浅谈型钢混凝土转换梁的应用
- 格式:pdf
- 大小:691.26 KB
- 文档页数:5
钢-混组合梁桥的应用及其关键技术综述随着我国桥梁工程事业的发展,钢-混凝土组合梁桥作为一种新型桥梁结构,目前正广泛应用于公路及城市立交桥中。
本文结合钢-混凝土组合梁桥的结构特点及其应用情况,分析阐述了钢-混组合梁桥的关键技术,为此类桥梁结构的设计与施工提供参考。
标签:钢-混组合梁;结构特点;应用;关键技术1 前言随着我国城市交通基础设施建设的飞速发展,上跨现有道路的公路及城市立交桥越来越多。
该类桥梁施工中受下穿道路通行的影响非常大。
为了减少对被交道路交通的影响,缩短工期,降低风险和管理难度,采用钢-混组合梁桥是比较适宜的。
钢-混组合结构是在钢筋混凝土结构和钢结构的基础上发展起来的一种新型结构。
它和混凝土箱梁相比极大地减轻了结构自重,提高了桥梁的跨越能力;和钢梁相比减少了钢材用量,提高了结构刚度。
所以,钢-混凝土组合梁在我国的公路及城市立交桥建设中得到了广泛应用。
2 钢-混组合梁桥的结构特点组合梁桥采用剪力键将钢梁与钢筋混凝土桥面板结合成整体,钢筋混凝土桥面板不仅直接承受车轮荷载起到桥面板的作用,而且作为主梁的上翼板与钢梁形成组合截面,参与主梁共同作用。
组合梁桥采用最多的是简支梁桥结构形式,因为简支梁最符合组合梁材料分布的合理原则,即梁上翼缘应是适宜受压的混凝土板,下缘是利于受拉的钢梁。
(1)与钢梁相比,钢-混组合梁具有以下特点:a)减少了钢材的用量,节约了造价;b)增大了梁的刚度,有利于整体稳定性;c)采用钢筋混凝土桥面板,有利于沥青面层的结合,提高桥面铺装的耐久性。
(2)与混凝土梁相比,钢-混组合梁具有以下特点:a)结构自重轻,减少了下部基础的工程量;b)已安装钢梁可作为模板使用,节省了模板工程量;c)施工工期短,且对桥下交通的影响小;d)降低了梁高,有利于桥下净空利用率。
3 钢-混组合梁桥应用情况综述钢-混凝土组合梁在我国起步较晚,改革开放以前,虽有少数工程用过组合梁,但未考虑组合效应,而仅仅作为强度储备和为方便施工而已。
钢混凝土组合梁的概念钢混凝土组合梁是由钢材和混凝土两种材料组合而成的一种结构梁。
钢混凝土组合梁的构造形式主要是将钢材和混凝土分别进行布置,使它们的特点互补,并使结构体系具有更优化的力学性能。
本文将从钢混凝土组合梁的概念、组成材料、优点及应用等方面展开论述。
钢混凝土组合梁的组成材料包括钢材和混凝土,它们各自具有不同的特点和性能。
钢材具有良好的延伸性、可塑性和抗拉性能,能够承受较大的拉力;而混凝土则具有良好的抗压性能,能够承受较大的压力。
通过将两种材料结合起来,钢混凝土组合梁的弯曲性能得到了优化,同时还能够提高梁的承载能力和抗震性能。
钢混凝土组合梁的优点主要体现在以下几个方面。
首先,它能够充分发挥钢材和混凝土的优点,兼顾了钢结构和混凝土结构的特点,大大提高了结构的整体性能。
其次,由于混凝土的抗压性能较好,钢混凝土组合梁在受力时能够充分发挥混凝土的抗压能力,减小了钢材的受力范围,从而降低了钢材的使用量。
此外,钢混凝土组合梁还具有施工方便、经济性好、耐久性高等优点,因此得到了广泛的应用。
钢混凝土组合梁在实际工程中有着丰富的应用。
首先,在建筑领域,钢混凝土组合梁常用于大跨度建筑和高层建筑的结构设计中。
由于钢混凝土组合梁具有较高的承载能力和抗震性能,能够满足大跨度结构的要求,因此得到了广泛的应用。
其次,在桥梁工程中,钢混凝土组合梁也被广泛应用于桥梁梁面的设计中。
由于钢混凝土组合梁具有较好的耐久性和抗腐蚀性能,能够适应各种恶劣的自然环境,因此在桥梁工程中的应用十分广泛。
钢混凝土组合梁在实际工程中的设计和施工过程需要注意一些关键技术。
首先,在梁的设计过程中,需要合理确定钢材和混凝土的布置方式、尺寸和截面形状。
其次,在施工过程中,需要保证钢材和混凝土之间的良好粘结和协同工作。
此外,还需要注意钢材和混凝土在使用过程中的变形和应力分布情况,以保证梁的整体性能。
因此,在钢混凝土组合梁的设计和施工过程中,需要充分考虑各个方面的因素,最大程度地发挥钢混凝土组合梁的优点。
浅析型钢混凝土结构与钢结构特点与功能以及运用评述摘要:型钢混凝土结构是一种新型的建筑施工方法,但是作为个案运用中被我国上海著名结构专家否定,取而代之的是一种钢结构的方案。
案例简介,该公共建筑项目位于某市的核心位置,总建筑面积10平方米,地上建筑面积7万平方米,地下建筑面积3万平方米。
地上建筑共有七层,建筑高度50m。
地下二层,10米。
屋面是型钢混凝土大梁(高4米,宽2米,长约16米),这些大梁需要承受建筑四周悬挂的全玻璃幕墙荷载,柱网尺寸为16米X16米,在四角分别设置筒体,形成大空间室内布局。
单边长度由七跨组成,平面尺寸达117米X117米。
该公共建筑形态上是长方形,并在四角斜切而成的“ 钻石型” 建筑,三层以上往外悬挑,最大悬挑尺寸为 16米。
外方设计院负责建筑方案设计,结构为型钢混凝土柱和梁,屋面是型钢混凝土大梁(高4米,宽2米,长约16米),构成了N个类似小型游泳池。
中方设计院认为采用钢结构方案更加合适。
两种结构都是现代施工中较为新颖的施工方案,也在实际施工过程中起到重要的作用。
型钢混凝土结构同时具有钢结构和混凝土结构的特点,刚度大,承载能力强,抗震能力强,是近些年来发展起来的新型建筑结构。
钢结构也是一种新型的建筑结构,钢结构的材质均匀,制作精度大,施工周期短,也是一种良好的施工方法。
因此,本文同时分析了两种建筑方式的施工经济成本、工期、安全以及建筑功能,用以比对分析。
关键词:钢结构;型钢混凝土结构;结构功能;个案运用评述引言:钢结构是建筑方面运用普遍的一种建筑方式,已有几十年的历史,性能稳定,质量好,也具有易于装配的特点,这种方式装配出的建筑物质量好、密度高,还能大大的缩短工期,是一种绿色节能的建筑方式。
由于我国钢铁研究逐渐进步,炼造技术也取得了进步,因此,促进了钢结构工程的发展。
随着工程实施的逐渐推进,钢结构的设计方法和施工技术也得到了更新和发展。
工程建设也不断的增加,因此,也就不断完善了钢结构设计和施工方面的技术。
钢构混凝土结构的优缺点分析及应用在建筑设计中,结构是至关重要的一部分。
随着科技的不断发展,钢构混凝土结构也逐渐成为了现代建筑设计中的一种主要结构形式。
在这篇文章中,我们将分析钢构混凝土结构的优缺点以及它在实际应用中的价值所在。
一、钢构混凝土结构的优点1. 高强度:钢构混凝土结构由钢和混凝土两种材料组合而成。
混凝土具有较好的抗压强度,而钢材具有较好的抗拉强度,结合在一起可以形成较为坚固的结构。
2. 耐久性强:钢质材料耐腐蚀,不容易被风化和腐蚀,混凝土具有较好的耐久性,因此钢构混凝土结构的寿命往往比传统的混凝土结构更长。
3. 施工周期短:相比于传统的砖混结构,钢构混凝土结构的施工与组装更加简单便捷,因此可以大大缩短施工周期,最终减少施工成本。
4. 可塑性强:钢构混凝土结构可以根据具体建筑设计的需要进行加工,可以得到不同形状和大小的结构组件,这样可以使设计更加自由,更加创新。
二、钢构混凝土结构的缺点1. 施工难度较大:钢构混凝土结构的安装难度较大,对工人的技术和操作水平要求比较高,而且安装时的误差容易累计,需要在设计和施工中保持较高的精确度。
2. 成本较高:钢构混凝土结构的成本比传统的混凝土结构高,这主要是由于钢材价格高以及施工难度大所导致的。
3. 风险较大:如果钢构混凝土结构没有得到正确的设计和施工,它可能会导致严重的安全隐患,尤其是在地震等自然灾害中,如果结构不牢固,人员和物资的损失将无法想象。
三、钢构混凝土结构的应用1. 中高层建筑:钢构混凝土结构适用于高层建筑中,因为它可以有效地抵御水平负载和重力负载,并且结构可以灵活设计和组装。
2. 工业建筑:钢构混凝土结构能够有效地满足工业建筑对于强度、耐久性和可塑性等要求,适用范围广泛。
3. 桥梁建设:钢构混凝土结构在桥梁建设上也有很好的应用前景,由于其结构的稳定性和可靠性很高,可以满足大型桥梁建设的需要。
综上所述,钢构混凝土结构具有很高的强度、施工周期短、可塑性强等优点,但它也有一些缺点,如施工难度大和成本高等。
浅谈大跨度预应力混凝土转换梁结构前言随着城市建筑数量、建筑结构的不断增多和大跨度、大空间的方向的拓展,预应力混凝土转换梁结构在转换层结构中运用的非常的多,并且形式也更大,随着建筑物的更高更大,预应力混凝土转换梁结构得到了更好的应用,其施工质量直接对于整个结构工程的质量和成本有着很大的影响,因此要对大跨度预应力混凝土转换梁进行严格的质量控制。
一、大跨度预应力混凝土转换梁结构施工技术内容(一)、转换层的基本概念高大建筑的结构形式复杂,功能多样,不同高度楼层其用途差异性很大,所以需要采用不同结构形式的布置来满足各自需求。
梁式变换层构造在实际工程中应用最为广泛。
因为变换层构造大都为大跨度且要接受其上楼层的很大荷载,所以最适合选用预应力混凝土构造。
预应力混凝土梁式变换层按梁截面方式可分为矩形和箱形。
依照梁的构成资料可分为预应力混凝土梁和预应力钢骨混凝土梁;按梁的轴线曲直方式可分为曲梁和直梁;按构造支持方式可分为梁托墙和梁托柱两种方式。
关于接受荷载特别大、受力杂乱、应力会集,又有抗震需求的变换梁通常选用预应力箱式或许预应力钢骨混凝土梁。
(二)、转换层结构特点梁式变换层构造传力直接、清晰,规划和施工简略,通常用于底部大空间框支剪力墙构造系统。
变换梁可以分为单向安置、双向安置、交叉安置。
预应力混凝土变换梁的安置也相应的有以上几种方式。
在受力性能上,预应力混凝土构造十分适合于缔造接受重荷载、大跨度的变换构造以及悬挑构件,且有自重轻、节省钢材和混凝土的特色。
预应力混凝土变换梁可分为托墙和托柱两种方式。
托柱方式的变换梁内力核算可采用杆系有限元法,截面规划与通常框架梁一样。
托墙方式(即框支剪力墙方式)的变换梁需进行部分应力分析,并按应力进行规划校核。
框支剪力墙构造尚要思考剪力墙和变换梁的一起效果。
在进行有限元构造分析时,变换梁上部取三层或许不小于梁跨时可以满足工程精度需求,但对下部构造取的层数尚有争议。
此外,框支剪力墙构造的变换梁和上部墙体还具有拉杆拱的受力特性,也有把变换梁和上部框架构造作为整体的空腹桁架来进行构造规划的实例。
型钢混凝土在大跨度结构中的应用摘要:本文主要探讨了型钢混凝土在大跨度结构中的应用,对型钢混凝土构件与普通混凝土结构在承载能力极限状态与正常使用极限状态下的性能进行比较,并对梁柱节点构造进行了探讨。
关键词:型钢混凝土极限承载力挠度节点构造型钢混凝土(SRC)结构简介1.1型钢混凝土结构的特点(1)SRC结构承载能力高、刚度大。
SRC构件的内部型钢与外包混凝土形成整体、共同受力,其受力性能优于这两种结构的简单叠加。
且克服钢结构耐火性、耐久性差及易屈曲失稳等缺点,使型钢性能得以充分发挥,并能充分利用混凝土的抗压性能和钢材的抗拉压性能。
(2)SRC结构抗震性能好。
外包混凝土对型钢形成较强的约束作用,可防止型钢的局部屈曲,提高型钢骨架的整体刚度和抗扭能力。
由于配置了型钢,大大提高了构件的承载力,尤其是采用实腹型钢的SRC构件,其抗剪承载力有很大提高,并大大改善了受剪破坏时的脆性性质,使之具有比钢筋混凝土结构构件更好的延性和耗能性能,体现出优良的抗震性能。
(3)SRC结构综合经济效益好。
由于SRC结构能充分利用混凝土抗压性能好的优点,与钢结构相比可节省约1/3的钢材,同时没有钢结构防锈、防腐蚀、防火性能差,需要经常维护的缺点。
与钢筋混凝土结构相比,相同的承载能力情况下,截面更小,自重更轻,布置更灵活。
1.2现阶段存在的问题(1)施工难度较大。
SRC结构为型钢周围布置钢筋,并浇筑混凝土的结构,需要在有限的构件截面内按照图纸的要求准确放置型钢、纵筋、箍筋,尤其是梁柱节点部位,梁主筋需要解决与柱内型钢相交的问题,而柱主筋也需要解决与梁内型钢相交的问题,此外还有柱箍筋的套箍问题,箍筋在节点区内与型钢的相交问题。
各种钢筋交叉、穿孔,对精度要求很高,对设计、施工人员的素质要求也很高。
(2)施工组织要求高。
SRC构件多见于结构的重要部位,如转换结构或大跨结构、超高结构,本身施工难度就已较大,而SRC构件又要求以先型钢安装-后绑扎钢筋-再浇捣的顺序的施工,工序多,专业多,要求高。
] 型钢混凝土型钢混凝土(SteelReinforcedConcrete,以下简称SRC)结构是指在型钢周围布置钢筋,并浇筑混凝土的结构。
型钢分为实腹式和空腹式。
实腹式SRC构件具有较好的抗震性能,而空腹式SRC构件的抗震性能与普通混凝土(ReinforcedConcrete,以下简称RC)构件基本相同。
因此,目前在抗震结构中多采用实腹式SRC构件。
实腹式型钢可由钢板焊接拼制而成或直接采用轧制型钢。
SRC构件的内部型钢与外包混凝土形成整体、共同受力,其受力性能优于这两种结构的简单叠加。
与钢结构相比,SRC构件的外包混凝土可以防止钢构件的局部屈曲,并能提高钢构件的整体刚度,显著改善钢构件的平面扭转屈曲性能,使钢材的强度得以充分发挥。
此外,外包混凝土增加了结构的耐久性和耐火性。
与RC结构相比,由于配置了型钢,大大提高了构件的承载力,尤其是采用实腹型钢的SRC构件,其抗剪承载力有很大提高,并大大改善了受剪破坏时的脆性性质,提高了结构的抗震性能。
1国外的研究1.1欧美地区SRC结构的应用与研究20世纪初,欧美就开始对SRC柱进行了研究。
1908年Burr做了空腹式SRC柱的试验,发现混凝土的外壳能使柱的强度和刚度明显提高。
1923年加拿大开始做空腹式配钢的SRC 梁的试验。
在1989年的美国钢筋混凝土设计规范ACI2318中,将型钢视为等值的钢筋,然后再以RC结构的设计方法进行SRC构件设计,这种方法的优点在于对SRC结构设计时考虑了构件的“变形协调”和“内力平衡”,但没有考虑型钢材料本身的残余应力和初始位移。
在1993年的钢结构设计规范C2LRFD中,采用极限强度设计法来设计SRC结构,将RC部分转换为等值型钢,再以纯钢结构的设计方法进行组合结构设计,并考虑了残余应力和初始位移。
英国在理论分析资料的基础上,于1969年将建筑中的SRC柱列入英国钢结构规范BS449的第三部分,随后将桥梁中的SRC柱列入英国标准BS5400的第五部分。