A 、B 两点,点A 的坐标为(-1,0),抛物线的对称轴为直线x= 1.5,点M 为线段AB 上一点,过M 作x 轴的垂线交抛物线于 P,交过点A 的直线y= - x+n 于点C.(1)求直线AC 及抛物线的解析式;(2) M 位于线段AB 的什么位置时,PC 最长,并求出此时 P 点的坐标;(3)若在(2)的条件下,在 x 轴上方的抛物线上是否存在点9 .如图,抛物线 y= - x 2- 2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点 C,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线 AC 交于点E,与抛物线交于点 P,过点P 作PQ//AB 交抛物线于点 Q,过点 Q 作QN^x 轴于点N.若点P 在点Q 左边,当矩形 PMNQ 的周长最大时,求^ AEM 的面积;(3)在(2)的条件下,当矩形 PMNQ 的周长最大时,连接 DQ.过抛物线上一点 F 作y 轴的平行 线,与直线 AC交于点G (点G 在点F 的上方).若FG = 2^ DQ ,求点F 的坐标._2A A3Q ~ A APHQ,使 § ,求点坐10.如图,抛物线y= - x2+bx+c的图象交*轴于人(—2, 0), B (1, 0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A, B重合),过点M作x轴的垂线,与抛物线交于点P, 过点P作PC//AB交抛物线于点C,过点C作CD,x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M 的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n, 2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y ,x2 3x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(, ),点B的坐标为(, ),点C的坐标为(, ),点D的坐标为(, );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE= PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△ PQR周长的最小值.图1 备用图12.如图,抛物线与直线相交于A, B两点,若点A在x轴上,点B的坐标是(2, 4),抛物线与x轴另一交点为D,并且△ ABD的面积为6,直线AB与y轴的交点的坐标为(0, 2).点P是线段AB(不与A, B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.1 3=-——13.如图,抛物线y 4*22x - 4与x轴交于A, B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点。
知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c而言,其顶点坐标为(-2b a,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点. 考点2 矩形的性质及判定1. 矩形定义:有一角是直角的平行四边形叫做矩形. 注意:矩形(1)是平行四边形;(2)四个角是直角.2. 矩形的性质性质1 矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。
; 3. 矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形. 矩形判断方法3:有一个角是直角的平行四边形是矩形。
考点3 菱形的性质及判定1.菱形定义:有一组邻边相等的平行四边形叫做菱形. 注意: 菱形(1)是平行四边形;(2)一组邻边相等. 2.菱形的性质性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;3.菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.考点4 正方形的性质及判定1. 正方形是在平行四边形的前提下定义的,它包含两层意思:有一组邻边相等的平行四边形(菱形)有一个角是直角的平行四边形(矩形)都可以得到正方形;正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.2.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.......并且有一个角是直角正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;3. 因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.4. 正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.考点5 探究特殊平行四边形的一般思路解答特殊平行四边形的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出特殊平行四边形的分类标准,一般涉及到动态问题要以静制动,动中求静,由于特殊平行四边形分为矩形、菱形和正方形,故我们可以从这些特殊平行四边形的性质及题干信息入手,具体如下:(1)假设结论成立,分情况讨论,抓住每类图形的特殊性质入手,由于特殊的平行四边形也是平行四边形,可先证明出是平行四边形,在适当加入一些特征便可以得到矩形、菱形或是正方形。
中考二次函数解题方法有哪些中考数学二次函数是必考考点也是重要内容之一,掌握它的解题方法轻松拿分。
下面是由小编为大家整理的“中考二次函数解题方法有哪些”,仅供参考,欢迎大家阅读。
中考二次函数解题方法有哪些一、把握要点(也是中考的考点及要求)1.理解二次函数概念、性质、含画二次函数的图像。
2.能确定抛物线的开口方向,顶点坐标,对称轴方程,以及抛物线与坐标轴的交点坐标。
3.含根据不同条件确定二次函数的'解析式。
4.灵活运用函数思想,数形结合思想解决问题。
二、要掌握二次函数解析式的三种形式,根据条件灵活运用,确定二次函数的解析式,适当做一些二次函数的实际应用问题,来提高分析和解决问题的能力。
三、二次函数是体现综合性的重点内容从容易题到较难题中都会出现,也就是说每年中考试卷中即有相对稳定的基础题,也有新颖的试题来考查学生的分析,解决问题能力,实践和创新能力,因此经常与一次函数,三角形,四边形知识结合在一起,成为试卷的压轴题,中考数学参考《中考数学辅导:二次函数复习重在把握》。
四、学习二次函数注意如下几点1.函数图像中点的横纵坐标与二条线段之间的转化。
2.函数题目中有关”函数语言“的理解及表达,例如二次函数图象过原点,将二次函数以轴翻折,系数即改变符号等等。
3.当绘画出函数图象后,一定要分析图像的性质及基本图形的特征,例如出现等腰直角三角形,平行四边形等等。
拓展阅读:中考数学复习的高效方法1、吃透考纲把握动向在复习中,很重要的一点是要有针对性,提高效率,避免做无用功。
在对基本的知识点融会贯通的基础上,认真研究考纲,不仅要明确考试的内容,更要对考纲对知识点的要求了然于心。
平时多关注近年中考试题的变化及其相应的评价报告,多层次、多方位地了解中考信息,使复习有的放矢,事半功倍。
2、围绕课本注重基础从近几年的上海中考数学卷来看,都很重视基础知识,突出教材的考查功能。
试题至少有一半以上来源于教材,强调对通性通法的考查。
中考数学二次函数解题方法中考数学二次函数解题方法1、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
进一步有:①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。
②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的`动点不存在。
③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。
2.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。
)先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。
(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。
3.“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。
二次函数解题思路十大技巧二次函数解题技巧:二次函数有点难,求点坐标是关键。
一求函数解析式,再求面积带线段。
动点问题难解决,坐标垂线走在前。
三角相似莫相忘,勾股方程解疑难。
二次函数解题思路技巧1.平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。
顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
2.轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。
顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。
但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
熟悉几个特殊型二次函数的图象及性质1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式。
.2 、理解图象的平移口诀“加上减下,加左减右”。
“y=ax2 → y=a ( x + h ) 2 + k ”“加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的。
.总之,如果两个二次函数的“二次项系数”相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般“形式”,应先化为顶点式再平移。
3 、通过描点“画图”、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;。
解二次函数的三种方法一、根据二次函数函数表示式求解方法二次函数函数表示式是$y = ax^2 + bx + c$,其中a,b,c都是常数。
以此公式求一般二次函数的几何意义主要包括:判断拐点、确定单调性(即函数的上下单调性,对称轴,极值)和计算函数的极限值:(1)判断拐点可以用一元二次函数的判别式来判断拐点,它的形式为:$D = b^2 - 4ac$,如果$D>0$,则这个函数有唯一的拐点,即$(-b \pm \sqrt{D})/2a$;如果$D=0$,则这个函数有一个重拐点,即$(-b \pm \sqrt{D})/2a$;如果$D<0$,则这个函数没有拐点。
(2)确定单调性即确定函数$y=ax^2+bx+c$在任意一点上的单调性,主要就是通过求a的取值来判断:当a>0时,此函数是一个开口向上的抛物线,即在a>0的任一x处的函数值都大于其附近的函数值,此时此二次函数是单调递增的;(3)确定对称轴由于一元二次函数$y=ax^2+bx+c$有关于$x$轴的对称性,因此我们可以求出它的对称轴。
其斜率为:$m=-b/2a$,求出斜率之后,根据斜率公式可以得到对称轴的方程为:$y+b/2a=ax^2$,即$x = -b/2a,y = -b/4a$。
(4)确定极值在求极值之前,首先需要找到函数的极值点,要找到极值点首先要求求导,函数$y=ax^2+bx+c$的一阶导数为:$y'=2ax+b$,称$2ax+b=0$为导函数的根,即为求极值点。
它的极值值可以通过函数的表达式替换形式求得,即用$2ax+b=0$的根代替$x$求函数$y=ax^2+bx+c$的值就是该函数的极值。
(5)计算函数的极限一元二次函数的极限的形式为:$\lim\limits_{x \to-\infty}ax^2+bx+c=+\infty$,$\lim\limits_{x \to+\infty}ax^2+bx+c = +\infty$,可以根据极限的运算规则去计算极限。
2019中考复习数学二次函数压轴题专题针对训练1.在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1,y2,都有点(x,y1)和(x,y2)关于点(x,x)中心对称(包括三个点重合时),由于对称中心都在直线y=x上,所以称这两个函数为关于直线y=x的特别对称函数.例如:y=12x和y=32x为关于直线y=x的特别对称函数.(1)若y=3x+2和y=kx+t(k≠0)为关于直线y=x的特别对称函数,点M(1,m)是y=3x+2上一点.①点M(1,m)关于点(1,1)中心对称的点坐标为 .②求k,t的值.(2)若y=3x+n的图象和它的特别对称函数的图象与y轴围成的三角形面积为2,求n的值.(3)若二次函数y=ax2+bx+c和y=x2+d为关于直线y=x的特别对称函数.①直接写出a,b的值.②已知点P(-3,1),点Q(2,1),连接PQ,直接写出y=ax2+bx+c和y=x2+d两条抛物线与线段PQ恰好有两个交点时d的取值范围.2.已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m 的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.3.如图,抛物线C1:y1=tx2-1(t>0)和抛物线C2:y2=-4(x-h)2+1(h≥1).(1)两抛物线的顶点A,B的坐标分别为和;(2)设抛物线C2的对称轴与抛物线C1交于点N,则t为何值时,A,B,M,N 为顶点的四边形是平行四边形;(3)设抛物线C1与x轴的左交点为点E,抛物线C2与x轴的右边交点为点F,试问,在第(2)问的前提下,四边形AEBF能否为矩形?若能,求出h值;若不能,说明理由.4.如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a (x-6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界.则h的取值范围是多少?5.如图,一次函数y=-x-2的图象与二次函数y=ax2+bx-4的图象交于x轴上一点A,与y轴交于点B,在x轴上有一动点C.已知二次函数y=ax2+bx-4的图象与y轴交于点D,对称轴为直线x=n(n<0),n是方程2x2-3x-2=0的一个根,连接AD.(1)求二次函数的解析式.(2)当S△ACB=3S△ADB时,求点C的坐标.(3)试判断坐标轴上是否存在这样的点C,使得以点A,B,C组成的三角形与△ADB相似?若存在,试求出点C的坐标;若不存在,请说明理由.6.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?7.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0), C(-2,0)三点.(1)求二次函数的解析式;(2)在x轴上另有一点D(-4,0),将二次函数图象沿着DA方向平移,使图象再次经过点B;①求平移后图象的顶点E的坐标;②求图象A,B之间的曲线部分在平移过程中所扫过的面积.8.已知函数y=ax2+bx+c(a,b,c是常数),当a,b,c满足什么条件时,(1)它是二次函数?(2)它是一次函数?(3)它是正比例函数?9.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3,…,A n和点C1,C2,C3,…,C n分别落在直线y=x+1和x轴上.抛物线L1过点A1,B1,且顶点在直线y=x+1上,抛物线L2过点A2,B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n,B n,且顶点也在直线y=x+1上,其中抛物线L2交正方形A1B1C1O的边A1B1于点D1,抛物线L3交正方形A2B2C2C1的边A2B2于点D2,…,抛物线L n+1交正方形A n B n C n C n-1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1,B2,B3_ _ _;(2)写出抛物线L2,L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标;(3)①设A1D1=k1·D1B1,A2D2=k2·D2B2,试判断k1与k2的数量关系并说明理由;②点D 1,D 2,…,D n 是否在一条直线上?若是,直接写出这条直线与直线y =x +1的交点坐标;若不是,请说明理由.10.将抛物线y =mx 2+n 向下平移6个单位长度,得到抛物线y =-x 2+3,设原抛物线的顶点为P ,且原抛物线与x 轴相交于点A 、B ,求△PAB 的面积.11.对于直线l 1:y =ax +b (a <0,b >0),有如下定义:我们把直线l 2:y =-1a(x +b )称为它的“姊线”.若l 1与x ,y 轴分别相交于A ,B 两点,l 2与x ,y 轴分别相交于C ,D 两点,我们把经过点A ,B ,C 的抛物线C 叫做l 1的“母线”.(1)若直线l 1:y =ax +b (a <0,b >0)的“母线”为C :y =-12x 2-x +4,求a ,b 的值;(2)如图,若直线l 1:y =mx +1(m <0),G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM ,若OM =56,求出l 1的“姊线”l 2与“母线”C 的函数解析式;(3)将l 1:y =-3x +3的“姊线”绕着D 点旋转得到新的直线l 3:y =kx +n ,若点P (x ,y 1)与点Q (x ,y 2)分别是“母线”C 与直线l 3上的点,当0≤x ≤1时,|y 1-y 2|≤3,求k 的取值范围.12.如图,抛物线y =ax 2+bx -3过A(1,0),B(-3,0),直线AD 交抛物线于点D ,点D 的横坐标为-2,点P(m ,n)是线段AD 上的动点. (1)求直线AD 及抛物线的表达式;(2)过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.13.如图,抛物线C1:y1=ax2+2ax(a>0)与x轴交于点A,顶点为点P.(1)直接写出抛物线C1的对称轴是,用含a的代数式表示顶点P的坐标(2)把抛物线C1绕点M(m,0)旋转180°得到抛物线C2(其中m>0),抛物线C与x轴右侧的交点为点B,顶点为点Q.2①当m=1时,求线段AB的长;②在①的条件下,是否存在△ABP为等腰三角形,若存在,请求出a的值,若不存在,请说明理由;③当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积.14.如图,抛物线y=ax2+bx+c经过A(-1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.15.已知抛物线C n:y n=-12x2+(n-1)x+2n(其中n为正整数)与x轴交于An,B n两点(点A n在B n的左边),与y轴交于点D n.(1)填空:①当n=1时,点A1的坐标为,点B1的坐标为;②当n=2时,点A2的坐标为,点B2的坐标为;(2)猜想抛物线C n是否经过某一个定点,若经过请写出该定点坐标并给予证明;若不经过,请说明理由;(3)①判断△A2D2B4的形状;②猜想∠A n D n B n2的大小,并给予证明.16.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN ⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 DQ,求点F的坐标.17.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为_.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P作PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?参考答案1.解:(1)①∵点M (1,m )是y =3x +2上一点, ∴m =5,∴M (1,5),∴点M 关于(1,1)中心对称点坐标为(1,-3).②∵y =3x +2和y =kx +t (k ≠0)为关于直线y =x 的特别对称函数,∴3x +2+kx +t2=x ,∴(1+k )x +(t +2)=0,∴k =-1,t =-2. (2)设y =3x +n 的特别对称函数为y =m ′x +n ′, ∴3x +n +m ′x +n ′2=x ,∴(1+m ′)x +n +n ′=0,∴m ′=-1,n ′=-n ,∴y =3x +n 的特别对称函数为y =-x -n ,联立得⎩⎨⎧y =3x +n ,y =-x -n ,解得⎩⎪⎨⎪⎧x =-12n ,y =-12n ,∵y =3x +n 的图象和它的特别对称函数的图象与y 轴围成的三角形面积为2,∴12|n -(-n )|×|-12n |=2,∴n =±2. (3)①∵二次函数y =ax 2+bx +c 和y =x 2+d 为关于直线y =x 的特别对称函数,∴ax 2+bx +c +x 2+d2=x ,∴(a +1)x 2+(b -2)x +c +d =0,∴a=-1,b=2,c=-d;②由①知,a=-1,b=2,c=-d,∴二次函数y=-x2+2x-d和y=x2+d,∴这两个函数的对称轴为直线x=1和x=0.∵点P(-3,1),点Q(2,1),当d<0时,如答图1,当抛物线C2:y=x2+d恰好过点P(-3,1)时,即9+d=1,d=-8,当抛物线C1:y=-x2+2x-d恰好过点Q(2,1)时,即-4+4-d=1,∴d=-1,y=ax2+bx+c和y=x2+d两条抛物线与线段PQ恰好有两个交点时d的取值范围为-8≤d<-1,如答图2,当0≤d<1时,抛物线C2与线段PQ有两个交点,而抛物线C1与线段PQ没有交点,∴y=ax2+bx+c和y=x2+d两条抛物线与线段PQ恰好有两个交点时d的取值范围为0≤d<1,即:y=ax2+bx+c和y=x2+d两条抛物线与线段PQ恰好有两个交点时d 的取值范围为-8≤d<-1或0≤d<1.2.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0,∴m>-1;(2)∵二次函数的图象过点A(3,0),∴0=-9+6+m∴m=3,∴二次函数的解析式为y=-x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得,∴直线AB的解析式为y=-x+3,∵抛物线y=-x2+2x+3的对称轴为x=1,∴把x=1代入y=-x+3得y=2,∴P(1,2).【解析】(1)由二次函数的图象与x轴有两个交点,得到△=22+4m>0于是得到m>-1;(2)把点A(3,0)代入二次函数的解析式得到m=3,于是确定二次函数的解析式为:y=-x2+2x+3,求得B(0,3),得到直线AB的解析式为:y=-x+3,把对称轴方程x=1,代入直线y=-x+3即可得到结果.3.解:(1)抛物线C1:y1=tx2-1的顶点坐标是(0,-1),抛物线C2:y2=-4(x-h)2+1的顶点坐标是(h,1).(2)∵AM∥BN,∴当AM=BN时,A,B,M,N为顶点的四边形是平行四边形.∵当x=h时,y2=1,y1=tx2-1=th2-1,∴BN=|1-(th2-1)|=|2-th2|.①当点B在点N的下方时,4h2-2=th2-2,∵h2≠0,∴t=4;②当点B在点N的上方时,4h2-2=2-th2,整理,得t+4=4h2,∵当t>0时,t+4>4;当h≥1时,4h2≤4,∴这样的t值不存在,∴当点B在点N的下方时,t=4;当点B在点N的上方时t值不存在.(3)能,理由如下:由(2)可知,两个函数二次项系数互为相反数,∴两抛物线的形状相同,故它们成中心对称.∵点A和点B的纵坐标的绝对值相同,∴两抛物线的对称中心落在x轴上.∵四边形AEBF是平行四边形,∴当∠EAF=90°时,四边形AFBE是矩形.∵抛物线C1与x轴左交点坐标是(-12,0),∴OE=12.∵抛物线C2与x轴右交点坐标是(h+12,0)且h≥1,∴OF=h+12.∵∠FAO+∠EAO=90°,∠EAO+∠AEO=90°,∴∠FAO=∠AEO.又∵∠FOA=∠EOA=90°,∴△AEO∽△FAO,AOOE=OFAO,∴OA2=OE·OF,即12(h+12)=1,解得h=32>1,∴当h=32时,四边形AEBF为矩形.4.解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x-6)2+h过点(0,2),∴2=a(0-6)2+2.6,解得a=−,故y与x的关系式为y=-(x-6)2+2.6;(2)当x=9时,y=−(x-6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,−(x-6)2+2.6=0,解得x1=6+2>18,x2=6-2(舍去),故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x-6)2+h还过点(0,2),代入解析式得,解得,此时二次函数解析式为y=−(x-6)2+,此时球若不出边界h≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x-6)2+h还过点(0,2),代入解析式得,解得,此时球要过网h ≥,故若球一定能越过球网,又不出边界,h 的取值范围是h ≥.5.解:(1)在y =-x -2中,令y =0,则x =-2. ∴A (-2,0).由2x 2-3x -2=0,得x 1=-12,x 2=2,∴二次函数y =ax 2+bx -4的对称轴为直线x =-12.∴⎩⎨⎧4a -2b -4=0,-b 2a =-12,解得⎩⎨⎧a =2,b =2,∴二次函数的解析式为y =2x 2+2x -4. (2)∵S △ADB =12BD ·OA =2,∴S △ACB =3S △ADB =6. ∵点C 在x 轴上,∴S △ACB =12AC ·OB =12×2AC =6,∴AC =6.∵点A 的坐标为(-2,0),∴当S △ACB =3S △ADB 时,点C 的坐标为(4,0)或(-8,0). (3)存在.令x=0,∵一次函数与y轴的交点为点B(0,-2),∴AB=22+22=22,∠OAB=∠OBA=45°.∵在△ABD中,∠BAD,∠ADB都不等于45°,∠ABD=180°-45°=135°,∴点C在点A的左边,如答图.①AC与BD是对应边时,∵△ADB∽△BCA,∴ACBD=ABAB=1,∴AC=BD=2,∴OC=OA+AC=2+2=4,∴点C的坐标为(-4,0).②当AC与AB是对应边时,∵△ADB∽△CBA.∴ACAB=ABBD=222,∴AC=2AB=2×22=4,∴OC=OA+AC=2+4=6,∴点C的坐标为(-6,0).综上所述,在x轴上存在点C,点C的坐标为(-4,0)或(-6,0).使得以点A,B,C组成的三角形与△ADB相似.6.解:(1)由题意得函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得,∴抛物线的解析式为y=-t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=-×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.【解析】(1)由题意得函数y=at2+5t+c的图象经过(0,0.5),(0.8,3.5),于是得到,求得抛物线的解析式为y=-t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=-×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.7.解:(1)根据抛物线经过三点的坐标特征,可设其解析式为y=a(x+2)(x-2)(a≠0),再代入点A(0,4),解得a=-1,故二次函数的解析式为y=-(x+2)(x-2)=-x2+4(a≠0).(2)经过点A(0,4),D(-4,0)两点的直线DA,其解析式为y=x+4.①抛物线沿着DA方向平移后,设向右平移了m个单位,则顶点E为(m,m+4),此时抛物线的解析式可设为y=-(x-m)2+(m+4),将点B(2,0)代入,得0=-(2-m)2+m+4,解得m1=0(舍去),m2=5;顶点E为(5,9),②如答图1,根据抛物线的轴对称性与平移的性质,A,B之间的曲线部分所扫过的面积显然等于平行四边形ABFE的面积,也等于2个△ABE的面积.解法一:如答图2,过点E作EK⊥y轴于点K,S△ABE =S梯形OBEK-S△AOB-S△AKE=12(2+5)×9-12×4×2-12×5×5=15,图象A,B之间的曲线部分在平移过程中所扫过的面积为2S△ABE=30.解法二:如答图2,过点E作EK⊥y轴于点K,过点B作BM⊥x轴交KM于点M,过点A作AN⊥y轴交BM于点N(将△ABE的面积水平与铅直分割——一种面积的常规分割法则).直线BM的解析式是x=2,与DA直线y=x+4相交得到点G为(2,6),所以线段BG=6,S△ABE=S△AGB-S△EGB=12×6×2+12×6×3=15,所以图象A,B之间的曲线部分在平移过程中所扫过的面积为2S△ABE=30.8.解:(1)当a≠0时,y=ax2+bx+c是二次函数;(2)当a=0,b≠0,c≠0时,y=ax2+bx+c是一次函数;(3)当a=0,b≠0,c=0时,y=ax2+bx+c是正比例函数.【解析】(1)根据二次项系数不等于零是二次函数,可得答案;(2)根据二次项系数等于零而一次项系数不等于零,且常数项不等于零是一次函数,可得答案;(3)根据二次项系数等于零而一次项系数不等于零,且常数项等于零是正比例函数,可得答案.9.解:(1)B1(1,1),B2(3,2),B3(7,4).(2)抛物线L2,L3的解析式分别为y2=-(x-2)2+3,y3=-12(x-5)2+6.抛物线L2的解析式的求解过程:对于直线y=x+1,设x=0,可得y=1,∴A1(0,1).∵四边形A1B1C1O是正方形,∴C1(1,0).又∵点A2在直线y=x+1上,∴可得点A2(1,2),又∵B2的坐标为(3,2),∴抛物线L2的对称轴为直线x=2,∴抛物线L2的顶点坐标为(2,3),设抛物线L2的解析式为y=a(x-2)2+3,∵L2过点B2(3,2),∴当x=3时,y=2,∴2=a×(3-2)2+3,解得a=-1,∴抛物线L2的解析式为y=-(x-2)2+3.抛物线L 3的解析式的求解过程:∵B 3的坐标为(7,4),同上可求得点A 3的坐标为(3,4), ∴抛物线L 3的对称轴为直线x =5, ∴抛物线L 3的顶点为(5,6).设抛物线L 3的解析式为y =a (x -5)2+6, ∵L 3过点B 3(7,4),∴当x =7时,y =4, ∴4=a ×(7-5)2+6,解得a =-12,∴抛物线L 3的解析式为y =-12(x -5)2+6.猜想抛物线L n 的顶点坐标为(3×2n -2-1,3×2n -2). 猜想过程:方法1:可由抛物线L 1,L 2,L 3,…的解析式为y 1=-2(x -12)2+32,y 2=-(x -2)2+3,y 3=-12(x -5)2+6,…,归纳总结.方法2:可由正方形A n B n C n C n -1顶点A n ,B n 的坐标规律A n (2n -1-1,2n -1)与B n (2n-1,2n -1),再利用对称性可得抛物线L n 的对称轴为直线x =2n -1+2n -1-12,即x=2n -21+2-22=3×2n -2-1.又∵顶点在直线y =x +1上,∴可得抛物线L n 的顶点坐标为(3×2n -2-1,3×2n -2); (3)①k 1与k 2的数量关系为k 1=k 2.理由如下:同(2)可求得L 2的解析式为y =-(x -2)2+3,当y =1时,1=-(x -2)2+3,解得x 1=2-2,x 2=2+2,∴A 1D 1=2-2=2(2-1),∴D 1B 1=1-(2-2)=2-1, ∴A 1D 1=2·D 1B 1,即k 1= 2.同理可求得A 2D 2=4-22=22(2-1),D 2B 2=2-(4-22)=22-2=2(2-1), ∴A 2D 2=2·D 2B 2,即k 2=2,∴k 1=k 2. ②∵由①知,k 1=k 2,∴点D 1,D 2,…,D n 在一条直线上; ∵抛物线L 2的解析式为y =-(x -2)2+3, ∴当y =1时,x =2-2,∴D 1(2-2,1); 同理,D 2(5-22,2),∴设直线D 1D 2的解析式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧2-2k +b =1,5-22k +b =2,解得⎩⎪⎨⎪⎧k =3+27,b =3+27,∴直线D 1D 2的解析式为y =3+27x +3+27,∴⎩⎨⎧y =x +1,y =3+27x +3+27,解得⎩⎨⎧x =-1,y =0.这条直线与直线y =x +1的交点坐标为(-1,0).10.解:∵将抛物线y =mx 2+n 向下平移6个单位长度,得到y =mx 2+n -6,∴m =-1,n -6=3,∴n =9,∴原抛物线y =-x 2+9,∴顶点P (0,9),令y =0,则0=-x 2+9,解得x =±3,∴A (-3,0),B (3,0),∴AB =6,∴S △PAB =AB •OP =×6×9=27.【解析】根据平移的性质得出y =mx 2+n -6,根据题意求得m =-1,n =9,从而求得原抛物线的解析式,得出顶点坐标和与x 轴的交点坐标,进而根据三角形面积求得即可.11.解:(1)对于抛物线y =-12x 2-x +4,令x =0,得到y =4,∴B (0,4),令y =0,得到-12x 2-x +4=0,解得x =-4或2,∴A (2,0),C (-4,0).∵y =ax +b 的图象过点A ,B , ∴⎩⎨⎧b =4,2a +b =0,解得⎩⎨⎧a =-2,b =4.(2)如答图所示,连接OG ,OH .∵点G ,H 为斜边中点,∴OG =12AB ,OH =12CD .∵l 1:y =mx +1,∴l 1的“姊线”l 2为y =-1m(x +1),∴B (0,1),A (-1m ,0),D (-1,0),C (0,-1m),∴OA =OC ,OB =OD .∵∠AOB =∠COD ,∴△AOB ≌△COD ,∴AB=CD,∠ABO=∠CDO,∴OG=OH.∵OG=GB,OH=HC,∴∠GOB=∠ABO,∠HOC=∠OCD.∵∠ODC+∠OCD=90°,∴∠ABO+∠OCD=90°,∴∠GOB+∠HOC=90°,∴∠HOG=90°,∴OG⊥OH,∴△OGH为等腰直角三角形.∵点M为GH中点,∴△OMG为等腰直角三角形,∴OG=2OM=106,∴AB=2OG=103,∴OA=1032-12=13,∴A(13,0),∴C(0,13),D(-1,0).∴l1的“姊线”l2的函数解析式为y=13x+13,“母线”C的函数的解析式为y=-3x2-2x+1.(3)l1:y=-3x+3的“姊线”的解析式为y=13x+1,“母线”C的解析式为y=-x2-2x+3,∴直线l3:y=kx+1,∵当0≤x≤1时,|y1-y2|≤3,不妨设x=1,则y1=0,y2=k+1,由题意k+1=±3,解得k=2或-4,∴满足条件的k是取值范围为-4≤k≤2.12.解:(1)把(1,0),(-3,0)代入函数表达式得 ⎩⎨⎧a +b -3=0,9a -3b -3=0,解得⎩⎨⎧a =1,b =2, ∴抛物线的表达式为y =x 2+2x -3.当x =-2时,y =(-2)2+2×(-2)-3,解得y =-3, 即D(-2,-3).设AD 的表达式为y =kx +b ,将A(1,0),D(-2,-3)代入得⎩⎨⎧k +b =0,-2k +b =-3,解得⎩⎨⎧k =1,b =-1, ∴直线AD 的表达式为y =x -1.(2)设P 点坐标为(m ,m -1),Q(m ,m 2+2m -3), l =(m -1)-(m 2+2m -3), 化简得l =-m 2-m +2, 配方得l =-(m +12)2+94,∴当m =-12时,l 最大=94.(3)由(2)可知,0<PQ ≤94.当PQ 为边时,DR ∥PQ 且DR =PQ.∵R 是整点,D(-2,-3),∴PQ 是正整数, ∴PQ =1或PQ =2. 当PQ =1时,DR =1, 此时点R 的横坐标为-2,纵坐标为-3+1=-2或-3-1=-4,∴R(-2,-2)或(-2,-4).当PQ=2时,DR=2,此时点R的横坐标为-2,纵坐标为-3+2=-1或-3-2=-5,即R(-2,-1)或(-2,-5).当PQ为对角线时,PD∥QR,且PD=QR.设点R的坐标为(n,n+m2+m-3),则QR2=2(m-n)2.又∵P(m,m-1),D(-2,-3),∴PD2=2(m+2)2,∴(m+2)2=(m-n)2,解得n=-2(不符合题意,舍去)或n=2m+2,∴点R的坐标为(2m+2,m2+3m-1).∵R是整点,-2<m<1,∴当m=-1时,点R的坐标为(0,-3);当m=0时,点R的坐标为(2,-1).综上所述,存在满足R的点,它的坐标为(-2,-2)或(-2,-4)或(-2,-1)或(-2,-5)或(0,-3)或(2,-1).13.解:(1)∵抛物线C1:y1=ax2+2ax=a(x+1)2-a,∴对称轴是直线x=-1,顶点P坐标为(-1,-a).(2)①由旋转知,MA=MB,当y1=0时,x1=-2,x2=0,∴A(-2,0),∴AO =2.∵M (1,0),∴AM =3,∴AB =2MA =2×3=6; ②存在.∵A (-2,0),AB =6,∴B (4,0). ∵A (-2,0),P (-1,-a ), ∴AP =12a2=1+a 2,BP =25+a 2.当AB =AP 时,1+a 2=62,解得a =35(负值已舍去); 当AB =BP 时,25+a 2=62,解得a =11(负值已舍去); 当AP =BP 时,1+a 2=25+a 2,不成立, 即当a 取35或11时,△ABP 为等腰三角形. ③如答图,过点P 作PH ⊥x 轴于H ,∵点A 与点B ,点P 与点Q 均关于M 点成中心对称,故四边形APBQ 为平行四边形,当∠APB =90°时,四边形APBQ 为矩形,此时△APH ∽△PBH ,∴AH HP =HPBH,即1a =a2m +3, ∴a 2=2m +3,∴m =12a 2-32.当a =3时,m =12×32-32=3,∴S =(2m +4)a =(2×3+4)×3=30.14.解:(1)由已知得⎩⎨⎧a -b +c =0,16a +4b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3,∴y =-34x 2+94x +3.(2)设直线BC 的表达式为y =kx +b ,∴⎩⎨⎧4k +b =0,b =3,解得⎩⎨⎧k =-34,b =3,∴y =-34x +3.设D(a ,-34a 2+94a +3),(0<a<4).如图,过点D 作DM ⊥x 轴,交BC 于点M , ∴M(a ,-34a +3),∴DM =(-34a 2+94a +3)-(-34a +3)=-34a 2+3a.∵∠DME =∠OCB ,∠DEM =∠COB , ∴△DEM ∽△BOC , ∴DE DM =OBBC. ∵OB =4,OC =3,∴BC =5,∴DE =45DM ,∴DE =-35a 2+125a =-35(a -2)2+125,∴当a =2时,DE 取最大值,最大值是125.(3)假设存在这样的点D ,使得△CDE 中有一个角与∠CFO 相等. ∵F 为AB 的中点,∴OF =32,tan ∠CFO =OCOF=2.如图,过点B 作BG ⊥BC ,交CD 的延长线于G ,过点G 作GH ⊥x 轴,垂足为H.①若∠DCE =∠CFO ,∴tan ∠DCE =GBBC=2,∴BG =10. ∵△GBH ∽△BCO ,∴GH BO =HB OC =GB BC, ∴GH =8,BH =6, ∴G(10,8).设直线CG 的表达式为y =kx +b , ∴⎩⎨⎧b =3,10k +b =8,解得⎩⎨⎧k =12,b =3, ∴y =12x +3,∴⎩⎪⎨⎪⎧y =12x +3,y =-34x 2+94x +3,解得x =73或x =0(舍).②若∠CDE =∠CFO ,同理可得BG =52,GH =2,BH =32,∴G(112,2). 同理可得直线CG 的表达式为y =-211x +3, ∴⎩⎪⎨⎪⎧y =-211x +3,y =-34x 2+94x +3,解得x =10733或x =0(舍).综上所述,存在D 使得△CDE 中有一个角与∠CFO 相等,其横坐标是73或10733.15.解:(1)①n =1时,抛物线解析式为y =-12x 2+2,当y =0时,-12x 2+2=0,解得x 1=2,x 2=-2,∴点A 1的坐标为(-2,0),点B 1的坐标为(2,0); ②当n =2时,抛物线解析式为y =-12x 2+x +4,当y =0时,-12x 2+x +4=0,解得x 1=-2,x 2=4,∴点A 2的坐标为(-2,0),点B 2的坐标为(4,0).(2)y n=-12x2+(n-1)x+2n=-12(x+2)(x-2n),当x=-2时,y=0,所以抛物线C n经过定点(-2,0).(3)①n=2,抛物线解析式为y=-12x2+x+4,当x=0时,y=4,则D2(0,4),∵n=4时,抛物线解析式为y=-12x2+3x+8,当y=0时,-12x2+3x+8=0,解得x1=-2,x2=8,∴点B4的坐标为(8,0).∵A2D22=22+42=20,B4D22=82+42=80,B4A22=102=100,∴A2D22+B4D22=B4A22,∴△A2D2B4的形状为直角三角形,∠A2D2B4=90°;②∠A n D n B n2=90°.理由如下:当y=0时,y n=-12(x+2)(x-2n)=0,解得x1=-2,x2=2n,∴点A n的坐标(-2,0),点B n的坐标为(2n,0);∴点B n2的坐标为(2n2,0),而D n(0,2n),∵A n D2n=(2n)2+22=4n2+4,B n2D2n=(2n2)2+4n2=4n4+4n2,B n2A2n=(2n2+2)2=4n4+8n2+4,∴A n D2n+B n2D2n=B n2A2n,∴△A n D n B n2为直角三角形,∠A n D n B n2=90°.16.解:(1)当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,则A(﹣3,0),B(1,0);当x=0时,y=﹣x2﹣2x+3=3,则C(0,3);(2)解:抛物线的对称轴为直线x=﹣1,设M(x,0),则点P(x,﹣x2﹣2x+3),(﹣3<x<﹣1),∵点P与点Q关于直线=﹣1对称,∴点Q(﹣2﹣x,﹣x2﹣2x+3),∴PQ=﹣2﹣x﹣x=﹣2﹣2x,∴矩形PMNQ的周长=2(﹣2﹣2x﹣x2﹣2x+3)=﹣2x2﹣8x+2=﹣2(x+2)2+10,当x=﹣2时,矩形PMNQ的周长最大,此时M(﹣2,0),设直线AC的解析式为y=kx+b,把A(﹣3,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,当x=﹣2时,y=x+3=1,∴E(﹣2,1),∴△AEM的面积= ×(﹣2+3)×1= ;(3)解:当x=﹣2时,Q(0,3),即点C与点Q重合,当x=﹣1时,y=﹣x2﹣2x+3=4,则D(﹣1,4),∴DQ= = ,∴FG=2 DQ=2 × =4,设F(t,﹣t2﹣2t+3),则G(t,t+3),∴GF=t+3﹣(﹣t2﹣2t+3)=t2+3t,∴t2+3t=4,解得t1=﹣4,t2=1,∴F点坐标为(﹣4,﹣5)或(1,0).17.解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x-1)2+4,把C(3,0)代入抛物线的解析式,可得a(3-1)2+4=0,解得a=-1.故抛物线的解析式为y =-(x -1)2+4.(2)依题意有OC =3,OE =4,∴CE =OC 2+OE 2=32+42=5,当∠QPC =90°时,∵cos ∠QCP =PC CQ =OC CE ,∴3-t2t =35,解得t =1511;当∠PQC =90°时,∵cos ∠QCP =CQ PC =OC CE ,∴2t3-t =35,解得t =913.∴当t =1511或t =913时,△PCQ 为直角三角形.(3)∵A (1,4),C (3,0),设直线AC 的解析式为y =kx +b ,则 ⎩⎨⎧ k +b =4,3k +b =0,解得⎩⎨⎧ k =-2,b =6,故直线AC 的解析式为y =-2x +6.∵P (1,4-t ),将y =4-t 代入y =-2x +6中,得x =1+t 2,∴Q 点的横坐标为1+t 2,将x =1+t 2代入y =-(x -1)2+4中,得y =4-t 24.∴Q点的纵坐标为4-t2 4,∴QF=(4-t24)-(4-t)=t-t24,∴S△ACQ=S△AFQ+S△CFQ=12FQ·AG+12FQ·DG=12FQ(AG+DG)=12FQ·AD=12×2×(t-t24)=-t24+t=-14(t-2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.。
求二次函数解析式的四种基本方法二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。
熟练地求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c (a ≠0)。
2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。
3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。
4.对称点式: y=a(x -x 1)(x -x 2)+m (a ≠0)求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。
4.若已知二次函数图象上的两个对称点(x 1、m)(x 2、m),则设成: y=a(x -x 1)(x -x 2)+m (a ≠0),再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可。
探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。
解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。
例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。
分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。
2019初三数学二次函数解题方法
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
初三数学二次函数解题方法
1.求证“两线段相等”的问题:
2.“平行于y轴的动线段长度的最大值”的问题:
由于平行于y轴的线段上各个点的横坐标相等,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3.求一个已知点关于一条已知直线的对称点的坐标问题:
先用点斜式求出过已知点,且与已
知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。
4.“抛物线上是否存在一点,使之到定直线的距离最大”的问题:
先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。
该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。
先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定
直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。