列方程解应用题题型归类大全
- 格式:doc
- 大小:61.00 KB
- 文档页数:7
列方程解应用题常见题型归纳【一】行程问题基本数量关系:路程=速度×时间〔1〕相遇问题〔甲乙相向而行〕:甲走的路程+乙走的路程=两地的距离;〔2〕追及问题:①同地不同时出发:前者走的路程=追者走的路程;②同时不同地出发:前者走的路程-追者走的路程=两地的距离。
〔3〕航行问题:①顺水速度=静水速度+水速;②逆水速度=静水速度-水速;所以顺水速度-逆水速度=2×水速寻找等量关系的方法:抓住两码头之间距离不变,水流速度不变,船在静水中的速度不变等特点来建立等量关系。
〔4〕环形跑道问题:①同时同地反向出发:甲跑的路程+乙跑的路程=跑道周长;②同时同地同向出发〔〕:甲跑的路程-乙跑的路程=跑道周长。
【二】工程问题工作量=人均效率x人数x时间;工作量=工作效率x工作时间甲、乙合作:甲、乙工作量之和=总工作量【三】储蓄问题利息=本金x利率;本金和=本金+利息;利率=〔利息/本金〕x100%;利息税=利息x税率。
【四】利润问题利润=售价-进价;利润率=〔利润/进价〕x100%;售价-进价=进价x利润率;售价=标价x折扣;销售额=成本x〔1+利润率〕;销售额=成本x〔1-亏本百分率〕。
【五】其他问题①数字类问题基本关系:假设一个三位数,百位数字为a,十位数字为b,个位数字为c,那么这个三位数可表示为:100a+10b+c。
②等体积问题基本关系:变形前的体积〔容积〕=变形后的体积〔容积〕③比例类问题基本关系:全部数量=各种成分的数量之和。
【注】一般设其中一份为x,各种成分按比例表示出来。
④劳动力调配问题基本关系:抓住调配前后,总人数不变。
一元一次方程应用题练习1、用一个底面是20cm×20cm的长方体容器〔已装满水〕向一个长、宽、高分别为16cm、10cm、5cm的长方体铁盒内倒水,当铁盒装满水时,求长方体容器中水的高度下降多少?2、A、B两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行,经过10小时后相遇,求甲、乙的速度?3、一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求〔1〕轮船在静水中的速度;〔2〕甲、乙两码头之间的距离。
完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
列方程解应用题类型一(简单的一步方程)1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)类型二(几倍多多少/少多少):1、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?类型三(买东西和卖东西):1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。
其中《科学家》这本书买了4本,《发明家》买了多少本?3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?类型四(和倍问题/ 差倍问题):1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?类型五(相遇问题、追及问题、鸡兔同笼)1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
列分式方程解应用题的常见类型分析列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。
这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的根;第二,检验得到的根是不是使实际问题有意义。
一、路程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度×时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
例1 A、B两地相距60千米。
甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。
已知乙的速度是甲的3倍,求甲、乙的速度。
相等关系:二、工程问题这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率×工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。
甲、乙单独完成这项工作各需多少天?相等关系:三、销售问题:解决这类问题,首先要弄清一些有关的概念:商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:商品的售价=商品的标价×商品的打折率;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润/商品的进价。
例3 某超市销售一种钢笔,每枝售价为12元。
后来,钢笔的进价降低了4%,从而使超市销售这种钢笔的利润率提高了5%。
这种钢笔原来每枝进价是多少元?本题中的主要等量关系:练习:1.某地为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?2.甲乙两车在A、B两城间连续往返行驶,甲车从A城出发,乙车从B城出发,且比甲车早出发1小时,两车在途中分别距离200千米和240千米的C处第一次相遇。
(一)和差倍分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?4、初一(1)班举办了一次集邮展览。
展出的邮票比平均每人3张多24张,比平均每人4张少26张。
这个班级有多少学生?一共展出了多少邮票?5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。
问该校有多少住校生?有多少间宿舍?7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(二)调配问题1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少?2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队?3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人?4、甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。
问原来每架上各有多少书?(三)配套问题1、现有白铁皮28张,每张白铁皮可做甲件5个或乙件6个,若3个甲件及2个乙件配套,问如何下料正好使机件配套2、某车间22名工人参加生产一种螺母和螺丝。
列方程解应用题题型归类一,行程问题(1),行程问题中有三个基本量:路程、时间、速度。
关系式为:①路程=速度×时间;②速度=;③时间=。
可寻找的相等关系有:路程关系、时间关系、速度关系。
在不同的问题中,相等关系是灵活多变的。
如相遇问题中多以路程作相等关系,而对有先后顺序的问题却通常以时间作相等关系,在航行问题中很多时候还用速度作相等关系。
(2)航行问题是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化:①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,甲地到乙地的距离是多少千米?2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后俩人相遇?4、5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?5、某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。
问往返共需多少时间?6、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?7、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?8、一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2 km。
七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
怎样找等量关系?10种类型方程解应用题根据常见的数量关系/计算公式找等量关系。
每份数×份数=总数工作效率×工作时间=工作总量单价×数量=总价速度×时间=路程单产量×数量=总产量速度和x相遇时间=路程和长方形的周长=(长+宽)×2长方形面积=长×宽正方形周长=边长×4正方形面积=边长×边长问什么就设什么。
(一)比多比少问题Χ+a=b↓多几个(或少几个)李阿姨买了36元的苹果,比买梨子多花了14元,请问李阿姨买了多少元的梨子?解:设李阿姨买了Χ元的梨子Χ+14=36Χ=36-14Χ=22答:............李阿姨买苹果和梨子一共花了58元,苹果比梨子多花了14元,请问李阿姨各买了多少元的苹果和梨子?解:设李阿姨买了Χ元的梨子,则买了Χ+14元的苹果。
Χ+Χ+14=582Χ+14=582Χ=58-142Χ=44Χ=22答:...........(二)几倍问题存在倍数关系,一般设较小的数为Χa.Χ=b↓↓↓倍数小数大数秋游时,学校租了一大一小的两辆车,大车可以载63人,是小车可载人数的3倍。
小车能载多少人?解:设小车能载Χ人。
3Χ=63Χ=63÷3个数各是是多少,我们通常称为和倍问题。
几倍量+1倍量=总数和aΧ+x=c↓↓↓倍数一倍量(标准量)总数和两个数的和是369,第二个数是第一个数的2倍,请问这两个数分别是多少?解:设第一个数是Χ,则第二个数是2Χ。
Χ+2Χ=369个数各是是多少,我们通常称为差倍问题。
几倍量-1倍量=两数之差aΧ-x=c↓↓↓倍数一倍量(标准量)相差的量妈妈今年的年龄是小乐年龄的3倍,妈妈比小乐大26岁,请问妈妈和小乐今年各是多少岁?解:设小乐今年Χ少岁,则妈妈今年3Χ岁。
(妈妈的年龄-乐乐的年龄=26岁)3Χ-Χ=26(五)倍多倍少问题存在倍数关系,一般设较小的数为ΧaΧ+b=c↓↓↓倍数多几个(或少几个)大数冬冬和佳佳收集邮票,冬冬收集了96枚邮票,比佳佳收集的3倍还多2枚,佳佳收集了多少枚邮票?解:设佳佳收集了Χ枚邮票?3Χ+2=96(六)行程问题基本行程问题:速度×时间=路程相遇问题:速度和×相遇时间=路程和甲乙两地相距471千米,客车和货车同时分别从两地同时出发,经过3小时相遇,已知客车每小时行52千米,货车每小时行多少千米?解:设货车每小时行Χ千米?3(Χ+52)=471(七)套装:桌椅、服装、甲乙的单价和×套数=总价学校阅览室新购进了40套桌椅,共用去8000元,已知每把椅子75元,每张桌子多少钱?解:设每张桌子Χ钱?(Χ+75)×=8000(八)购物问题1.甲的总价+乙的总价=总共用的钱2.付出的钱-用掉的钱=找回的钱用掉的钱+找回的钱=找回的钱张阿姨买了苹果和梨各2千克,共花费了10.4元,梨每千克2.8元,请问苹果每千克多少钱?解:设苹果每千克Χ元钱。
五年级方程解决问题归类
以下是五年级方程解决问题的一些归类:
1. 简单方程:这是最基础的方程类型,形式如 ax + b = 0。
这类方程通常
只有一个未知数,且未知数的最高次数为一次。
2. 代数方程:这种方程涉及多个未知数和复杂的数学操作,如加、减、乘、除等。
例如,a + b = c + d。
3. 比例和百分数方程:这种方程涉及到比例和百分数,例如 a/b = c% 或 a = b × 20%。
4. 面积和周长方程:这类方程通常出现在几何问题中,涉及图形的面积和周长。
例如,如果一个矩形的周长是 a,那么它的长和宽是多少?
5. 逻辑方程:这种方程涉及到逻辑推理,例如真假值判断或逻辑运算。
例如,如果 a 或 b 是真,那么 c 是真还是假?
6. 分数方程:这种方程涉及到分数,例如 a/b = c/d。
7. 线性方程:这是指未知数的次数为一次的方程,形式如 ax + b = 0。
这
类方程可以用来解决一些实际问题,如行程问题、工程问题等。
这些只是五年级可能遇到的一些方程类型。
实际上,随着年级的提高,还会遇到更复杂、更专业的方程类型。
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1.相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000x=22.追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲?200x+1000=300xx=102. 甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?40x1.5+40x+80x=3003. 车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?3.环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长1.王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的200X+400=300XX=42. 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6XX=200200x4=800800/400=2圈3 .有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为600/x分过完第二铁桥所需的时间为(600/x+1/12)/(2x-50)分.。
应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。
【解方程应用题类型分类】●购物问题1、食堂买了8千克黄瓜,付出15元,找回1.4元,每千克黄瓜是多少钱?思路1:付出的钱-用掉的钱=找回的钱思路2:用掉的钱+找回的钱=付出的钱2、王老师带500元去买足球。
买了12个足球后,还剩140元,每个足球多少元?3、奶奶买4袋牛奶和2个面包,付给售货员20元,找回5.2元,每个面包5.4元,每袋牛奶多少元?4、明明家买了一套桌椅,6张椅子配一张桌子,一共用了1120元。
如果一张餐桌730元,那么一把椅子多少元?5、大瓜去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和若干大米,共付款61.6元,买大米多少千克?●“谁是谁的几倍多(少)几”(形如ax±b=c的方程)问题:1. 乙两个书架.已知甲书架有540本书,比乙书架的3倍少30本.乙书架有多少本书?思路:设什么?关键字:乙书架的3倍乙书架的3倍 -30本 = 甲书架2、一只鲸的体重比一只大象的体重的37.5倍多12吨.已知鲸的体重是162吨,大象的体. 专业资料可编辑 .重是多少吨?3、某饲养场养鸡352只,比鸭的只数的4倍还多32只。
养鸭多少只?形如ax±bx=c的方程问题:1、育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。
参加科技小组的男、女生各有多少人?设什么?关键字:女生人数的1.4倍思路:女生人数 + 男生人数 = 总人数2、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?设什么?关键字:比丽丽少6粒思路:丽丽的糖 + 强强的糖 = 总共的糖3、一支钢笔比一支圆珠笔贵6.8元。
钢笔的价钱是圆珠笔价钱的4.4倍。
钢笔和圆珠笔的价钱各是多少元?4、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?(两种不同的设法)5、食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。
初一数学列方程解应用题归类含答案Modified by JEEP on December 26th, 2020.列方程解应用题销售问题1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。
4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。
则进价为每件多少元5、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折6、某种商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了还是赔了7.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元现售价是多少元工程问题1、一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成2、一项工程A、B两人合作6天可以完成。
如果A先做3天,B再接着做7天,可以完成,B单独完成这项工程需要多少天3.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件4.一件工作,甲单独完成需小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务1,一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天人员调配、配套问题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母2、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人3.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套4.某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套行程问题1、甲、乙两站的铁路长685千米,两列火车同时从两站相向开出,慢车每小时行千米,快车每小时行千米,它们各行完全程后,立即返回,经过多少小时这两车在返回途中相遇2、A,B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(三)工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(四)和差倍分问题(生产、做工等各类问题)1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
列方程组解应用题的常见题型总结列方程组解应用题的常见题型总结列方程组解应用题的常见题型总结(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例;第一个容器有49L水,第二个容器有56L水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器容量的二分之一;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器容量的三分之一,求这两个容器的容量.(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例:某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,一个螺丝装配两个螺母,问应怎样安排生产螺丝和螺母的工人,才能使每天的产品正好配套?(3)速度问题:解这类问题的'基本关系式是:路程=速度×时间.路程差=速度差×时间。
路程和=速度和一般又分为相遇问题、追及问题及环形道路问题例:某人从甲地骑车出发,先以12km/h的速度下山坡,后以9km/h的速度过公路到达乙地,共用55min;返回时,按原路先以8km/h的速度过公路,后以4km/h的速度上山坡回到甲地,共用1h30min,问甲地到乙地共多少千米?例:一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min;若两车相向而行,快车从与慢车相遇到离开慢车,只需要12s,问快车和慢车的速度各是多少?例:甲、乙两人在200m的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度.(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例:甲轮从A码头顺流而下,乙轮从B码头逆流而上,两轮同时相向而行,相遇于中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km/h,求两轮在静水中的速度.(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例:一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?例:.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例:某中学校办工厂今年总收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加20%,总支出比今年减少8%,求今年的总收入和总支出.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例:为了迎接新学期开学,某服装厂赶制一批校服,要求必须在规定时间内完成,在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例:一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,所得的新两位数与原两位数相加的和为143,求这个两位数.(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例:有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?1一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛? 2 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?3. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
五年级是学习数学解方程的重要阶段,解方程是数学中的一大难点,但也是数学运用的一种重要方法。
在五年级,学生需要掌握一些简单的解方程应用题类型,通过实际问题来理解和运用解方程的方法。
下面我们就来总结一下五年级解方程应用题的题型和解题方法。
一、常见的解方程应用题类型1. 关于两个未知数的方程应用题这类题目要求学生通过文字描述的实际问题,建立包含两个未知数的方程,然后解出未知数的值。
常见的问题包括两人同时行路相遇、两个容器混合液体的比例等。
2. 关于三个未知数的方程应用题这类题目相对复杂一些,要求学生根据实际问题建立包含三个未知数的方程,并解出未知数的值。
常见的问题包括三人分鱼、三种不同水果的比例等。
3. 包含分数的方程应用题这类题目要求学生运用解方程的方法解决包含分数的实际问题,如一堆苹果分给几个人,每人分到的苹果数是多少等。
4. 包含小数的方程应用题这种类型的题目也是常见的,要求学生将小数问题转化为方程,通过解方程来求解,如某商品的原价是多少,打几折之后的价格是多少等。
以上是五年级常见的解方程应用题类型,学生需要通过这些题目来提升自己的解方程能力。
二、解方程应用题的解题方法1. 建立方程在解方程应用题中,首先要根据实际问题建立方程,明确未知数的含义,然后通过文字描述转化为数学式子。
2. 求解方程建立方程之后,根据方程的性质和运算规律,求解方程得到未知数的值,需要注意运用逆运算的方法来简化方程的求解过程。
3. 检验解在求解出未知数的值之后,还要对解进行检验,将求得的未知数代入原方程中,验证方程是否成立,从而验证解的正确性。
三、解方程应用题的解题步骤1. 阅读题目,明确未知数的含义,建立方程。
2. 根据方程的性质,求解方程,得到未知数的值。
3. 对解进行检验,验证解的正确性。
通过上述步骤,学生可以有条不紊地解出解方程应用题,提高自己的解题能力。
四、解方程应用题的训练方法1. 多做题解方程是一种运用数学知识解决实际问题的方法,需要通过不断的练习来提高解题能力,学生可以多做一些解方程应用题,加深对解方程方法的理解。
列方程解应用题题型归类一,行程问题(1),行程问题中有三个基本量:路程、时间、速度。
关系式为:①路程=速度×时间;②速度=;③时间=。
可寻找的相等关系有:路程关系、时间关系、速度关系。
在不同的问题中,相等关系是灵活多变的。
如相遇问题中多以路程作相等关系,而对有先后顺序的问题却通常以时间作相等关系,在航行问题中很多时候还用速度作相等关系。
(2)航行问题是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化:①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,甲地到乙地的距离是多少千米?2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后俩人相遇?4、5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?5、某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。
问往返共需多少时间?6、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?7、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?8、一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2 km。
求甲、乙两地之间的距离。
二,经济问题⑴销售利润问题。
利润问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
基本关系式有:①利润=销售价(收入)-成本(进价)【成本(进价)=销售价(收入)-利润】;②利润率=【利润=成本(进价)×利润率】。
在有折扣的销售问题中,实际销售价=标价×折扣率。
打折问题中常以进价不变作相等关系。
⑵优惠(促销)问题。
日常生活中有很多促销活动,不同的购物(消费)方式可以得到不同的优惠。
这类问题中,一般从“什么情况下效果一样分析起”。
并以求得的数值为基准,取一个比它大的数及一个比它小的数进行检验,预测其变化趋势。
⑶存贷问题。
存贷问题与日常生活密切相关,也是中考命题时最好选取的问题情景之一。
存贷问题中有本金、利息、利息税三个基本量,还有与之相关的利率、本息和、税率等量。
其关系式有:①利息=本金×利率×期数;②利息税=利息×税率;③本息和(本利)=本金+利息-利息税。
1.某种商品因换季准备打折出售,如果按定价七五折出售,则赔25元,而按定价的九折出售将赚20元。
问这种商品的定价是多少?2.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同样商品40件。
如果商店销售这种商品时,要获利12%,那么这种商品的销售价应定多少?3、一家服装店将某种服装成本提高40%后标价,又以八折优惠卖出,结果每件仍可获利15元,这种服装每件的成本是多少元?4、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?5、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?6. 李勇同学假期打工收入了一笔工资,他立即存入银行,存期为半年。
整存整取,年利息为2.16%。
取款时扣除20%利息税。
李勇同学共得到本利504.32元。
问半年前李勇同学共存入多少元?7、某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店8折购物,什么情况下买卡购物合算?8、某书店在促销活动中,推出一种优惠卡,每张卡售价钱20元,凭此卡购书可享受八折优惠。
有一次,李明同学到书店购书,结帐时,他先买优惠卡再凭卡付款,结果节省了12元,那么李明同学此次购书的总价值是多少元三,工程问题工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
在工程问题中,还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
1、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?4、整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作?5、加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务。
问乙需工作几天后甲再继续加工才可正好按期完成任务?6、收割一块麦地,每小时割4亩,预计若干小时割完。
收割了后,改用新式农具收割,工作效率提高到原来的1.5倍。
因此比预计时间提前1小时完工。
求这块麦地有多少亩?7、一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?四,数字问题数字问题是常见的数学问题。
一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:两位数=10a+b;三位数=100a+10b+c。
在求解数字问题时要注意整体设元思想的运用。
1、一个三位数,三个数位上的和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍。
求这个数。
2、一个三位数,各位数字是百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位对调,所得的新数比原数的2倍少49,求原数。
3、一个六位数的最高位上的数字是1,如果把这个数字移到个位数的右边,那么所得的数等于原数的3倍,求原数。
五、比赛积分问题1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了几道题?2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?3、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?4、在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该对战平机场?六、年龄问题1、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?2小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。
七、比例与分配问题1、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?2、工厂有工人共28人,已知1人一天能生产螺钉12个或螺母18个,如何分配才能使一天生产的产品刚好配套?(1个螺钉陪2个螺母)3、地板砖厂的坯料由白土、沙土、石膏、水按25∶2∶1∶6的比例配制搅拌而成。
现已将前三种料称好,公5600千克,应加多少千克的水搅拌?前三种料各称了多少千克?4、某车间22名工人参加生产一种螺母和螺丝。
每人每天平均生产螺丝120个或螺母200个,一个螺丝要配两个螺母,应分配多少名工人生产螺丝,多少名工人生产螺母,才能使每天生产的产品刚好配套5、甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。
问原来每架上各有多少书?6、小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。
这本书共多少页?7、、甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?8、甲、乙两车间各有工人若干,如果从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人去乙车间,则两车间的人数相等。
求原来甲、乙车间各有多少人?八,方案选择问题1、某校两名教师带若干名学生去旅游,联系两家标价相同的旅行社,经洽谈后,甲旅行社的优惠条件是:1名教师全部收费,其余7.5折收费;乙旅行社的优惠条件是:全部师生8折优惠。
⑴当学生人数等于多少人时,甲旅行社与乙旅行社收费价格一样?⑵若核算结果,甲旅行社的优惠价相对乙旅行社的优惠价要便宜,问学生人数是多少?2、已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费。
某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?3、某通讯公司推出了甲、乙两种市内移动通讯业务。
甲种使用者需每月缴纳15元月租费,然后每通话1分钟,再付花费0.3元;乙种使用者不缴纳月租费,每通话1分钟,付花费0.6元。
根据一个月的通话时间,选择哪种方式更优惠?4、有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果有40㎡墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。
每名师傅比徒弟一天多刷30㎡的墙面。