质谱法
- 格式:doc
- 大小:70.00 KB
- 文档页数:16
化学实验中的质谱法质谱法(Mass Spectrometry, MS)是一种基于质量分析原理的重要实验技术,在化学领域中得到广泛应用。
质谱法通过测量物质的离子在磁场中偏转的弧线,来确定分子的质量、结构以及化学性质。
本文将介绍质谱法的原理、仪器设备以及实验步骤等内容,以帮助读者更好地了解并运用质谱法在化学实验中。
一、质谱法的原理质谱法的核心原理是根据化合物中分子离子的质荷比,在磁场中偏转的情况来测量离子的质量。
当样品被电子轰击时,化合物中的分子会发生解离生成离子,并通过加速装置使得离子速度加快。
离子进入磁场后,受到洛伦兹力的作用,发生偏转。
偏转的程度与离子质量成正比,由此可以推断出离子的质量。
二、质谱法的仪器设备质谱法所需的主要仪器设备包括质谱仪、进样系统、离子生成器、磁场等。
其中质谱仪是整个质谱法的核心部分,其主要由质量分析器和检测器构成。
质量分析器负责对离子进行分离和质量测量,常见的有磁扇形质量分析器和四极杆质量分析器等。
检测器负责测量和记录离子的信号强度,常见的有电子倍增器检测器和离子计数器等。
进样系统用于将样品引入质谱仪,离子生成器则是将样品中的化合物转化为气态离子。
三、质谱法的实验步骤1. 样品制备:将待测物质转化为气态或溶解于可以产生气态离子的溶剂中。
适当的样品制备方法有助于获得准确的质谱数据。
2. 进样:将样品引入质谱仪中,通常使用气相色谱仪等进样系统。
进样系统将样品分子转化为气态,然后引入质谱仪中进行质谱分析。
3. 离子生成:样品进入质谱仪后,通过离子生成器将样品分子转化为离子。
常用的离子化方法有电子轰击离子化和化学离子化等。
4. 质谱分析:经过离子生成后的样品进入质量分析器进行分离和质量测量。
分离是通过磁场的作用将不同质量的离子分离出来,而质量测量是通过测量离子偏转的程度来推断离子质量。
5. 数据分析:通过质谱仪中检测器所测得的信号强度,可以获得离子的丰度和质量信息。
质谱仪通常会输出质谱图,通过分析质谱图可以确定样品的化合物质量、结构等信息。
化学分析中的质谱法质谱法是一种在化学分析中常用的手段。
该方法通过对样品分子进行离子化和分离,然后测定质荷比(即质量与电荷的比值),从而获得样品的质谱图。
质谱法在化学分析中具有广泛的应用,如有机化合物结构的鉴定、定量分析、药物代谢研究、环境监测等。
一、质谱法的原理质谱法的原理基于离子在磁场中运动所受到的力受质量和电荷的影响,不同质荷比的离子在磁场中呈现出不同轨道。
质谱仪利用这一特性,将样品分子先转化为离子,再通过加速器和质谱分析仪进行离子排序和分离,最终形成质谱图。
二、质谱仪的组成质谱仪通常由四个主要组件组成,包括样品处理系统、加速器、质谱分析系统和数据处理系统。
1. 样品处理系统样品处理系统用于将待分析的样品分子转化为离子。
常用的方法包括电离法(如电子轰击电离、化学电离、光电离等)和中性气体反应离子源(NGRI)。
2. 加速器加速器用于给质谱仪中产生的离子加速,使其在磁场中能够形成稳定的轨道。
常用的加速器包括电场加速器、气体动力学加速器等。
3. 质谱分析系统质谱分析系统是质谱仪中最重要的部分,用于对离子进行分离和测量。
其中,质谱分析器根据质荷比的不同而采用不同的分析方法,如质谱仪、四级杆质谱仪、飞行时间质谱仪等。
4. 数据处理系统数据处理系统用于处理并解析质谱图数据。
常用的方法包括质谱图的峰定量、峰识别和质谱图的解释。
三、质谱法的应用1. 有机化合物结构的鉴定质谱法可通过对有机化合物的质谱图进行解析,确定化合物的分子式、分子量、官能团以及结构。
这对于有机化学的研究和有机化合物的合成具有重要意义。
2. 定量分析质谱法作为一种高灵敏度的分析方法,在定量分析中有重要应用。
利用标准曲线和内标法,可以准确地确定样品中目标物质的含量。
3. 药物代谢研究质谱法可以用于药物代谢研究中,通过分析药物在体内代谢产物的质谱图,了解药物代谢途径、代谢产物结构以及代谢动力学参数。
4. 环境监测质谱法在环境监测中也有广泛应用。
原子质谱法从分析的对象来看,质谱法(mass spectrometry)可分为原子质谱法(atomic mass spectrometry)和分子质谱法(molecular mass spectrometry),本章我们仅讨论质谱法在无机元素分析中的应用,有关在有机分析中的应用,将留待第13章讨论。
原子质谱法,亦称无机质谱法(inorganic mass spectrometry),是将单质离子按质荷比比同而进行分离和检测的方法。
它广泛地应用于物质试样中元素的识别而后浓度的测定。
几乎所有元素都可以用无机质谱测定。
§12-1基本原理原子质谱分析包括下面几个步骤:①原子化;②将原子化的原子的大部分转化为离子流,一般为单电荷正离子;③离子按质量-电荷比(即质荷比,m/z)分离;④计数各种离子的数目或测定由试样形成的离子轰击传感器时产生的离子电流。
与其它分析方法不同,质谱法中所关注的常常是某元素特定同位素的实际原子量或含有某组特定同位素的实际质量。
在质谱法中用高分辨率质谱仪测量质量通常可达到小数点后第三或第四位。
自然界中,元素的相对原子质量(A r)由下式计算。
在这里,A1,A2,…,A n为元素的n个同位素以原子质量常量m u①为单位的原子质量,p1,p2,…,p n为自然界中这些同位素的丰度,即某一同位素在该元素各同位素总原子数中的百分含量。
相对分子质量即为化学分子式中各原子的相对原子质量之和。
通常情况下,质谱分析中所讨论的离子为正离子。
质荷比为离子的原子质量m与其所带电荷数z之比。
因此12CH+的m/z = 16.0.35/1 = 16.035,12C24H+的4m/z = 17.035/2 = 8.518。
质谱法中多数离子为单电荷。
§12-2质谱仪质谱仪能使物质粒子(原子,分子)电离成离子并通过适当的方法实现按质荷比分离,检测其强度后进行物质分析。
质谱仪一般由三个大的系统组成:电学系统、真空系统和分析系统。
质谱法质谱仪——样品导入系统、离子源、质量分析器、检测器、放大器和记录系统质谱既不属于光谱,也不属于波谱,但它常与UV、IR、NMR联用,是有机化合物结构分析的重要工具常见的质谱是经过计算机处理的棒图,纵坐标是离子的相对强度(以基峰为100%),横坐标是质荷比二、质谱分析法的特点和用途:1 特点(1)应用范围广既可以进行同位素分析,又可以进行化合物分析在化合物分析中既可以做无机成分分析,又可做有机结构分析被分析的样品既可以是气体和液体,又可以是固体(2)灵敏度高、样品量少目前有机质谱仪的绝对灵敏度可以达10-11g(3)分析速度快2 用途(1)测定分子量由高分辨质谱获得分子离子峰的质量数,可测出精确的分子量(2)鉴定化合物(3)推测未知物的结构由分子离子和碎片离子获得的信息可推测分子结构(4)测定分子中Cl,Br等的原子数(5)质谱与色谱联用后,可用于多组分的定性与定量采用选择离子检测(SIM)技术可获得非常高的灵敏度和选择性,是目前痕量有机分析最有效的手段之一第二节质谱仪及其工作原理质谱仪有离子化、质量分离、离子检测三部分组成一、样品的导入与离子源(一) 样品导入系统质谱仪是高真空装置1 直接进样(DPI)适合于单组份、挥发性较低的固体或液体样品2 色谱联用导入样品色谱-质谱联用:色谱将多组分分离成单体,通过“接口”导入离子源进行质谱分析,这种方法称为~“接口”的作用:出去色谱流出的大量流动相,将被测组分导入高真空的质谱仪目前常见的有:气相色谱-质谱联用(GC-MS)高效液相色谱-质谱联用(HPLC-MS)它们的接口种类较多,其中毛细管气相色谱与质谱联用的接口最为简单,细径毛细管柱在保温条件下,直接插入质谱离子源即可(二) 离子源离子源作用:将被分析物质电离为正离子或负离子。
质谱法(Mass spectrometry)是一种分析化学物质的技术,用来测定化学物质的分子量和结构。
它通过将化学物质分解为其组成的原子或分子离子,然后测定这些离子的质量,来确定化学物质的分子量和结构。
质谱法是一种高灵敏度的分析方法,能够测定很小的化学物质的质量,常用于分析有机化合物、金属元素和生物分子等。
质谱法通常分为两大类:电离质谱法和离子化质谱法。
电离质谱法是通过将化学物质的分子离子化,然后测定这些离子的质量来确定化学物质的分子量和结构的。
离子化质谱法则是通过将化学物质的原子或分子离子化,然后测定这些离子的质量来确定化学物质的分子量和结构的。
在质谱法中,通常使用质谱仪来进行分析。
质谱仪包括质谱源、质量分析器和检测器等部分。
质谱源用来将化学物质分解成离子,质量分析器用来测定离子的质量,检测器则用来测量离子的数量。
质谱法的分析过程通常包括几个步骤:样品的准备、质谱源的激活、离子的测量和数据处理。
在样品准备阶段,需要将样品进行一定的处理,使其适合进行质谱分析。
在质谱源的激活阶段,需要对样品进行离子化或电离,使其成为离子的形态。
然后,在离子的测量阶段,通过质量分析器和检测器测量离子的质量和数量。
最后,在数据处理阶段,通过计算和分析测量得到的数据,确定样品的分子量和结构。
质谱法的分析结果通常以质谱图的形式呈现,质谱图中纵坐标表示离子的数量,横坐标表示离子的质量。
通过观察质谱图,可以确定样品中不同离子的种类和数量,从而得到样品的分子量和结构信息。
质谱法在分析各种化学物质方面有着广泛的应用。
例如,在药物研发中,质谱法可以用来测定药物分子的结构和分子量,帮助研究人员了解药物的作用机制。
在环境科学中,质谱法可以用来测定环境样品中的有毒物质,帮助研究人员评估环境的污染程度。
此外,质谱法还可以用于分析食品、饮料、农产品等,帮助确保食品安全和质量。
质谱法是一种非常重要的分析技术,在化学、生物学、药学、环境科学等领域都有着广泛的应用。
第九章质谱法一.教学内容1.质谱分析法的基本概念、发展概况及特点2.由质谱仪器结合质谱法的基本质谱仪的工作流程各主要部件的基本结构、基本原理及性能掌握联用技术3.质谱峰的类型、离子碎裂途径及有机化合物的质谱4.质谱法的图谱解析及基本应用二.重点与难点1.各种离子源的基本原理、特点及适应性2.各种重量分析器的基本结构、分析原理、特点及适用性3.各类离子的碎裂机理及规律4.质谱法的基本应用(分子量、分子式、结构式的确定)三.教学要求1.较好地掌握质谱分析法的基本基本2.掌握掌握仪的基本结构、工作流程及性能指标3.在较深入掌握单、双聚焦质量分析器的基础上,比较其它质量分析器的基本原理及特点4.一般了建质谱联用技术5.掌握简单图谱的解析,进行较简单化合物分子量、分子式及结构式的分析四.学时安排3学时质谱法是通过将样品转化为运动的气态离子并按质荷比(m/z)大小进行分离记录的分析方法。
所获得结果即为质谱图(亦称质谱)。
根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。
质谱仪早期主要用于原子量的测定和定量测定某些复杂碳氢混合物中的各组分等。
1960年以后,才开始用于复杂化合物的鉴定和结构分析。
实验证明,质谱法是研究有机化合物结构的有力工具。
第一节质谱仪一、质谱仪的工作原理质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。
离子电离后经加速进入磁场中,其动能与加速电压及电荷z有关,即z e U = 1/2 mν2其中z为电荷数,e为元电荷(e=1.60×10-19C),U为加速电压,m为离子的质量,ν为离子被加速后的运动速度。
具有速度ν的带电粒子进入质谱分析器的电磁场中,根据所选择的分离方式,最终实现各种离子按m/z进行分离。
根据质量分析器的工作原理,可以将质谱仪分为动态仪器和静态仪器两大类。
在静态仪器中用稳定的电磁场,按空间位置将m/z不同的离子分开,如单聚焦和双聚焦质谱仪。
在动态仪器中采用变化的电磁场,按时间不同来区分m/z不同的离子,如飞行时间和四极滤质器式的质谱仪。
二、质谱仪的主要性能指标(1)质量测定范围质谱仪的质量测定范围表示质谱仪所能进行分析的样品的相对原子质量(或相对分子质量)范围,通常采用原子质量单位(u)进行度量。
测定气体用的质谱仪,一般质量测定范围在2~100,而有机质谱仪一般可达几千,现代质谱仪甚至可以研究相对分子量达几十万的生化样品。
2.分辨本领所谓分辨本领,是指质谱仪分开相邻质量数离子的能力。
即:对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高10%时,认为两峰已经分开,其分辨率为:R= m1/(m2-m1)= m1/Δm其中m1、m2为质量数,且m1<m2,故在两峰质量数较小时,要求仪器分辨率越大。
在实际工作中,有时很难找到相邻的且峰高相等的两个峰,同时峰谷又为峰高的10%。
在这种情况下,可任选一单峰,测其峰高5%处的峰宽W0.05,即可当作上式中的Δm,此时的分辨率定义为R= m/ W0.05如果该峰是高斯型的,上述两式计算结果是一样的。
质谱仪的分辨本领由几个因素决定:(1)离子通道的半径;(2)加速器与收集器狭缝宽度;(3)离子源的性质。
3.灵敏度质谱仪的灵敏度有绝对灵敏度、相对灵敏度和分析灵敏度等几种表示方法。
绝对灵敏度是指仪器可以检测到的最小样品量;相对灵敏度是指仪器可以同时检测的大组分与小组分含量之比;分析灵敏度则是指输入仪器的样品量与仪器输出的信号之比。
三、质谱仪的基本结构质谱仪是通过对样品电离后产生的具有不同的m/z的离子来进行分离分析的。
质谱仪包括进样系统、电离系统、质量分析系统和检测系统。
为了获得离子的良好分析,避免离子损失,凡有样品分子及离子存在和通过的地方,必须处于真空状态。
通过进样系统,使微摩尔或更少的试样蒸发,并让其慢慢地进入电离室,电离室内的压力约为10-3P a。
由热灯丝流向阳极的电子流,将气态样品的原子或分子电离成正、负离子(但一般分析正离子),在狭缝A处,以微小的负电压将正负离子分开,此后,借助于A、B间几百至几千伏的电压,将正离子加速,使准直于狭缝刀的正离子流,通过狭缝B进入真空度高达10-5P a的质量分析器中,根据离子质荷比的不同,其偏转角度也不同,质荷比大的偏转角度小,质荷比小的偏转角度大,从而使质量数不同的离子在此得到分离。
若改变粒子的速度或磁场强度,就可将不同质量数的粒子依次焦聚在出射狭缝上。
通过出射狭缝的离子流,将落在一收集极上,这一离子流经放大后,即可进行记录,并得到质谱图。
质谱图上信号的强度,与达到收集极上的离子数目成正比。
1.真空系统质谱仪的离子产生及经过系统必须处于高真空状态(离子源真空度应达1.3×10-4-1.3×10-5P a,质量分析器中应达1.3×10-6P a)。
若真空度过低,则会造成离子源灯丝损坏,本底增高、副反应过多,从而使图谱复杂化、干扰离子源的调节、加速极放电等问题。
一般质谱仪都采用机械泵预抽空后,再用高效率扩散泵连续地运行以保持真空。
现代质谱仪采用分子泵可获得更高的真空度。
2.进样系统进样系统目的是高效重复地将样品引入到离子源中并且不能造成真空度的降低。
常用的进样装置有三种类型:间歇式进样系统、直接探针进样、色谱进样系统(G C-MS、H PL C-M S)和高频感藕等离子体进样系统(I C P-MS)等。
卡式进样系统卡式进样系统具有极好的抗腐蚀性和快速冲洗特征。
由惰性多聚物材料构成的喷雾室以圆锥壮撞击球设计,以降低记忆效应。
雾化室由一个P el t i e r半导体制冷装置冷却和精确的温度控制,具有极高的稳定性和最少的多原子离子形成。
带有蓝宝石、氧化铝和铂制喷射管的半可拆式管矩。
3.电离源电离源的功能是将进样系统引入的气态样品分子转化成离子。
由于离子化所需要的能量随分子不同差异很大,因此,对于不同的分子应选择不同的离解方法。
通常称能给样品较大能量的的电离方法为硬电离方法,而给样品较小能量的电离方法为软电离方法,后一种方法适用于易破裂或易电离的样品。
使物质电离的方法很多,如电子轰击、化学电离、火花电离、场致电离、光致电离等。
(1)电子轰击源电子轰击法是通用的电离法,是使用高能电子束从试样分子中撞出一个电子而产生正离子,即M+ e M++2e式中M为待测分子,M+为分子离子或母体离子。
右图是典型的电子轰击源的示意图。
在离子源内,用电加热锑或钨的灯丝到2000℃,产生高速电子束,其能量为10~7O e V。
当气态试样由分子漏入孔进入电离室时,高速电子与分子发生碰撞,若电子的能量大于试样分子的电离电位,将导致试样分子的电离:M+e(高速) →M++ 2e(低速) 当电子轰击源具有足够的能量时(一般为7O e V),有机分子不仅可能失去一个电子形成分子离子,而且有可能进一步发生键的断裂,形成大量的各种低质量数的碎片正离子和中性自由基,这些碎片离子可用于有机化合物的结构鉴定。
(2)化学电离源在质谱中可以获得样品的重要信息之一是其相对分子质量。
但经电子轰击产生的M+峰,往往不存在或其强度很低。
必须采用比较温和的电离方法,其中之一就是化学电离法。
化学电离法是通过离子- 分子反应来进行,而不是用强电子束进行电离。
离子(为区别于其它离子,称为试剂离子)与试样分子按一定方式进行反应,转移一个质子给试样或由试样移去一个H+或电子,试样则变成带+1电荷的离子。
化学电离源一般在1.3⨯102~1.3⨯103P a (现已发展为大气压下化学电离技术)压强下工作,其中充满甲烷C H4。
首先用高能电子,使C H4电离产生C H5+和C2H5+,即:C H4+e→C H4+·+2eC H4+·→C H3++H·C H4+·和C H3+很快与大量存在的C H4分子起反应,即:C H4+·+ C H4→ C H5++ C H3·C H3++ C H4→C2H5++H2C H5+和C2H5+不与中性甲烷进一步反应,一旦小量样品(试样与甲烷之比为1:1000)导入离子源,试样分子(S H)发生下列反应:C H5++ S H→S H2++C H4C2H5++S H S++ C2H6S H2+和S+然后可能碎裂,产生质谱。
由(M+H)或(M-H)离子很容易测得其相对分子质量。
(3)场离子源应用强电场可以诱发样品电离。
场电离源由电压梯度约为107-108V·c m-1的两个尖细电极组成。
流经电极之间的样品分子由于价电子的量子隧道效应而发生电离。
电离后被阳极排斥出离子室并加速经过隧道进入质量分析器。
场离子化是一种温和的技术,产生的碎片很少。
碎片通常是由热分解或电极附近的分子-离子碰撞反应产生的主要为分子离子和(M+1)离子,结构分析中,往往最好同时获得场离子化源或化学离解源产生的质谱图和用电子轰击源的质谱图,而获得相对分子质量及分子结构的信息。
(4)火花源对于金属合金或离子型残渣之类的非挥发性无机试样,必须使用不同于上述离子化源的火花源。
火花源类似于发射光谱中的激发源。
向一对电极施加约30k V 脉冲射频电压,电极在高压火花作用下产生局部高热,使试样仅靠蒸发作用产生原子或简单的离子,经适当加速后进行质量分析。
(5)高频感耦等离子体(I C P)4. 质量分析器质谱仪的质量分析器位于离子源和检测器之间,依据不同方式将样品离子按质荷比m/z分开。
质量分析器的主要类型有:磁分析器、飞行时间分析器、四极滤质器、离子捕获分析器和离子回旋共振分析器等。
(1)磁分析器最常用的分析器类型之一就是扇形磁分析器。
离子束经加速后飞入磁极间的弯曲区,由于磁场作用,飞行轨道发生弯曲(如右图所示),此时离子受到磁场施加的向心力B z eν作用,并且离子的离心力mν2·r-1也同时存在,当两力平衡时,离子才能飞出弯曲区,即:Bz eν= mν2/r其中B为磁感应强度,z e为电荷,ν为运动速度,m为质量,r为曲率半径。
调整后可得:ν=B z e r/mm/z=B2r2e/2U通过改变B、r、U这三个参数中的任一个并保持其余两个不变的方法来获得质谱图。
现代质谱仪一般是保持U、r不变,通过电磁铁扫描磁场而获得质谱图,故r即是扇形磁场的曲率半径,而使用感光板记录的质谱仪中,B、U一定,r变化的。
仅用一个扇形磁场进行质量分析的质谱仪称为单聚焦质谱仪,设计良好的单聚焦质谱仪分辨率可达5000。
若要求分辨率大于5000,则需要双聚焦质谱仪。
一般商品化双聚焦质谱仪的分辨率可达150,000;质量测定准确度可达0.03μg;即对于相对分子质量为600的化合物可测至误差士0.0002u。