《太阳能电池基础与应用》太阳能电池-第四章-3
- 格式:pdf
- 大小:2.11 MB
- 文档页数:36
第四章 太阳电池的标定和测量§4.1 太阳能电池的标定太阳电池效率的定义是:太阳电池在最佳工作状态下输出的电功率与投射到太阳电池上总的光功率之比。
电功率用一般的电子仪器很容易测出,但光功率——光的能量的测量,因涉及光谱问题,就比较复杂。
光照时太阳电池的电流特性和电压特性基本上概括了整个太阳能电池电性能,前者主要是收集效率的问题,后者是太阳电池二极管的特性问题。
对同一片电池,收集效率与光谱特性密切相关,而二极管特性和填充因素则与光源光谱无关。
因此,效率问题,实际上变成了测量短路电流与各种光源的光强的关系问题。
如在某一特定光源的光强下,只要得到同样的电流,二极管特性将是一样的。
既然效率的测量归结到确定太阳电池的短路电流,因此,确定太阳电池在某一状态下的短路电流就很重要了。
目前,国际上通用的测量方法,是采用标准电池法,亦即选一片太阳电池,首先在某一特定的标准状态(光源)下进行短路电流数值的测定,然后用它作参考电池去校准测试时所用光源的光强,再用此光强测量其它的被测电池。
我们把作为参考的电池在一定的光源状态下,确定短路电流的过程叫做标定。
而利用标准电池的数据,去获得其它电池的数据的对比过程简称为复现。
一般说来,太阳电池效率的测量问题可归结为标定参考电池,和在一定光源下用标准电池复现的问题。
太阳能电池效率η的定义为)(1FF V J FF J V oc sc sc oc Φ=Φ=η (4-1)我们把Φsc J 称为积分响应Q : Q =Φsc J (4-2) 则把方程式(4-1)变成η=Q V oc FF (4-3)所以,只要定出一个太阳电池的积分响应Q ,它的效率就可求出。
确定太阳电池在某一个特定的太阳光照状态下的Q 值,是标定工作的主要内容。
根据太阳电池用途(如空间使用或地面使用)不同,标定方法也有差别。
§4.1.1 空间用太阳电池的标定空间用太阳电池的标定,统称AM0标定。
目前最常用的AM0标定法有如下几种:卫星标定、火箭标定、气球标定、飞机标定、高山标定和实验室光谱标定。
太阳能电池原理及应用智慧树知到课后章节答案2023年下哈尔滨工程大学哈尔滨工程大学第一章测试1.太阳能量来自于太阳内部的核聚变反应。
()答案:对2.太阳内部核聚变反应时的温度大约是多少?()答案:1500万度3.太阳表面温度是多少?()答案:6000 K4.太阳太阳常数是多少?()答案:1.95 卡/厘米²﹒分5.下列那些属于太阳能的光电应用?()答案:太阳能信号灯;太阳能汽车6.下列那些属于清洁能源?()答案:太阳能;风能;水能;氢能7.煤炭燃烧时可能会排放下列那些气体?()答案:CO;SO²;NO²;CO²8.空气中PM2.5的含量在下列哪个范围内时,空气质量是优?()答案:<3.5 μg/m39.下列那种类型的太阳能电池要求材料的纯度非常高?()答案:单晶硅太阳能电池10.一般情况下,同种材料的多结太阳能电池比单结太阳能电池的光电转换效率高。
()答案:对第二章测试1.电子不能在禁带排布,但是可以越过禁带,从价带跃迁到导带。
()答案:对2.对硅进行掺杂,当掺氮时可以形成P型半导体;当掺磷时可以形成N型半导体。
()答案:错3.光伏效应和光电发射效应同属于内光电效应。
()答案:错4.对于硅太阳能电池,光伏效应发生在下列哪个部分?()答案:PN结5.禁带宽度会影响太阳能电池的光电性能,一般情况下禁带宽度越大,开路电压越大。
()答案:对6.温度对开路电压的影响比对短路电流的影响大,温度越高开路电压越大。
()答案:错7.短路电流会随着禁带宽度的增大而减小。
()答案:对8.下列哪些方法能够改善太阳能电池的性能?()答案:加背表面电场;将正面电极做成栅形结构;将吸光面做成绒面结构;增加减反射膜9.下列哪些方法能够减小太阳能电池的暗电流?()答案:优化生产工艺;减少人为污染;改善原料质量;避免机械损伤10.下列哪种载流子复合方式需要两步完成?()答案:间接复合第三章测试1.与硅太阳能电池相比,染料敏化太阳能电池的生产工艺简单、耗能少、回收周期短。
课程大纲第一部分:基础知识第章引言第一章:引言第二章:半导体基础第三章:P-N结第四章:太阳能电池基础第二部分:传统太阳能电池第章能第五章:晶体硅太阳能电池第六章:高效III-V族化合物太阳能电池第七章:硅基薄膜太阳能电池第八章:高效薄膜太阳能电池(CIGS, CdTe)第三部分:新型太阳能电池第九章:有机太阳能电池第十章:染料敏化及钙钛矿太阳能电池第十一章:其它新型太阳能电池(量子点,中间带等)第十二章:多结太阳能电池主讲教师:(1-4 章:18学时);82304569,xwzhang@张兴旺14章学时)xwzhang@semi ac cn尹志岗(5-7 章:14学时);82304469,yzhg@游经碧(8-12章:22学时);82304566,jyou@课程性质:专业选修课课程性质专业选修课课时:54课时考试类型:开卷成绩计算方式:期末考试(70%)+小组文献汇报(30%)成绩计算方式期末考试参考书目:1熊绍珍朱美芳:《太阳能电池基础与应用》科学出版社1. 熊绍珍,朱美芳:《太阳能电池基础与应用》,科学出版社,2009年2. 刘恩科,朱秉升,罗晋生:《半导体物理学》,电子工业出版社,2011年3. 白一鸣等编,《太阳电池物理基础》,机械工业出版社,2014年第一章引言太阳能的利用方式1.2太阳能资源及其分布31.114太阳电池工作原理31.3太阳电池发展历程1.4太阳电池应用与趋势31.51.6中国光伏发电的现状1973年,由于中东战争而引起的“石油禁运”,全世界发生了以石油为代表的能源危机,人类认识到常规能源的局限性、以石油为代表的“能源危机”,人类认识到常规能源的局限性有限性和不可再生性,认识到新能源对国家经济发展、社会稳定及安全的重要性。
与此同时,环境污染日益加剧、极端天气频繁出现,不断挑战着人类的忍受极限……1.1 太阳能资源:未来能源的主要形式太阳能核能地热能生物质能风能水势能清洁能源--光伏发电太阳------物理参数太阳------地球生命之源!表度太阳------巨大的火球!表面温度:5760-6000K中心温度:1.5×107K日冕层温度:5×106K198930质量:1.989×10kg太阳每秒释放的能量:3.865×1026J,相当于132每秒燃烧1.32×1016吨标准煤的能量(世界能源消耗)3.0 ×1020joule/y=万分之一!3.0 ×1024joule/y万分之巨大潜力(照射到地面的太阳能)457亿年>50亿年我国的太阳能资源45.7亿年,>50亿年,取之不尽、用之不竭地表每年吸收太阳能17000亿吨标煤2007年一次能源26.5亿吨标煤解决能源危机特点能源取之不尽、无污染地球表面角度0.1%的太阳能,转变率5%,每年发电量可达5.6×1012千瓦小时,相当于目前世界上能耗的40倍资源丰富太阳环改善环境、保护气候无污染物废气噪音的污染特点能的境角无污染物、废气、噪音的污染1 MW并网光伏电站的年发电能力约为113万优点度并能kWh,可减排二氧化碳约191余吨相当于每年可节省标准煤约384余吨,减排粉尘约5.5吨,减排灰渣约114吨,减排二氧化硫约节能减排8.54吨。
第四章太阳电池基础光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析太阳电池的性能表征4.6衬底n 型电中性区p 型电中性区F=0F=0衬底n 型电中性区p 型电中性区空间电荷区结区电势、电场分布、结区宽度计算载流子的浓度和输运性质(2)线性复合近似,也称叠加近似:要求电中性区的复合率U与少子浓度成正比;衬底n 型电中性区p 型电中性区空间电荷区(1)耗尽近似:❑内建电场只存在于空间电荷区,空间电荷区没有自由载流子,内建电场完全有掺杂离子引起;❑电中性区,没有内建电场,多子浓度仍处于热平衡状态,少子浓度的变化引起电流J;求解出在光照下的电中性区和空间电荷区的载流子浓度和电流衬底n 型电中性区p 型电中性区空间电荷区⎰⎰==dEx E j x J dE x E j x J p p n n ),()(),()(空穴电流:电子电流:现在研究电中性区载流子的浓度及电流电中性区的载流子浓度和电流电子光谱电流j n (E,x)和空穴光谱电流j p (E,x)在太阳光谱上的积分pp w x x -<<衬底n 型电中性区p 型电中性区F=0F=0边界条件1通过表面复合完全弛豫衬底n 型电中性区p 型电中性区F=0F=0p 型区少子扩散电流边界条件2nnx w <=衬底n 型电中性区p 型电中性区F=0F=0边界条件1扩散电流空穴电流x E J ),(p =型区少子扩散电流衬底n 型电中性区p 型电中性区F=0F=0边界条件2光照条件下,大量电子从基态Ev受激吸收至激发态,并形成稳定的分布,最终达到准热平衡状态。
此时,导带化学势上升,价带化学势下降,两能级的化学势差。
μμ∆-=∆=且ph q V E E p Fn F 空间电荷区的载流子浓度和电流空间电荷区电流dxU G q J npw w scr ⎰---=)(dEE j dE w E j dE w E j J w J w J w J w J J w x x scr n p p n n p p n p p p n p )(),(),(])([)()()(scr ⎰⎰⎰----=+---=----=-=流处的电流可以代表净电无关的常数,在位置净电流是与位置4.3 光生载流子的浓度与电流太阳电池净电流__()(,)(,)sc n ph p p ph n genj E j E w j E w j =-----短路电流dEE j J scsc )(0⎰∞=光谱短路电流非平衡少数载流子浓度关于位置的二阶常系数非齐次线性方程,现以p区为例求解方程根据载流子的复合可知,在电中性区载流子复合率与少子浓度成正比)。
电池效率表CuInSe2(CIS):黄铜矿结构,高温时为闪锌矿结构;Cu(In,Ga)Se2(CIGS):通常最佳组分比Ga/(In+Ga)约为0.3。
CIS与CIGS结构CIS与CIGS光学性质制备方法:三步共蒸法三步共蒸法可形成Ga组分的双梯度分布;Cu、Se组分分布均匀;晶粒大,致密,呈柱状生长。
制备方法:后硒化法后硒化法易于精确控制化学计量比,对设备要求不高,产业化的首选工艺;Ga组分分布较难控制,很难形成双梯度组分分布结构;有时在表面用S代Se,形成宽带隙Cu(In,Ga)S2,以降低器件表面复合。
思考:(1)为什么需要CdS层?(2)i-ZnO层有必要吗?自反型异质结Mo背接触层;CIGS层;背光面:p型受光面:n型CdS缓冲层;ZnO窗口层(i+n)。
CIGS电池结构减反通常用MgF 2Ga/(In+Ga) 0.26 to 0.31CIGS电池效率发展趋势CIGS电池实验室效率快速增长,目前已达21.7%,超过多晶硅电池。
低成本工艺取得突破,柔性衬底CIGS电池效率高达20.4%。
CIGS电池成本变化趋势CIGS电池组件、BOS成本持续稳步下降,目前已经可以和晶硅电池竞争。
CIGS电池市场CIGS电池市场份额稳步提升,未来竞争力持续看好。
温度系数小室外工作特性较商用Si电池优异,应用前景更好!抗辐照能力强抗辐照性能远优于其它类型的太阳电池;空间应用前景好。
单片集成单片集成,相对于晶Si电池有巨大优势,有利于降低组件成本。
组件效率记录:16.5%,台湾TSMC。
能量损失机制(1)电极遮光损失;(2)反射损失;(3)ZnO窗口层吸收损失;(4)CdS缓冲层吸收损失;(5)CIGS带隙附近吸收不充分;(6)CIGS复合损失。
导带带阶(band offset)ΔE C略大于0非常有必要Ga组分双梯度提供背电场,抑制背面少子复合,减少电池点穴损失;优化光谱匹配,提高电池开压。
表面、晶界贫Cu对电池结构而言,表面贫Cu可形成自反型结构——形成pn结的前提;对材料(吸收层)而言,晶界贫Cu造成能带向下弯曲,空穴的天然势垒——抑制晶界复合;SKM及CAFM的实验证据(AM, 2015)。
有机太阳能电池中的几个关键问题材料设计电荷分离与传输界面工程形貌优化三元体系叠层结构表面等离激元增强1.退火方法(Annealing)2.溶剂退火(Solvent annealing)3.高沸点溶剂(二氯苯,萘等)4.高沸点添加剂(1, 8-Diiodooctane)W. L. Ma et al., Adv. Funct. Mater. 15, 1617 (2005).1.退火方法(Annealing)1.退火方法(Annealing)退火方法(Annealing)能改变聚合物和富勒烯的结晶性能,从而改变体异质结的形貌,但超过聚合物的玻璃化温度会损害器件性能。
W. L. Ma et al., Adv. Funct. Mater. 15, 1617 (2005).2. 溶剂退火G. Li, Y. Yang et al., Nature Materials 4, 864 ‐868 (2005).控制溶剂挥发溶剂退火过程溶剂退火的过程实际上控制溶剂挥发的速率,从而控制有机薄膜的生长过程。
一般称溶剂退火过程为薄膜自组织过程。
2. 溶剂退火薄膜生长影响电学性能G. Li, Y. Yang et al., Nature Materials 4, 864 ‐868 (2005).3. 溶剂对薄膜形貌的影响氯苯(Chlorbenzene, CB),沸点132.2℃。
氯仿(Chloroform, CF), 沸点61℃二氯苯(dichlorbenzene, DCB), 180.4℃J. Peet et al., Nat. Mater. 6, 497 (2007).4. 添加剂对薄膜形貌的影响吸收层制备:polymer(small molecular):fullerene mixture spin coating, and add some additive into the mixture4. 添加剂对薄膜形貌的影响Y. Y. Liang et al., Adv. Mater., 22, E135 (2010)形貌控制的方法4. 添加剂对薄膜形貌的影响Y. M. Sun et al., Nat. Mater., 11, 44 (2012). 非常规DIO的量提高了器件的性能!!!Sung Heum Park et. al.; Nature Photonics 3, 297 ‐302 (2009).TiO 2起到光学限制效应利用金属氧化物修饰阴极利用聚电解质修饰阴极,在金属和活性层之间形成一个偶极矩Nature photonics , 2012, 6, 591利用聚电解质修饰阴极,在金属和活性层之间形成一个偶极矩宽带隙有机材料1. 宽带隙有机材料(>1.7 eV以上)宽带隙材料表现出开路电压高,短路电流小。