浙江省金华市东阳市2018-2019学年八年级(上)期末数学试卷
- 格式:docx
- 大小:88.32 KB
- 文档页数:6
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
八年级上学期期末综合自我评价一、选择题(每小题3分,共30分)1.函数y=1x-1的自变量x的取值范围是(D)A. x>1B. x<-1C. x≠-1D. x≠12.一次函数y=kx-3(k>0)的大致图象为(C)3.若正比例函数的图象经过点(-1,2),则这个图象必经过点(D)A.(1,2) B.(-1,-2)C.(2,-1) D.(1,-2)4.已知一次函数y=kx+b的图象经过点(0,-3)与(1,5),则这个一次函数的表达式是(A)A.y=8x-3 B.y=-8x-3C.y=8x+3 D.y=-8x+35.若直线l与已知直线y=2x+1关于y轴对称,则直线l的表达式为(B)A.y=-2x-1 B.y=-2x+1C.y=2x-1 D.y=-12x+16.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间满足某种函数关系,其函数图象大致为(D)7.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示,x -2 -1 0 1 2 3y 3 2 1 0 -1 -2那么不等式kx+b<0的解是(D)A.x<0 B.x>0C.x<1 D.x>18.如图,已知一次函数y=-12x+2的图象上有两点A,B,点A的横坐标为2,点B 的横坐标为a(0<a<4且a≠2),过点A ,B 分别作x 轴的垂线,垂足分别为C ,D 两点,△AOC ,△BOD 的面积分别为S 1,S 2,则S 1,S 2的大小关系是(A)(第8题)A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定9.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是(D)(第9题)A.⎩⎨⎧x -y -1=0,x -2y -4=0B.⎩⎨⎧2x -y -4=0,x -2y -4=0 C.⎩⎨⎧2x -y -4=0,x +2y -4=0D.⎩⎨⎧x -y -1=0,x +2y -4=010.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②所示,那么当x =9时,点R 应运动到(C),(第10题))A .点N 处B .点P 处C .点Q 处D .点M 处【解】 点R 从点N 运动到点P 时,y 随x 的增大而增大;当点R 从点P 运动到点Q 时,y 不变;当点R 从点Q 运动到点M 时,y 随x 的增大而减小.故当x =9时,点R 应运动到点Q 处.二、填空题(每小题3分,共30分)11. 在一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是m<3.12.已知自变量为x 的函数y =mx +3-m 是正比例函数,则该函数的表达式为y =3x .13.若y -1与x -3成正比例,且当x =4时,y =-1,则y 关于x 的函数表达式是y =-2x +7.14. 若点(1,m),(3,n)在函数y =-13x +3的图象上,则m ,n 的大小关系是m>n .15.已知关于x ,y 的一次函数y =(m -1)x +m -2的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是1<m<2.16.已知一次函数y =kx +b 的图象经过点(0,1),且y 随x 的增大而增大,请你写出一个符合上述条件的函数表达式:y =2x +1(答案不唯一).17.已知一次函数y =-x +a 和y =x +b 的图象交于点(m ,8),则a +b =__16__. 18. 如图是某工程队在“村村通”工程中,修筑的公路长度y(m)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是__504__m.,(第18题)) ,(第19题))19.如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0),当线段AQ 最短时,点Q 的坐标为⎝ ⎛⎭⎪⎫12,-12.20.已知正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按照如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x 轴上,若点B 1(1,1),B 2(3,2),则点B 3的坐标是(7,4).(第20题)【解】 ∵点B 1(1,1),B 2(3,2), ∴点A 1(0,1),A 2(1,2),∴直线y =kx +b(k >0)为y =x +1,∴A 3(3,4). 易得B n 的横坐标为A n +1的横坐标,纵坐标为A n 的纵坐标,A n (2n -1-1,2n -1),∴B n 的坐标为(2n -1,2n -1). ∴B 3的坐标是(23-1,22),即(7,4). 三、解答题(共40分)21.(6分)直线y =2x +2与x 轴,y 轴分别交于点A ,B ,求线段AB 的长. 【解】 令x =0,则y =2,∴点B 的坐标为(0,2). 令y =0,则x =-1,∴点A 的坐标为(-1,0). ∴AB =22+12= 5.(第22题)22.(8分)如图,在直角坐标系中,点A 在第一象限,点B 的坐标为(3,0),OA =2,∠AOB =60°.(1)求点A 的坐标;(2)若直线AB 交y 轴于点C ,求△AOC 的面积. 【解】 (1)过点A 作AM⊥OB 于点M. ∵∠AOM =60°,∴∠OAM =30°, ∴OM =12OA =12×2=1.∴AM =OA 2-OM 2=22-12= 3. ∴点A 的坐标为(1,3).(2)设直线AB 的函数表达式为y =kx +b ,把点A(1,3),B(3,0)的坐标代入y =kx +b ,得⎩⎨⎧k +b =3,3k +b =0, 解得⎩⎪⎨⎪⎧k =-32,b =3 32,∴y =-32x +3 32. 当x =0时,y =3 32,∴点C 的坐标为⎝ ⎛⎭⎪⎫0,3 32. ∴S △AOC =12×1×3 32=3 34.23.(8分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y 与x 的函数关系如图所示.(第23题)根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式;(3)求这辆汽车从甲地出发4 h 时与甲地的距离. 【解】 (1)这辆汽车往、返速度不同.∵往、返路程相等,去时用了2 h ,返回时用了2.5 h , ∴往、返速度不同.(2)设返程中y 与x 之间的表达式是y =kx +b , 把(2.5,120),(5,0)代入,得 ⎩⎨⎧2.5k +b =120,5k +b =0,解得⎩⎨⎧k =-48,b =240. ∴y = -48x +240(2.5≤x≤5). (3)当x =4时,y =-48×4+240=48.即这辆汽车从甲地出发4 h 时与甲地的距离为48 km.24.(8分)设关于x 的一次函数y =a 1x +b 1与y =a 2x +b 2,则称函数y =m(a 1x +b 1)+n(a 2x +b 2)(其中m +n =1)为这两个函数的生成函数.(1)当x =1时,求函数y =x +1与y =2x 的生成函数的值;(2)若函数y =a 1x +b 1与y =a 2x +b 2的图象的交点为P ,判断点P 是否在这两个函数的生成函数的图象上,并说明理由.【解】 (1)当x =1时,y =m(1+1)+n×2=2m +2n =2. (2)点P 在这两个函数的生成函数的图象上.理由如下: 设点P 的坐标为(a ,b). ∵a 1·a +b 1=b ,a 2·a +b 2=b ,∴当x =a 时,y =m(a 1·a +b 1)+n(a 2·a +b 2)=mb +nb =b(m +n)=b. ∴点P 在这两个函数的生成函数的图象上.25.(10分)阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线.我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.观察图①可以得出:直线x =1与直线y =2x +1的交点P 的坐标(1,3)就是方程组⎩⎨⎧x =1,2x -y +1=0的解,所以这个方程组的解为⎩⎨⎧x =1,y =3.在平面直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③.(第25题)回答下列问题:(1)在平面直角坐标系中,用作图的方法求出方程组⎩⎨⎧x =-2,y =-2x +2的解;(2)用阴影表示⎩⎨⎧x ≥-2,y ≤-2x +2,y ≥0,并求出阴影部分的面积.【解】 (1)在坐标系中分别作出直线x =-2和直线y =-2x +2,如解图①所示,这两条直线的交点是P(-2,6).∴方程组⎩⎨⎧x =-2,y =-2x +2的解是⎩⎨⎧x =-2,y =6.(第25题解①)(2)如解图②中的阴影所示.(第25题解②)∴S 阴影=12×3×6=9.期末综合自我评价 (这是单页眉,请据需要手工删加)一、选择题(每小题2分,共20分)(第1题)1.将一副直角三角尺按如图所示的方式叠放在一起,则图中∠α的度数是(C) A .45° B .60° C .75° D .90°2.将不等式组⎩⎨⎧x ≤2,x>-1的解表示在数轴上,正确的是(D)3.下列定理中,没有逆定理的是(B)A. 两直线平行,内错角相等B. 全等三角形的对应角相等C. 在一个三角形中,等边对等角D. 在直角三角形中,两条直角边的平方和等于斜边的平方4.用尺规作图不能作出唯一直角三角形的是(B)A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边5.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的(B) A.南偏西50°方向B.南偏西40°方向C.北偏东50°方向D.北偏东40°方向(第6题)6.如图,两条平行的直线AB和CD被直线MN所截,交点分别为E,F,点G 为射线FD上的一点,且EG=EF.若∠EFG=45°,则∠BEG等于(B)A.30°B.45° C.60°D.90°7.关于x的不等式2x-a≤-1的解如图所示,则a的值是(D)(第7题)A. 0B. -3C. -2D. -1(第8题)8.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b>0;④当x<3时,y1<y2.其中正确的有(C)A.0个B.1个C.2个D.3个9.直线y=x-1与x轴、y轴分别交于A,B两点,点C在坐标轴上,△ABC 为等腰三角形,则满足条件的点C最多有(C)A.4个B.5个C.7个D.8个【解】如解图中小实点,共有7个.,(第9题解))10.如图,在一次越野赛跑中,当小明跑了9 km时,小强跑了5 km,此后两人匀速跑的路程s(km)和时间t(h)的关系如图所示,则由图上的信息可知s1的值为(B)(第10题)A.29 km B.21 kmC.18 km D.15 km【解】∵小明开始跑了9 km,∴图象过(0,9).设小明跑的路程s和时间t之间的函数表达式是s=at+9,同理,设小强跑的路程s和时间t之间的函数表达式是s=kt+5.根据图象可知,当t=1时,s的值相等,∴a+9=k+5,∴a=k-4,即小明:s=(k-4)x+9,小强:s=kx+5.根据图象可知,小明跑3 h时和小强跑2 h时路程都是s1,∴2k+5=3(k-4)+9=s1,解得k =8,∴k -4=4,∴s 1=2k +5=2×8+5=21(km). 二、填空题(每小题3分,共30分)11. 不等式组⎩⎨⎧3x +2≥-x ,x ≤2的解是-12≤x ≤2.12.将点P(-2,y)先向下平移4个单位,再向左平移2个单位后得到点Q(x ,-1),则x +y =-1.13. 若将点A(m ,2)向右平移6个单位,所得的像与点A 关于y 轴对称,则m =__-3__.14.已知a ,b ,c 是△ABC 的三边长,且满足关系式c 2-a 2-b 2+|a -b|=0,则△ABC 的形状为等腰直角三角形.15.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是1<AD <4.(第16题)16. 如图,已知直线AD ,BC 交于点E ,且AE =BE ,欲证明△AEC ≌△BED,需添加的条件可以是CE =DE(答案不唯一)(只填一个即可).17.线段MN 平行于x 轴,且MN 的长度为5,若M(2,-2),那么点N 的坐标是(7,-2)或(-3,-2).18.某学校为部分外地学生免费安排住宿,如果每间住5人,那么有12人安排不下;如果每间住8人,那么有1间房还余一些床位.该校住宿的学生有37或42人.【解】 设有x 间房,则0<5x +12-8(x -1)<8,解得4<x<203,∴x =5或6,∴有5×5+12=37(人)或6×5+12=42(人).(第19题)19.如图所示,某警察在点A(-2,4)接到任务,前去阻截在点B(-10,0)的劫包摩托车.劫包摩托车从点B 处沿x 轴向原点方向匀速行驶,警察立即拦下一辆摩托车前去阻截.若两辆摩托车行的驶速度相等,则警察最快截住劫包摩托车时的坐标为(-5,0).【解】 由题意,设在x 轴上点P(x ,0)处截住劫包摩托车,则AP =BP =x -(-10)=x +10,∴(x +10)2=[x -(-2)]2+42,解得x =-5.∴P(-5,0).(第20题)20.如图,在△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到点A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,锐角∠A n 的度数为80°2n -1.【解】 由∠B=20°,AB =A 1B 得∠BA 1A =180°-20°2=80°. ∵A 1A 2=A 1C ,∴∠A 1CA 2=∠A 1A 2C ,∴由∠BA 1A =∠A 1CA 2+∠A 1A 2C ,得∠A 1A 2C =80°2,同理,∠A 2A 3D =80°4,…,∠A n =80°2n -1.三、解答题(共50分)21.(6分)解不等式组⎩⎨⎧2(x -1)≤3x+1,x 3<x +14,并用数轴表示它的解.【解】 ⎩⎨⎧2x -2≤3x+1,4x <3(x +1),解得⎩⎨⎧x ≥-3,x <3.∴不等式组的解为-3≤x<3. 它的解在数轴上表示如下:(第21题解)(第22题)22.(6分)如图,BE ⊥AE ,CF ⊥AE ,垂足分别是E ,F ,ME =MF.求证:AM 是△ABC 的中线.【解】 ∵BE⊥AE,CF ⊥AE , ∴∠E =∠CFM=90°.∵∠BME =∠CMF,ME =MF ,∴△CFM≌△BEM(ASA).∴BM=CM,∴M是BC的中点.∴AM是△ABC的中线.(第23题)23.(6分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(-2,2).现将△ABC平移,使点A变换为点A′,点B,C的对应点分别是B′,C′.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′,C′的坐标:B′(-4,1),C′(-1,-1);(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是(a-5,b -2).24.(6分)如图是第七届国际数学教育大会的会徽.它的主体图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1.(第24题)(1)请先把图中的8条线段的长度计算出来,填在下面的表格中: OA 2 OA 3 OA 4 OA 5 OA 6 OA 7 OA 8 OA 9 2 325672 23(2)设△OA 1A 2,△OA 2A 3,△OA 3A 4,…,△OA 8A 9的面积分别为S 1,S 2,S 3,…,S 8,计算S 21+S 22+S 23+…+S 28的值.【解】 (2)S 1=1×12=12,S 2=1×22=22,S 3=1×32=32,…,S 8=1×82=82, ∴S 21+S 22+S 23+…+S 28=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫822=14(1+2+3+ (8)=9.(第25题)25.(8分)为了鼓励小王勤做家务,培养他的劳动意识,小王每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小王每月的家务劳动时间为x(h),该月可得(即下月他可获得)的总费用为y元,y(元)和x(h)之间的函数图象如图所示.(1)根据图象,请你写出小王每月的基本生活费为多少元.父母是如何奖励小王做家务劳动的?(2)写出当0≤x≤20时,相对应的y与x之间的函数表达式;(3)若小王5月份希望有250元费用,则小王4月份需做家务多少时间?【解】(1)小王父母给小王的每月基本生活费为150元.如果小王每月家务劳动时间不超过20 h,每小时获奖励2.5元;如果小王每月家务劳动时间超过20 h,那么20 h按每小时2.5元奖励,超过部分按每小时4元奖励(注:答案不唯一,只要言之有理即可).(2)y=2.5x+150.(3)当x≥20时,可求得y与x之间的函数表达式是y=4x+120.由题意,得4x+120=250,解得x=32.5.答:小王4月份需做家务32.5 h.26.(9分)某电脑公司经销甲种型号电脑,随着科技的进步,电脑价格不断下降,今年3月份的甲种电脑售价比去年同期每台下降1000元.如果卖出相同数量的甲种电脑,去年的销售额为10万元,今年的销售额只有8万元.(1)今年3月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?【解】(1)设今年3月份甲种电脑每台售价x元,则100000x+1000=80000x,解得x=4000.经检验,x=4000是原方程的根,∴今年3月份甲种电脑每台售价4000元.(2)设购进甲种电脑x台,则48000≤3500x+3000(15-x)≤50000,解得6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案.(3)设总获利为W元,则W=(4000-3500)x+(3800-3000-a)(15-x)=(a-300)x+12000-15a.当a=300时,(2)中所有方案获利相同,此时,购买甲种电脑6台,乙种电脑9台对公司更有利.27.(9分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A,C,D的坐标分别为A(9,0),C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P的运动时间为t(s).(第27题)(1)当t =2时,求直线PD 的表达式;(2)当点P 在BC 上,OP +PD 有最小值时,求点P 的坐标;(3)当t 为何值时,△ODP 是腰长为5的等腰三角形(直接写出t 的值)?【解】 (1)当t =2时,点P 的坐标为(0,2).设直线PD 的表达式为y =kx +b ,则⎩⎨⎧b =2,5k +b =0, 解得⎩⎨⎧k =-25,b =2.∴y =-25x +2. (2)作点O 关于直线BC 对称的对称点O′,此时O ′(0,8),连结O′D 交BC 于点P ,此时OP +PD 的值最小.设直线O′D 的表达式为y =mx +n ,则⎩⎨⎧n =8,5m +n =0,解得⎩⎨⎧m =-85,n =8.∴y =-85x +8. 令y =4,则x =2.5,∴P(2.5,4).(3)t =6或t =7或t =12或t =14.。
绝密★启用前 浙教版八年级2018--2019学年度第一学期期末考试 数学试卷 望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计30分) 1.(本题3分)下列美丽的车标中,轴对称图形的个数是( ) A . 1 B . 2 C . 3 D . 4 2.(本题3分)均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( ) A . B . C . D . 3.(本题3分)已知P 1(-3,y 1),P 2(2,y 2)是一次函数y=2x+1的图象上的两个点,则y 1, y 2的大小关系是( ) A . y 1>y 2 B . y 1<y 2 C . y 1= y 2 D . 不能确定 4.(本题3分)(题文)如图,一只蚂蚁沿边长为a 的正方体表面从点A 爬到点B ,则它走过的路程最短为( ) A . 2a B . (1+2)a C . 3a D . 5a5.(本题3分)已知如图所示的两个三角形全等,则∠α的度数是( ) A . 72° B . 60° C . 50° D . 58° 6.(本题3分)如图,△ABC 中,AB=AC,∠BAC=120°,DE 垂直平分AC 交BC 于D,垂足为E,若DE=2cm,则BC 的长为( )A . 6cmB . 8cmC . 10cmD . 12cm7.(本题3分)不等式组的最小整数解是( )A . ﹣3B . ﹣2C . 0D . 1 8.(本题3分)如图,Rt △ABC 中,∠B=90〬,AB=9,BC=6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,则线段AN 的长等于( )A . 5B . 6C . 4D . 39.(本题3分)在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是( )A . (3,2)B . (-3,-2)C . (-3,2)D . (3,-2)10.(本题3分)如图,点A 的坐标为(-1,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为( )A . (0,0)B . (-21,-21)C . (22,-22)D . (-22,-22) 二、填空题(计32分)11.(本题4分)(3分)如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上 . 12.(本题4分)点()34P -,关于x 轴对称的点的坐标是___________. 13.(本题4分)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A 的面积为 . 14.(本题4分)已知:如图所示,M (3,2),N (1,-1).点P 在y 轴上使PM +PN 最短,则P 点坐标为_________. 15.(本题4分)在平面直角坐标系中,点A 1,A 2,A 3和B 1,B 2,B 3分别在直线y=5451+x.16.(本题4分)如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段________(填一组即可).17.(本题4分)不等式组的整数解是_______;18.(本题4分)在平面直角系中,已知直线l与坐标轴交于A、B (0,-5)两点,且直线l与坐标轴围成的图形面积为 10,则点A的坐标为.三、解答题(计58分)19.(本题8分)解不等式组:,并把它的解集在数轴上表示出来.20.(本题8分)解不等式,并在数轴上表示不等式组的解.21.(本题8分)已知:如图19,AB=AD ,BC=CD ,∠ABC=∠ADC .求证:OB=OD .22.(本题8分)两种移动电话计费方式表如下: (1)一个月内某用户在本地通话时间为x 分钟,请你用含有x 的式子分别写出两种计费方式下该用户应该支付的费用; (2)若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算? (3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.23.(本题8分)甲、乙两轮船同时从港口A 开出,各自沿固定方向航行,其中甲轮船每小时航行12海里,乙轮船每小时航行16海里,它们离开港口半小时后分别位于B ,C 两处,且相距10海里,如果甲轮船的航行方向为北偏西,请你计算确定乙轮船的航行方向.24.(本题9分)“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元钱,我想买一盒饼干和一袋牛奶.如果每盒饼干和每袋牛奶的标价分别设为x 元,y 元,请你根据以上信息:(1)找出x 与y 之间的函数关系式; (2)请利用不等关系,求出每盒饼干和每袋牛奶的标价. 25.(本题9分)如图,在等边△ABC 中,BD =CE ,AD 与BE 相交于点P.求证:∠APE=60°.参考答案1.C【解析】试题分析:根据轴对称图形的概念求解.解:第1,2,3个图形是轴对称图形,共3个.故选C.考点:轴对称图形.2.A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.视频3.B【解析】【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【点睛】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.4.D【解析】分析:把正方体的侧面展开,再根据勾股定理求解即可.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
八年级数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 一、选择题:(每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.下列图标中,是轴对称图形的是A .B .C .D .2. 若x =1时,下列分式的值为0的是 A.11+x B . x x 1- C.1+x x D. 112-x3. 木工师傅准备钉一个三角形木架,已有两根长为2和5的木棒,木工师傅应该选择如下哪根木棒A.2B.3C. 6D. 74. 把分式(00)xx y x y≠≠+,中的分子、分母的x y ,同时扩大倍,那么分式的值 A. 扩大2倍 B. 缩小2倍 C. 改变原来的14D. 不改变5. 下列等式成立的是A .32396a b a b =() B .0.000028 2.810=⨯﹣4C .22434x x x +=D .22()()=a b a b b a +----6. 一个等腰三角形的两边长分别为2和3,则它的周长为A .7B .8C .7或8D .97. 如果2(1)(2)x x x px q -+=++,那么p ,q 的值为A. 1p =,2q =-B. 1p =-,2q =-C. 1p =,2q =D. 1p =-,2q = 8. 如图,将一张含有30°角的三角形纸片的 两个顶点叠放在矩形的两条对边上,若∠2=46°, 则∠1的大小为A .14°B .16°C .90°﹣αD .α﹣44°9. 如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑧个图形面积为A .42B .56C .72D .9010.如图,在△ABC 中,AB =AC ,△ADE 的顶点D ,E 分别在BC ,AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =155°,则∠EDC 的度数为A .20°B .20.5°C .21°D .22°第10题图第8题图第9题图11. 在4×4的正方形网格中,网格线的交点成为 格点,如图,A 、B 分别在格点处,若C 也是图 中的格点,且使得 为等腰三角形,则符合 条件的点C 有( )个A. 2个B. 3个C.4个D. 5个12. 如果关于x 的不等式2()42a x x x -+≤⎧⎨>-⎩的解集为2x >-,且关于x 的分式方程2333a xx x-+=--有正整数解,则所有符合条件的整数a 的和是 A .0 B .-9 C .-8 D .-7二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图案分别是清华、北大、人大、复旦大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列一组数:,,-,,0.080080008…(相邻两个8之间依次增加一个0)其中无理数的个数是()A. 0B. 1C. 2D. 33.蓝鲸是世界上体积最大的动物,有一只蓝鲸的体重约为1.68×105kg,1.68×105这个近似数它精确到()A. 百位B. 百分位C. 千分位D. 千位4.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比()A. 向上平移3个单位B. 向下平移3个单位C. 向右平移3个单位D. 向左平移3个单位5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A. 7B. 6C. 5D. 46.一次函数y=(a2+1)x-a的图象上有两点A(-1,y1),B(-2,y2),则y1与y2的大小关系为()A. B. C. D. 不能确定7.在同一平面直角坐标系中,直线y=x-2与直线y=-x-b的交点一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A. 3B. 4C. 5D. 6二、填空题(本大题共10小题,共30.0分)9.分式、的最简公分母是______.10.在函数中,自变量x的取值范围是______.11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:______,使△AEH≌△CEB.12.若m为整数,且<m<,则m=______.13.若直角三角形的两直角边a,b满足+b2-12b+36=0,则斜边c上中线的长为______.14.一个正数a的平方根分别是2m-1和-3m+,则这个正数a为______.15.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为______.16.已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为______cm.17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,若AC=2,AE=1,则BC=______.18.已知点A(2m-1,4m+2015)、B(-n+,-n+2020)在直线y=kx+b上,则k+b值为______.三、计算题(本大题共3小题,共28.0分)19.解分式方程:(1)=+1(2)-=120.先化简代数式(-)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.21.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的函数图象如图.(1)A地与B地相距______km,甲的速度为______km/分;(2)求甲、乙两人相遇时,乙行驶的路程;(3)当乙到达终点A时,甲还需多少分钟到达终点B?四、解答题(本大题共7小题,共68.0分)22.()-1-|2-|-(π-3.14)0+23.如图,在平面直角坐标系中,已知△ABC的顶点坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)将△ABC向右平移3个单位得到△A1B1C1,请画出平移后的△A1B1C1;(2)将△A1B1C1沿x轴翻折得到△A2B2C2,请画出翻折后的△A2B2C2;(3)若点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标______.24.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.25.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.26.2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?27.在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a-6m+4=0,b+2m-8=0.(1)当a=1时,点P到x轴的距离为______;(2)若点P在第一三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是______.28.如图1,在平面直角坐标系中,△OAB是等边三角形,点B的坐标为(4,0),点C(a,0)是x轴上一动点,其中a≠0,将△AOC绕点A逆时针方向旋转60°得到△ABD,连接CD.(1)求证;△ACD是等边三角形;(2)如图2,当0<a<4时,△BCD周长是否存在最小值?若存在,求出a的值;若不存在,请说明理由.(3)如图3,当点C在x轴上运动时,是否存在以B、C、D为顶点的三角形是直角三角形?若存在,求出a的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,本选项错误;B、是轴对称图形,本选项正确;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:B.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:-,,0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:D.根据无理数的定义即可求出答案.本题考查无理数,解题的关键是正确理解无理数的定义,本题属于基础题型.3.【答案】D【解析】解:∵1.68×105=168000,∴近似数1.68×105是精确到千位.故选:D.把数还原后,再看首数1.68的最后一位数字8所在的位数是千位,即精确到千位.此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.【答案】C【解析】解:若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比向右平移3个单位,故选:C.根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.【答案】C【解析】解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选:C.根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.【答案】A【解析】∵函数y=(a2+1)x-a是一次函数,∴a2+1=1,解得:a=0,即该函数的解析式为:y=x,∵函数y=x的图象上的点y随着x的增大而增大,又∵点A(-1,y1),B(-2,y2)在该函数图象上,且-1>-2,∴y1>y2,故选:A.根据“y=(a2+1)x-a是一次函数”,得到关于a的方程,解之,得到该函数的解析式,根据该函数图象的增减性,结合点A和点B横坐标的大小关系,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【答案】B【解析】解:∵直线y=x-2经过第一、三、四象限,直线y=-x-b,当b>0时,该直线经过第二、三、四象限,当b<0时,该直线经过第一、二、四象限,∴直线y=x-2与直线y=-x-b的交点一定不在第二象限,故选:B.根据题目中的函数解析式和一次函数的性质,可以判断直线y=x-2与直线y=-x-b的交点一定不在哪个象限,本题得以解决.本题考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】C【解析】解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=D5B,BD6=CD6∵△ABC是直角三角形,∴D3,D5重合,故能得到符合题意的等腰三角形5个.故选:C.首先根据勾股定理的逆定理判定△ABC是直角三角形,再根据等腰三角形的性质分别利用AC、BC为腰以及AB为底得出符合题意的图形即可.此题考查了勾股定理的逆定理,等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论是解题关键.9.【答案】12a3b3【解析】解:分式、的最简公分母是12a3b3;故答案为:12a3b3.根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,求解即可.本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.10.【答案】x≥4【解析】解:根据题意,知,解得:x≥4,故答案为:x≥4.根据被开方数为非负数及分母不能为0列不等式组求解可得.本题主要考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.11.【答案】AH=CB等(只要符合要求即可)【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.【答案】3【解析】解:∵4<5<9<10<16,∴2<<3<<4,则整数m=3.故答案为:3.依据2<<3<<4,即可确定出m的值.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.13.【答案】5【解析】解:∵+b2-12b+36=0,∴a-8=0,b-6=0,∴a=8,b=6,∴c==10,∴斜边c上的中线长为5,故答案为:5根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边长,根据斜边中线长为斜边的一半计算斜边中线长.本题考查了直角三角形中勾股定理,考查了斜边中线为斜边长的一半的性质,本题中正确的运用非负数的性质是解题的关键.14.【答案】4【解析】解:根据题意,得:2m-1+(-3m+)=0,解得:m=,∴正数a=(2×-1)2=4,故答案为:4.直接利用平方根的定义得出2m-1+(-3m+)=0,进而求出m的值,即可得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.15.【答案】9【解析】解:∵点A(m-1,-5)和点B(2,m+1),直线AB∥x轴,∴m+1=-5,解得m=-6.∴2-(-6-1)=9,故答案为:9.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.16.【答案】6【解析】解:连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,∵OB平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE,同理,OD=OE=OF,则AB•OD+AC•OF+CB•OE=36,即×(AB+AC+BC)×OD=36,∴OD=6(cm),故答案为:6.连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,角的平分线上的点到角的两边的距离相等.17.【答案】1.5【解析】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE,设BC=BE=x,∴AB=1+x,∵AC2+BC2=AB2,∴22+x2=(1+x)2,解得:x=1.5,故答案为:1.5.根据余角的性质得到∠BCD=∠A.根据角平分线的定义得到∠ACE=∠DCE.根据三角形的外角的性质得到∠BEC=∠BCE,求得BC=BE,设BC=BE=x,根据勾股定理列方程即可得到结论.本题考查了勾股定理,直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.18.【答案】2019【解析】解:把点A(2m-1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m-1)+b ①,把点B(-,-n+2020)代入直线y=kx+b得:-n+2020=k(-+)+b ②,①-②得:4m+n-5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m-1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.把点A(2m-1,4m+2015)和点B(-,-n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.19.【答案】解:(1)两边都乘以(x-1)(x+2),得:x(x-1)=2(x+2)+(x-1)(x+2),整理,得:4x+2=0,解得:x=-,经检验:x=-是原分式方程的解,所以原分式方程的解为x=-;(2)两边都乘以(x+1)(x-1),得:(x+1)2-4=(x+1)(x-1),整理,得:2x-2=0,解得:x=1,检验:当x=1时,(x+1)(x-1)=0,∴x=1是分式方程的增根,则原分式方程无解.【解析】(1)方程两边都乘以(x-1)(x+2)化分式方程为整式方程,解整式方程求得x的值,再检验即可得;(2)方程两边都乘以(x+1)(x-1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得.本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.【答案】解:原式=[-]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=-1.当x=2时,原式=1.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.【答案】24【解析】解:(1)观察图象知A、B两地相距为24km,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是千米/分钟;故答案为:24,.(2)由纵坐标看出AB两地的距离是24千米,设乙的速度是x千米/分钟,由题意,得,解得:x=千米/分钟,∴甲、乙相遇时,乙所行驶的路程:(千米/分钟).(3)相遇后乙到达A地还需:(分钟),相遇后甲到达B站还需:(分钟)当乙到达终点A时,甲还需54-4=50分钟到达终点B.(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是千米/分钟;(2)根据路程与时间的关系,可得乙的速度,再根据甲、乙相遇时,乙所行驶的路程=12×乙的速度,即可解答;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】解:原式=2-(2-)-1+2=2-2+-1+2=1+.【解析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.【答案】(m+3,-n)【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标:(m+3,-n).故答案为:(m+3,-n).(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)直接利用平移的性质以及轴对称的性质得出对应点坐标.此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.24.【答案】证明:(1)∵∠EAD=∠BAC∴∠BAE=∠CAD,且AB=AC,AD=AE,∴△ABE≌△ACD(SAS)∴∠ABD=∠ACD(2)∵AB=AC,∠ACB=62°∴∠ABC=∠ACB=62°,∴∠BAC=180°-62°-62°=56°∵∠BAO+∠ABO+∠AOB=180°,∠DCA+∠DOC+∠BDC=180°∴∠BAC=∠BDC=56°【解析】(1)由“SAS”可证△ABE≌△ACD,可得∠ABD=∠ACD;(2)由三角形内角和定理可求∠BDC的度数.本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定是本题的关键.25.【答案】解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=-6,即点A的坐标为:(-6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,-6-8=-14,-6+8=2,即点C的坐标为:(-14,0)或(2,0).【解析】(1)分别把x=0和y=0代入y=x+4,解之,得到点B和点A的坐标,根据三角形的面积公式,计算求值即可,(2)根据“过B点作直线BC与x轴相交于点C,若△ABC的面积是16”,结合点B的坐标,求出线段AC的距离,即可得到答案.本题考查了一次函数图象上点的坐标特征,解题的关键:(1)正确掌握代入法和三角形的面积公式,(2)正确掌握三角形的面积公式.26.【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据题意得:,解得:t=3.6,经检验,t=3.6是原分式方程的解,且符合题意,∴2.5t=9.答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据平均速度=路程÷时间结合A 车的平均速度比B车的平均速度慢150km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.【答案】6 m<2【解析】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.28.【答案】(1)证明:由旋转变换的性质可知,AC=AD,∠CAD=60°,∴ACD是等边三角形;(2)解:存在,a=2,理由如下:∵△OAB和△ACD都是等边三角形,∴AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAB-∠CAB=∠CAD-∠CAB,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS)∴BD=OC,∴△BCD周长=BC+BD+CD=BC+OC+CD=OB+CD,当CD最小时,△BCD周长最小,∵ACD是等边三角形,∴CD=AC,当AC⊥OB时,即OC=2,AC最小,最小值为=2,∴△BCD周长的最小值为4+2,此时a=2;(3)解:当点C在x轴的负半轴上时,∠BDC=90°,则∠ADB=30°,∵△OAC≌△BAD,∴∠ACO=∠ADB=30°,∴∠BCD=30°,∴BD=BC,∴OC=BC,∴OC=4,则a=-4;当点C在线段OB上时,∠BDC=120°,∴不存在以B、C、D为顶点的三角形是直角三角形,∴a不存在;当点C在点B的右侧时,∠BCD=90°,则∠ACO=30°,∵∠AOC=60°,∴∠OAC=90°,又∠ACO=30°,∴OC=2OA=8,∴a=8.【解析】(1)根据旋转变换的性质、等边三角形的判定定理证明;(2)证明△OAC≌△BAD,根据全等三角形的性质得到BD=OC,根据等边三角形的性质计算即可;(3)分点C在x轴的负半轴上、点C在线段OB上、点C在点B的右侧三种情况,根据直角三角形的性质计算.本题考查的是旋转变换的性质、等边三角形的判定和性质、直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。
2018-2019学年第一学期八年级期末测试数学试题卷参考答案及评分建议一、单选题(共 10 题,共 30 分)1-5.DCBAC 6-10.DBADA二、填空题(共 6 题,共 24 分)11.65° 12.y =3x -413.2 14.5515.3cm 16.14,10092019三、解答题(共 8 题,共 66 分)17.(6分)(1)3x -1≥2(x -1),3x -1≥2x -2,3x -2x ≥-2+1,x ≥-1;将不等式的解集表示在数轴上如下:(2)解不等式①,得:x ≤2;解不等式②,得:x >1,∴不等式组的解集为:1<x ≤2.18.(6分)(1)证明∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥DE ,∴∠BDA =90°,∴∠BAD +∠DBA =90°,∴∠DBA =∠CAE ,∵CE ⊥DE ,∴∠E =90°,在△ADB 和△CEA 中,ABD CAE D EAB AC =⎧⎪=⎨⎪=⎩∠∠∠∠, ∴△ADB ≌△CEA (AAS);(2)解:由(1)得△ADB ≌△CEA ,∴DA =CE =2,AE =DB =3,∴在直角△ADB中,AB ==∵∠BAC =90°,AB =AC∴△ABC 为等腰直角三角形∴BC 19.(6分)解:(1)∵点P 到x 轴的距离为1,∴|2x +3|=3,∴x =0或x =-3;(2)∵点P 到y 轴的距离为4,|x -1|=4∴x =5或x 2=-3;(3)∵点P 可能在第一象限坐标轴夹角的平分线上,∴x -1=2x +3,∴x =-4;∵点P 在第一象限∴x -1>0,2x +3>0,∴x >1,∴x =-4不合题意;∴点P 不可能在第一象限坐标轴夹角的平分线上.20.(8分)解:(1)当x ≥30时,设函数关系式为y =kx +b ,则30604090k b k b +=⎧⎨+=⎩,解得330k b =⎧⎨=-⎩.所以y =3x -30;(2)由图象可知:4月份上网20小时,应付上网费60元;(3)由图象可知:75>60,小李5月份上网时间超过30小时由75=3x -30解得x =35,所以5月份上网35个小时.21.(8分)(1)如图1;(2)如图2;(3)如图3,连接AC .∵AC BC ==AB =∴AC 2+BC 2=AB∴∠ACB =90°∵AC =BC∴∠ABC =45°22.(10分)解:()()22031203x x x x ⎧<-⎪⎪⎨⎪≥-⎪⎩解,得5≤x <8∵x 是整数,∴x =5,6,720- x =15,14,13∴共有3种购买方案:方案一:购买5本A ,15本B ;方案二:购买6本A ,14本B ;方案一:购买7本A ,13本B .(3)由题意,得y =10x +160-8x=2x +160∵k=2>0∴y随x的增大而增大,且5≤x<8,∴当x=5时,y的值最小为2×5+160=170元.答:购买5本A,15本B时花费最少,最少花费170元.23.(10分)(1)20;10;α=2β(2)解:如图,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,所以α=2β-180°.注:求出其它关系式,相应给分,如点E在CA的延长线上,点D在CB的延长线上,可得α=180°-2β.【解析】解:(1)①因为AD=AE,所以∠AED=∠ADE=70°,∠DAE=40°,又因为AB=AC,∠ABC=60°,所以∠BAC=∠C=∠ABC=60°,所以α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②解:如图,设∠ABC=x,∠ADE=y则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,所以α=2β.24.(12分)(1)易知A点坐标y=0,B点坐标x=0,代入y=-x+3可得:A(4,0),B(0,3)(2)由题意可知:CD垂直平分AB设OC=x,则AC=CB=4-x∵∠BOA=90°∴△BOC为直角三角形由勾股定理得:OB2+OC2=CB2∴32+x2=(4-x) 2解得78x=∴78OC=(3)设P点坐标为(x,0),当PA=PB时,解得78 x=当PA=AB时,解得x=9或x=-1;当PB=AB时,解得x=-4.p点坐标为(78,0),(-4,0),(-1,0),(9,0)。
2018—2019学年度第一学期八年级上册数学期末试卷1(考试时间:100分 ,总分:120分) 班级:__________姓名:__________分数:____________一.选择题(共10小题,每小题3分,满分30分)题目 1 2 3 4 5 6 7 8 9 10答案13.一个多边形的内角和是其外角和的3倍,则此多边形的边数为____________14.如图,在△ABC 中,∠B=45°,∠C=30°,AD ⊥BC 于点D,BD=4cm,则AC 长为_____________cm. 15.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO,CO,则∠BOC= ____________16.如图,从边长为(a+5)cm 的正方形纸片中剪去一个边长为 (a+2) cm 的正方形(a >0),剩余部分沿虚线拼成一个长方形(不重叠无缝隙),则长方形的面积为____________ cm ² 三.解答题(一)(本大题3小题,每小题6分,共18分)17.因式分解:x 3—2x 2+ x 18.已知多项式A=(x+1)²—(x ²—4y ).(1)化简多项式A. (2)若x+2y=1,求A 的值.19.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,求CD的长.22.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数. 五.解答题(三)(本大题3小题,每小题9,共27分)23、如图,正五边形ABCDE的对角线BD,CE相交于点F,图中等腰三角形有____个,分别是________________________。
浙教版2018-2019学年八年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.32.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A.B.C.D.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>5.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为()A.6cm2B.5cm2C.4cm2D.3cm26.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°7.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个8.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2B.k>2C.0<k<2D.0≤k≤29.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.如图,过点A0(2,0)作直线l:y=x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A.()2015B.()2016C.()2017D.()2018二.填空题(共6小题,满分18分,每小题3分)11.命题“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是,它是命题.12.直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为.13.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为14.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD=°.15.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为.16.在Rt△ABC中,∠C=90°,AC=4,BC=3.以AC为边在Rt△ABC的外部拼接一个合适的直角△ACD,使得拼成的图形是一个以AB为腰的等腰△ABD,则AD=.三.解答题(共7小题,满分52分)17.(6分)对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?18.(6分)如图,已知AB=CD,AC=DB.求证:∠A=∠D.19.(6分)图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.20.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?21.(8分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=;方案二:y2=.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到个文具盒(直接回答即可).22.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.(1)当t为多少时,△ABD的面积为6cm2?(2)当t为多少时,△ABD≌△ACE,并说明理由(可在备用图中画出具体图形).23.(10分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B 重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析1.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,=BC•AD=×2×=,∴S△ABC故选:B.2.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.3.解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.4.解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.5.解:延长AP 交BC 于E , ∵AP 垂直∠B 的平分线BP 于P , ∠ABP=∠EBP ,又知BP=BP ,∠APB=∠BPE=90°, 在△ABP 与△BEP 中,∴△ABP ≌△BEP (ASA ), ∴S △ABP =S △BEP ,AP=PE , ∴△APC 和△CPE 等底同高, ∴S △APC =S △PCE , 设△ACE 的面积为m , ∴S △ABE =S △ABC +S △ACE =10+m ∴S △PBC=S △ABE ﹣S △ACE =﹣=5故选:B .6.解:∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB )=70°. ∵CE 是△ABC 的角平分线, ∴∠ACE=∠ACB=35°. 故选:B .7.解:①对顶角相等,相等的角不一定是对顶角,①假命题; ②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题; ④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题; 真命题的个数为0,8.解:由一次函数y=(k﹣2)x+k的图象不经过第三象限,则经过第二、四象限或第一、二、四象限,只经过第二、四象限,则k=0.又由k<0时,直线必经过二、四象限,故知k﹣2<0,即k<2.再由图象过一、二象限,即直线与y轴正半轴相交,所以k>0.当k﹣2=0,即k=2时,y=2,这时直线也不过第三象限,故0≤k≤2.故选:D.9.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.10.解:由y=x,得l的倾斜角为30°,点A0坐标为(2,0),∴OA0=2,∴OA1=OA0=,OA2=OA1═,OA3=OA2═,OA4=OA3═,…,∴OA n=()n OA n﹣1=2()n.∴OA2016=2×()2016,A2016A2107的长×2×()2016=()2016,故选:B.11.解:“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°,是真命题.故答案为在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°,真12.解:根据题意知xy=3,则xy=6,故答案为:y=.13.解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣114.解:∵∠ACB=90°,∠B=55°,∴∠A=35°,∵∠ACB=90°,D是AB的中点,∴DA=DC,∴∠ACD=∠A=35°,故答案为:35.15.解:如图所示:∵正方形ABCD边长为25,∴∠A=∠B=90°,AB=25,过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,∴四边形APGB是矩形,∴∠2+∠3=90°,PG=AB=25,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠FGB,∴△BGF∽△PGE,∴=,∴=,∴GB=5.∴AP=5.同理DE=5.∴PE=AD﹣AP﹣DE=15,∴EG==5,∴小正方形的边长为.故答案为:.16.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB===5.当如图1所示时,AD==2;当如图2所示时,AD=AB=5.故答案为:5或2.17.解:(1)①,解得,;②,解得≤m<,因为原不等式组有2个整数解,所以2<≤3,解得,﹣4≤p<﹣;(2)T(x,y)=ax+2by﹣1,T(y,x)=ay+2bx﹣1,所以ax+2by﹣1=ay+2bx﹣1,所以(a﹣2b)(x﹣y)=0所以a=2b.18.证明:在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D.19.解:(1)以AB为对角线的正方形AEBF如图所示,正方形的周长为4 .=×4 ×=4.(2)等腰△EFG如图所示,S△EFG20.解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当s1=s2时,﹣1.5t+330=t,解得t=132.即行驶132分钟,A、B两车相遇.21.解:(1)由题意,可得y1=40×5+10(x﹣5)=10x+150,y2=(40×5+10x)×0.9=9x+180.故答案为10x+150,9x+180;(2)当x=20时,y1=10×20+150=350,y2=9×20+180=360,可看出方案一省钱;(3)如果10x+150≤540,那么x≤39,如果9x+180≤540,那么x≤40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.故答案为40.22.解:(1)作AH⊥BC于H,∵AB=AC,∴BH=CH.∵∠BAC=90°,∴AH=BC.∵BC=6cm,∴AH=3cm.当点D在线段BC上时,BD=6﹣2t,∴,解得:t=1.点D在CB的延长线上时,BD=2t﹣6,∴解得:t=5.∴综上所知:当t=1或5时,△ABD的面积为6;(2)∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图2,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图3,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,∴当t=2或6时,△ABD≌△ACE.23.解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′==8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).。
一、选择题(每题4分,共40分)1. 下列数中,是负数的是()A. -2.5B. 0C. 3.14D. -π2. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 已知函数y = -2x + 1,当x = 3时,y的值为()A. -5B. -3C. 1D. 54. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标是()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 下列方程中,解集为空集的是()A. x + 2 = 0B. 2x - 4 = 0C. x² + 1 = 0D. 2x + 3 = 06. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°7. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 非等腰三角形8. 已知一元二次方程x² - 4x + 3 = 0,则方程的两个根分别是()A. 1和3B. -1和3C. 1和-3D. -1和-39. 在等腰三角形ABC中,AB = AC,若BC = 6cm,则腰AB的长度是()A. 3cmB. 4cmC. 5cmD. 6cm10. 下列函数中,y值随x值增大而减小的函数是()A. y = 2x + 3B. y = -3x - 2C. y = 1.5x + 1D. y = -1.5x + 2二、填空题(每题4分,共40分)11. 若a > 0,b < 0,则|a| _______ |b|。
12. 一次函数y = kx + b(k ≠ 0)的图象经过第一、三、四象限,则k _______ 0,b _______ 0。
13. 已知点A(-2,3),点B(4,-1),则线段AB的中点坐标为(______,______)。
八年级上学期期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确的选项的代入填入相应空格,每小题3分,共30分)1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列图形是轴对称图形的是()A.B.C.D.3.若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.>4.若点A(x1,y1)和点B(x2,y2)在正比例函数y=﹣3x的图象上,当x1<x2时,y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不一定5.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.A B中点B.B C中点C.A C中点D.∠C的平分线与AB的交点6.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处7.下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等8.如图,CE是△ABC的角平分线,EF∥BC,交AC于点F.已知∠AFE=64°,则∠FEC的度数为()A.64°B.32°C.36°D.26°9.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣410.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.14:00 B.14:20 C.14:30 D.14:40二、填空题(本题有10小题,每小题3分,共30分)11.在Rt△ABC中,∠C=90°,∠A=25°,则∠B的度数为.12.用不等式表示:a与b的和不大于1.13.命题“对顶角相等”的逆命题为.14.已知点A(2,﹣3)与点B(a,﹣3)关于y轴对称,则a的值为.15.等腰三角形的两边长分别为2和4,则其周长为.16.已知y=2x+7,当﹣2<x<1时,y的取值范围为.17.已知Rt△ABC中,AB=3,AC=4,则BC的长为.18.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为.19.如图,已知D,E是△ABC中BC边上的两点,且AD=AE,请你再添加一个条件:,使△ABD≌△ACE.20.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上(不包括原点),则此时点C′的坐标是.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.解不等式7x﹣2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.22.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.23.如图,已知∠BAC,用直尺和圆规作图:(1)作∠BAC的平分线;(2)在∠BAC的平分线上作点M,使点M到P、Q两点的距离相等.(不写作法,保留作图痕迹)24.某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x (人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?25.如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点.延长BC至点F,使CF=CE.(1)求∠ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.26.如图,一次函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,线段AB的中点为D (3,2).将△AOB沿直线CD折叠,使点A与点B重合,直线CD与x轴交于点C.(1)求此一次函数的解析式;(2)求点C的坐标;(3)在坐标平面内存在点P(除点C外),使得以A、D、P为顶点的三角形与△ACD全等,请直接写出点P的坐标.八年级上学期期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确的选项的代入填入相应空格,每小题3分,共30分)1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答即可.解答:解:点P(1,﹣2)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.>考点:不等式的性质.分析:根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.解答:解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.4.若点A(x1,y1)和点B(x2,y2)在正比例函数y=﹣3x的图象上,当x1<x2时,y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不一定考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据x1<x2即可得出结论.解答:解:∵正比例函数y=﹣3x中,k=﹣3<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选A.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.5.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.A B中点B.B C中点C.A C中点D.∠C的平分线与AB的交点考点:三角形的外接圆与外心;勾股定理的逆定理.专题:应用题.分析:了解直角三角形的判定及三角形的外心的知识,是解答的关键.解答:解:因为AB=1000米,BC=600米,AC=800米,所以AB2=BC2+AC2,所以△ABC是直角三角形,∠C=90度.因为要求这三个村庄到活动中心的距离相等,所以活动中心P的位置应在△ABC三边垂直平分线的交点处,也就是△ABC外心处,又因为△ABC是直角三角形,所以它的外心在斜边AB的中点处,故选A.点评:本题比较容易主要考查直角三角形的判定及三角形的外心的知识.6.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处考点:方向角.分析:根据方向角的定义进行判断,即可解答.解答:解:A.因为C在A的北偏东60°方向的15米处,故本选项错误;B.因为A在C的南偏西60°方向的15米处,故本选项错误;C.C在B的北偏东60°方向的10米处,正确;D.因为B在A的北偏东60°方向的5米处,故本选项错误;故选C.点评:本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.7.下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等考点:全等三角形的判定.分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.解答:解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、斜边相等的两个等腰直角三角形,根据ASA或者HL均能判定它们全等,故此选项正确;D、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;故选:C.点评:本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.8.如图,CE是△ABC的角平分线,EF∥BC,交AC于点F.已知∠AFE=64°,则∠FEC的度数为()A.64°B.32°C.36°D.26°考点:平行线的性质.分析:先根据平行线的性质求出∠ACB的度数,再由CE是△ABC的角平分线得出∠ECF的度数,根据三角形外角的性质即可得出结论.解答:解:∵EF∥BC,∠AFE=64°,∴∠ABC=∠AFE=64°.∵CE是△ABC的角平分线,∴∠ECF=∠ACB=×64°=32°,∴∠FEC=∠AFE﹣∠ECF=64°﹣32°=32°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.9.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4考点:解二元一次方程组;解一元一次不等式组.分析:理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.解答:解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.点评:当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.10.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.14:00 B.14:20 C.14:30 D.14:40考点:一次函数的应用.分析:根据甲60分走完全程40千米,求出甲的速度,再由图中两图象的交点可知,两人在走了30千米时相遇,从而可求出甲此时用了45分,则乙用了(45﹣10)分,所以乙的速度为:10÷35,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的10分,即可求出答案.解答:解:因为甲60分走完全程0千米,所以甲的速度是千米/分,由图中看出两人在走了30千米时相遇,那么甲此时用了30=45分,则乙用了(45﹣10)=35分,所以乙的速度为:(40﹣30)÷35=千米/分,所以乙走完全程需要时间为:40÷=140分,此时的时间应加上乙先前迟出发的10分,现在的时间为14:点30分;故选C点评:本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.二、填空题(本题有10小题,每小题3分,共30分)11.在Rt△ABC中,∠C=90°,∠A=25°,则∠B的度数为65°.考点:直角三角形的性质.分析:根据直角三角形两锐角互余可得∠A+∠B=90°,再代入∠A的度数可得答案.解答:解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=25°,∴∠B=90°﹣25°=65°,故答案为:65°.点评:此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,两个锐角互余.12.用不等式表示:a与b的和不大于1a+b≤1.考点:由实际问题抽象出一元一次不等式.分析: a与b的和为a+b,不大于即≤,据此列不等式.解答:解:由题意得,a+b≤1.故答案为:a+b≤1.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:如果两个角相等,那么它们是对顶角.故答案为:如果两个角相等,那么它们是对顶角.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.已知点A(2,﹣3)与点B(a,﹣3)关于y轴对称,则a的值为﹣2.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.解答:解:由点A(2,﹣3)与点B(a,﹣3)关于y轴对称,得a+2=0.解得a=﹣2,故答案为:﹣2.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.等腰三角形的两边长分别为2和4,则其周长为10.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:根据等腰三角形的性质,本题要分情况讨论:当腰长为2或是腰长为4两种情况.解答:解:等腰三角形的两边长分别为2和4,当腰长是2时,三角形的三边是2,2,4,由于2+2=4,所以不满足三角形的三边关系;当腰长是4时,三角形的三边是4,4,2,满足三角形的三边关系,则三角形的周长是10cm.故答案为:10.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.已知y=2x+7,当﹣2<x<1时,y的取值范围为3<y<9.考点:一次函数的性质.专题:计算题.分析:先分别计算自变量为﹣2和1时的函数值,然后根据一次函数的性质确定函数值的取值范围.解答:解:当x=﹣2时,y=2x+7=﹣4+7=3;当x=1时,y=2x+7=2+7=9,所以当﹣2<x<1时,y的取值范围为3<y<9.故答案为3<y<9.点评:本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.17.已知Rt△ABC中,AB=3,AC=4,则BC的长为或5.考点:勾股定理.专题:分类讨论.分析:分两种情况解答:①AC为斜边,BC,AB为直角边;②BC为斜边,AC,AB为直角边;根据勾股定理计算即可.解答:解::①AC为斜边,BC,AB为直角边,由勾股定理得BC===;②BC为斜边,AC,AB为直角边,由勾股定理得BC===5;所以BC的长为或5.故答案为:或5.点评:本题考查了勾股定理在直角三角形中的正确运用,注意分类讨论解决问题.18.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为y=1(1≤x ≤4).考点:坐标与图形性质.分析:由两点的坐标可知两点在直线y=1上,然后再写出满足题目的条件的x的取值范围即可.解答:解:∵以(1,1),(4,1)为端点的线段在直线y=1上,∴在两点为端点的线段上任意一点可表示为:y=1(1≤x≤4).故答案为:y=1(1≤x≤4).点评:本题主要考查坐标与图形性质,此题涉及到函数思想,注意线段上的点包括两端点是解题的关键.19.如图,已知D,E是△ABC中BC边上的两点,且AD=AE,请你再添加一个条件:BD=EC,使△ABD≌△ACE.考点:全等三角形的判定.专题:开放型.分析:根据等腰三角形性质求出∠ADE=∠AED,推出∠ADB=∠AEC,根据全等三角形的判定推出即可.解答:解:BD=EC,理由是:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=180°,∠AED+∠AEC=180°,∴∠ADB=∠AEC,在△ABD和△ACE中∴△ABD≌△ACE故答案为:BD=EC.点评:本题考查了等腰三角形的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,此题是一道开放型的题目,答案不唯一.20.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上(不包括原点),则此时点C′的坐标是(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).考点:坐标与图形变化-平移.分析:分两种情况:①B在AC左边;②B在AC右边;进行讨论,根据等边三角形的性质即可得到点C′的坐标.解答:解:①如图1,B在AC左边;C′在第一象限,点C′的坐标是(,2);C′在第四象限,点C′的坐标是(,﹣2);②B在AC右边;C′在第二象限,点C′的坐标是(﹣,2);C′在第三象限,点C′的坐标是(﹣,﹣2).故点C′的坐标是(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).故答案为:(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).点评:考查了坐标与图形变化﹣平移,解题关键是熟练掌握等边三角形的性质,以及分类思想的运用.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.解不等式7x﹣2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.考点:解一元一次不等式;在数轴上表示不等式的解集;一元一次不等式的整数解.分析:先解不等式然后把解集在数轴上表示出来,求出负整数解.解答:解:解不等式得:x≥﹣2,在数轴上表示为:,负整数解为:﹣1,﹣2.点评:本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:由全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证,所以通过证∠A=∠C,那么就需证明这两个角所在的三角形全等.解答:解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△AFB与△CED中,∴△AFB≌△CED(SAS).∴∠A=∠C.∴AB∥CD.点评:本题考查了三角形全等的判定及性质;题目采用从结论开始推理容易突破.有平行推出需要找到有关角相等,进而分析需证三角形全等.23.如图,已知∠BAC,用直尺和圆规作图:(1)作∠BAC的平分线;(2)在∠BAC的平分线上作点M,使点M到P、Q两点的距离相等.(不写作法,保留作图痕迹)考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.分析:(1)根据角平分线的基本作图作法作图即可;(2)连接PQ,作PQ的垂直平分线交∠BAC的平分线于点M即可.解答:解:(1)(2)如图所示:点评:此题主要考查角平分线和线段的垂直平分线的作法;注意角平分线到角两边的距离相等;线段垂直平分线上到线段两个端点的距离相等是解题关键.24.某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x (人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?考点:一次函数的应用.分析:(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去3人后的学生票金额;优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论解答:解:(1)按优惠方案一可得y1=25×3+(x﹣3)×15=15x+30(x≥3),按优惠方案二可得y2=(15x+25×3)×80%=12x+60(x≥3);(2)∵y1﹣y2=3x﹣30(x≥3),①当y1﹣y2=0时,得3x﹣30=0,解得x=10,∴当购买10张票时,两种优惠方案付款一样多;②当y1﹣y2<0时,得3x﹣30<0,解得x<10,∴3≤x<10时,y1<y2,选方案一较划算;③当y1﹣y2>0时,得3x﹣30>0,解得x>10,当x>10时,y1>y2,选方案二较划算.点评:本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.25.如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点.延长BC至点F,使CF=CE.(1)求∠ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.考点:等边三角形的判定与性质;等边三角形的性质.专题:计算题.分析:(1)根据等边三角形的判定得出△ABC是等边三角形,即可得出∠ABC的度数;(2)根据BE=FE得出∠F=∠CEF=30°,再等边三角形的性质得出∠EBC=30°,即可证明;(3)过E点作EG⊥BC,根据三角形面积解答即可.解答:解:(1)∵BE⊥AC于E,E是AC的中点,∴△ABC是等腰三角形,即AB=BC,∵AB=AC,∴△ABC是等边三角形,∴∠ABC=60°;(2)∵BE=FE,∴∠F=∠CEF,∵∠ACB=60°=∠F+∠CEF,∴∠F=30°,∵△ABC是等边三角形,BE⊥AC,∴∠EBC=30°,∴∠F=∠EBC,∴BE=EF;(3)过E点作EG⊥BC,如图:∵BE⊥AC,∠EBC=30°,AB=BC=2,∴BE=,CE=1=CF,在△BEC中,EG=,∴.点评:此题考查了等边三角形的判定与性质,等腰直角三角形的性质,以及含30度直角三角形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.26.如图,一次函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,线段AB的中点为D (3,2).将△AOB沿直线CD折叠,使点A与点B重合,直线CD与x轴交于点C.(1)求此一次函数的解析式;(2)求点C的坐标;(3)在坐标平面内存在点P(除点C外),使得以A、D、P为顶点的三角形与△ACD全等,请直接写出点P的坐标.考点:一次函数综合题.分析:(1)根据线段中点的性质,可得B点,A点坐标,根据待定系数法,可得函数解析式;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)当△ACD≌△AP1D时,根据C、P点关于D点对称,可得P点坐标,当△ACD≌△DP2A时,根据全等三角形的判定与性质,可得答案;当△ACD≌△DP3A时,根据线段中点的性质,可得答案.解答:解:(1)设A点坐标为(a,0),B点坐标为(0,b),由线段AB的中点为D(3,2),得=3,=2,解得a=6,b=4.即A(6,0),B(0,4)(2)如图1:连接BC,设OC=x,则AC=CB=6﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,42+x2=(6﹣x)2,解得x=,即C(,0);(3)①当△ACD≌△APD时,设P1(c,d),由D是PC的中点,得=3,=2,解得c=,d=4,即P1(,4);如图2:,②当△ACD≌△DP2A时,做DE⊥AC与E,P2F⊥AC与F点,DE=2,CE=3﹣=,由△CDE≌△AP2F,AF=CE=,P2F=DE=2,OF=6﹣=,∴P2(,﹣2);③当△ACD≌△DP3A时,设P3(e,f)A是线段P2P3的中点,得=6,=0,解得e=,f=2,即P3(,2),综上所述:P1(,4);P2(,﹣2);P3(,2).点评:本题考查了一次函数综合题,利用了轴对称的性质,勾股定理的应用和全等三角形的性质等知识,分类讨论是解题关键,以防遗漏.。
浙江省金华市东阳市2018-2019学年八年级(上)期末数学试卷2018-201年八年级(上)期末数学试卷一、仔细选一选(每小题3分,共30分)1.下列计算正确的是()A。
1+1=2 B。
√4=±2 C。
2×1=2 D。
2÷1=±22.若m>n,下列不等式不一定成立的是()A。
m+2>n+2 B。
2m>2n C。
m+n>2n D。
m>n+23.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A。
∠A=25°,∠B=65° B。
∠A:∠B:∠C=2:3:5 C。
a:b:c=3:4:5 D。
a=6,b=10,c=124.已知:将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A。
经过第一、二、四象限 B。
与x轴交于(1,0) C。
与y轴交于(0,1) D。
y随x的增大而减小5.估计的值应在()A。
5和6之间 B。
6和7之间 C。
7和8之间 D。
8和9之间6.如图,经过点B(-2,-2)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2>kx+b的解集为()A。
x-1 C。
x-27.如图,AB⊥CD,且AB=CD。
E、F是AD上两点,CE⊥AD,BF⊥AD。
若CE=5,BF=3,EF=2,则AD的长为()A。
4 B。
5 C。
6 D。
78.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A。
2个 B。
3个 C。
4个 D。
5个9.不等式-4x-k≤-3的负整数解是-1,-2,那么k的取值范围是()A。
8≤k<12 B。
8<k≤12 C。
2≤k<3 D。
2018-2019学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个是符合题意的 .1有意义,则x 的取值范围是 A .1x >-且1x ≠ B .1x ≥-C .1x ≠D .x ≥-1且1x ≠2.下列各式从左到右的变形正确的是A .yx y x -+-= -1B .y x =11++y xC .y x x +=y +11D .2)3(y x -=223yx3.在实数722,3π23.14中,无理数有 A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是 A .22B .19C .17D . 17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是 A .25B .35C .13D .127. 下列事件中,属于必然事件的是A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B. 某班级11名学生中,至少有两名同学的生日在同一个月份C. 用长度分别为2cm ,3cm ,6cm 的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001⋅⋅⋅(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数 8.下列运算错误的是== = D.2(2=9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE =2,AB=4,则AC 长是 A.9B. 8C. 7D. 610. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是A.①②B.①③C.②③D.①②③二、填空题(共10个小题,每小题2分,共20分)11.25的平方根是.12.计算:2= .13.若实数x y,0y=,则代数式2xy的值是.14. 已知:ABC∆中,AB AC=,30B A∠-∠=︒,则A∠=.15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x 颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是14,则y与x之间的关系式是.19.已知1132a b+=,则代数式254436a ab bab a b-+--的值为.(第17题图)20.已知: 如图,ABC △中,45ABC ∠=,H 是高AD 和BE的交点,12AD =,17BC =,则线段BH 的长为.三、解答题 (共12个小题,共60分)21.(4分)22.(5+23.(4分)1= , 3(2)64x y += ,求代数式22x yx y ++的值.24. (5分)先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.25.(5分).已知: 如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5分) 解关于x 的方程:32211x x x +=-+ .27.(4分))在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m 的值.28.(5分) 某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?29.(5分) 在ABC ∆中,AB ,BC ,AC 形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC ∆中,(即ABC ∆三个顶点都在小正方形的顶点处),如图1所示,这样不需要ABC ∆高,借用网格就能计算出它的面积.(1)△ABC 的面积为 ;(2)如果MNP ∆2的正方形网格(每个小正方形的边长为1)画出相应的格点MNP ∆,并直接写出MNP ∆的面积为 .30.(5分) 已知:如图,在ABC ∆中,90C ∠=︒.(1)求作:ABC ∆的角平分线AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若6AC =,8BC =,求CD 的长.31.(5分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是(填写序号即可); (2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b--=-小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简. 32.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是 边AC 上一点,且DE BC =. 求证:DEA C ∠=∠.顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试题答案及评分参考二、填空题三、解答题21. 3分(各1分)=4分22. 解:原式=5(1512)--………………………………… 4分(前2分后2分)=8-5分23 解:∵1= , 3(2)64x y += ,∴ 124x y x y -=⎧⎨+=⎩………………………………………………2分(各1分)解得21x y =⎧⎨=⎩……………………………………………4分(各1分)∴2222213215x y x y ++==++………………………………………5分24 解:原式=(2)(2)5323(2)x x x x x x +---⎛⎫÷⎪--⎝⎭………………………1分 =293(2)23x x x x x --⨯--……………………………………………2分 =(3)(3)3(2)23x x x x x x +--⨯-- ……………………………3分=239x x +……………………………………………4分∵ 2310x x +-= ∴ 231x x +=∴ 原式=22393(3)313x x x x +=+=⨯=……………………5分25.证明:∵BD AE =,∴BD AD AE AD -=-.即AB DE =. ……………………………………………………………… 1分∵BC ∥EF ,∴B E ∠=∠. ……………………………………………………………… 2分又∵C F ∠=∠……………………………………………………………… 3分在ABC ∆和DEF ∆中,,,,B E C F AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ABC ∆≌DEF ∆. ………………………………………………………4分 ∴ AC DF =. …………………………………………………………… 5分26. 解:方程两边同乘以(1)(1)x x +-,……………………………………………1分3(1)2(1)2(1)(1)x x x x x ++-=+-. ……………………………………………2分 223+32222x x x x +-=-. ……………………………………………3分解这个整式方程,得5x =-. …………………………………………… 4分 检验:当5x =-时,(1)(1)0x x +-≠.…………………………………………5分5x ∴=-是原方程的解.27.…………………………………………… 3分 (2)依题意,得64105m +=…………………………………………… 4分解得 2m =…………………………………………… 5分 所以m 的值为228. 解:设该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得105.130003000=-xx …………………………………3分 解这个方程得100x = …………………………………………4分 经检验,100x =是所列方程的根. ………………………………5分 答:该服装厂原计划每天加工100件服装.29. 解: (1)ABC ∆的面积为 4.5 …………………………………………2分正确画图………………………………………4分 (2)MNP ∆的面积为 7 ………………………………………… 5分30. 解:(1)如图 ………………1分(2)过点D 作DE ⊥AB 于E . ………………2分∵DE ⊥AB ,∠C =90° ∴由题意可知DE =DC , ∠DEB =90° 又∵DE =DC ,AD =AD ∴AD 2-ED 2=AD 2-DC 2 ∴AE =AC =6………………3分∵A B =10 ∴BE =AC -AE =4 ………………4分 设DE =DC =x ,则BD =8-x∴在Rt △BED 中 ()22168x x +=-∴x =3………………5分 ∴CD =3.31. (1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分解:原式()222444a a ab a b b-+=-()24ab a b b =-()4aa b b =-24a ab b =-………………5分32.证明:过点D 作BC 的平行线交CA 的延长线于点F .……………… 1分∴C F ∠=∠.∵点A 是BD 的中点,∴AD=AB . …………………………… 2分 在△ADF 和△ABC 中,,,,C F DAF BAC AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△ABC .………………… 3分 ∴DF=BC .…………………………… 4分 ∵DE=BC , ∴DE=DF .∴F DEA ∠=∠. ………………………………………………………… 5分 又∵C F ∠=∠,∴C DEA ∠=∠. …………………………………………………………… 6分其它证法相应给分。
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是A. B. C. D.【答案】A【解析】解:A、在第四象限,故本选项正确;B、在第一象限,故本选项错误;C、在第二象限,故本选项错误;D、在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.3.小亮的体重为,用四舍五入法将精确到的近似值为A. 48B.C. 47D.【答案】B【解析】解:精确到的近似值为.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为A. B. 2 C. D.【答案】D【解析】解:,该三角形是直角三角形,.故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数,函数值y随自变量x的增大而减小,且,则函数的图象大致是A. B.C. D.【答案】B【解析】解:一次函数,y随着x的增大而减小,,一次函数的图象经过第二、四象限;,,图象与y轴的交点在x轴下方,一次函数的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到,而,则,所以一次函数的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数、b为常数,是一条直线,当,图象经过第一、三象限,y随x的增大而增大;当,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为.6.如图,点B、E、C、F在同一条直线上,,,要用SAS证明≌ ,可以添加的条件是A. B. C. D.【答案】C【解析】解:,,可添加条件,理由:在和中,,≌ ;故选:C.根据得出,添加条件,则利用SAS定理证明 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A. B. C. D.【答案】D【解析】解:,,、FH分别为AC、AB的垂直平分线,,,,,,,故选:D.根据三角形内角和定理求出,根据线段垂直平分线的性质得到,,根据等腰三角形的性质得到,,计算即可.此题主要考查线段的垂直平分线的性质等几何知识线段的垂直平分线上的点到线段的两个端点的距离相等.8.小苏和小林在如图1所示的跑道上进行米折返跑在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图2所示下列叙述正确的是A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D. 小林在跑最后100m的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,,所以小苏跑全程的平均速度小于小林跑全程的平均速度,而路程相同,根据速度路程时间故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏,根据行程问题的数量关系可以求出甲、乙用的时间多,而路程相同,根据速度路程时间的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9.4的平方根是______.【答案】【解析】解:,的平方根是.故答案为:.根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.已知点,关于y轴对称的点的坐标为______.【答案】【解析】解:首先可知点,再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是.故答案为:.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.在实数,,,,中,无理数有______个【答案】2【解析】解:,,,是有理数,,是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.12.若点在函数的图象上,则______.【答案】【解析】解:点在函数的图象上,,解得,,故答案为:.根据点在函数的图象上,可以求得m的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系.【答案】【解析】解:下列关于建立平面直角坐标系的认识,合理的有,尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系,故答案为:根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边中,D、E分别是边AB、AC上的点,且,则______【答案】180【解析】解:是等边三角形,≌.,,,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知,利用SAS判定≌ ,从而得出,所以,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在中,,AD平分,,,则点D到直线AB的距离是______.【答案】【解析】解:作于E,,,,,平分,,,.故答案为:.作于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知的三条边长分别为3,4,6,在所在平面内画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条【答案】7【解析】解:如图所示:当,,,,,,时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:,即,.的整数部分为1.的小数部分为解决问题:已知a是的整数部分,b是的小数部分,求的平方根.【答案】解:,,,,,,,,,则25的平方根是.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地如图是汽车行驶时离C站的路程千米与行驶时间小时之间的函数关系的图象.填空:______km,AB两地的距离为______km;求线段PM、MN所表示的y与x之间的函数表达式;求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【答案】240 390【解析】解:由题意和图象可得,千米,A,B两地相距:千米,故答案为:240,390由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:MN所表示的函数关系式为:由得,解得:由得,解得:由图象可知当行驶时间满足:,小汽车离车站C的路程不超过60千米根据图象中的数据即可得到A,B两地的距离;根据函数图象中的数据即可得到两小时后,货车离C站的路程与行驶时间x之间的函数关系式;根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:,求x的值.【答案】解:,,.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:.【答案】解:原式.【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在中,,BE、CD是中线求证:.【答案】证明:,,、CD是中线,,,,在和中,,≌ ,.【解析】由等腰三角形的性质得出,由已知条件得出,证明≌ ,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是内部的一点,,过点D作,,垂足分别为E、F,且求证:为等腰三角形.【答案】证明:,,.在和中,≌ ,,,,,即,.【解析】欲证明,只要证明即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.完成下列步骤,画出函数的图象;列表、填空;描点:连线观察图象,当x______时,y随x的增大而增大;结合图象,不等式的解集为______.【答案】2 0【解析】解:填表正确画函数图象如图所示:由图象可得:时,y随x的增大而增大;由图象可得:不等式的解集为;故答案为:2;0;;.根据函数值填表即可;根据图象得出函数性质即可;根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价元与产品的日销售量件之间的关系如表:已知日销售量y是销售价x的一次函数.求日销售量件与每件产品的销售价元之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:设日销售量件与每件产品的销售价元之间的函数表达式是,,解得,,即日销售量件与每件产品的销售价元之间的函数表达式是;当每件产品的销售价定为35元时,此时每日的销售利润是:元,即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量件与每件产品的销售价元之间的函数表达式;根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.问题解决:如图1,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y 轴交于点B,以AB为腰在第二象限作等腰直角,,点A、B的坐标分别为A______、B______.求中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点请你借助小明的思路,求出点C的坐标;类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标,点B坐标,过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数图象上一动点,若是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】【解析】解:针对于一次函数,令,,,令,,,,故答案为,;如图1,由知,,,,,过点C作轴于E,,,,,,是等腰直角三角形,,在和中,,≌ ,,,,;如图2,过点D作轴于F,延长FD交BP于G,,点D在直线上,设点,,轴,,,同的方法得, ≌ ,,,如图2,,,,或,或,当时,,,,,当时,,,,,即:,或,利用坐标轴上点的特点建立方程求解,即可得出结论;先构造出 ≌ ,求出AE,CE,即可得出结论;同的方法构造出 ≌ ,分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。
2018-2019学年八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.1,2,3 B.4,5,10 C.7,8,9 D.9,10,202.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≠0 C.x>﹣2且x≠0 D.x≠﹣24.直角三角形两锐角的平分线相交所夹的钝角为()A.125°B.135°C.145°D.150°5.下列说法中,正确的是()A.斜边对应相等的两个直角三角形全等B.底边对应相等的两个等腰三角形全等C.面积相等的两个等边三角形全等D.面积相等的两个长方形全等6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形ABCD,正方形CEFG,正方形KHIJ,正方形JLMN的边长分别是3,5,2,3,则最大正方形ROPQ的面积是()A.13 B.26 C.47 D.947.如果不等式组的解集是x>7,则n的取值范围是()A.n≤7 B.n≥7 C.n=7 D.n<78.在平面直角坐标系中,已知A(﹣1,﹣1)、B(2,3),若要在x轴上找一点P,使AP+BP 最短,则点P的坐标为()A.(0,0)B.(﹣,0)C.(﹣1,0)D.(﹣,0)9.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤10.如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABO,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.下列结论正确的有()个:(1)△OBC≌△ABD;(2)点E的位置不随着点C位置的变化而变化,点E的坐标是(0,);(3)∠DAC的度数随着点C位置的变化而改变;(4)当点C的坐标为(m,0)(m>1)时,四边形ABDC的面积S与m的函数关系式为S=m2.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=.12.在直角坐标系中,若点A(m+1,2)与点B(3,n)关于y轴对称,则m+n=.13.已知△ABC是等腰三角形,若∠A=50°,则∠B=.14.命题“直角三角形斜边上的中线是斜边的一半”的逆命题是命题(填“真”或“假”).15.如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为.16.如图,函数y=﹣2x和y=kx+4的图象相交于点A(m,3),则关于的x不等式kx+4+2x ≥0的解集为.17.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P 的坐标是.18.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE=.三、解答题(第19题6分,第20、21、22题8分,第23题12分,第24题各10分,第25题14分,共66分)19.解不等式2(x﹣1)≥4﹣3(x﹣3),并把解在数轴上表示出来.20.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.21.在平面直角坐标系中,已知一条直线经过点A(1,1),B(﹣2,7)和C(a,﹣3),求a的值.22.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.23.荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.24.小灰灰和灰太狼一起进行晨练,小灰灰从狼堡先跑8分钟后,灰太狼才从同一起点沿同一路线开始跑,它们的速度一直保持不变,经过2分钟后两人相遇,小灰灰跑过的路程s 和所用的时间t之间的关系如图所示,根据图象回答下列问题:(1)写出这个情景中的变量是;(2)小灰灰的速度是每分钟米;(3)在图中画出灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象,并写出函数表达式.(不要求写出自变量t的取值范围)25.如图,△OAB是等边三角形,过点A的直线l:y=﹣x+m与x轴交于点E(4,0)(1)求m的值及△OAB的边长;(2)在线段AE上是否存在点P,使得△PAB的面积是△OAB面积的一半?若存在,试求出点P的坐标,若不存在,请说明理由;(3)在直线AE上是否存在点M,使得MA=MB?若存在,请求出点M的坐标;若不存在,请说明理由.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.1,2,3 B.4,5,10 C.7,8,9 D.9,10,20【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能够组成三角形;B中,5+4=,9<10,不能组成三角形;C中,7+8=15>9,能组成三角形;D中,9+10=19<20,不能组成三角形.故选C.2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣2,3)在第二象限.故选B.3.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≠0 C.x>﹣2且x≠0 D.x≠﹣2【考点】函数自变量的取值范围.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由y=中,得x+2≠0,解得x≠﹣2,自变量x的取值范围是x≠﹣2,故选:D.4.直角三角形两锐角的平分线相交所夹的钝角为()A.125°B.135°C.145°D.150°【考点】三角形内角和定理.【分析】作出图形,根据直角三角形两锐角互余可得∠BAC+∠ABC=90°,再根据角平分线的定义可得∠OAB+∠OBA=45°,然后根据三角形的内角和定理列式计算即可得解.【解答】解:如图,∵∠C=90°,∴∠BAC+∠ABC=180°﹣90°=90°,∵AD、BE分别是∠BAC和∠ABC的平分线,∴∠OAB+∠OBA=×90°=45°,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣45°=135°.故选B.5.下列说法中,正确的是()A.斜边对应相等的两个直角三角形全等B.底边对应相等的两个等腰三角形全等C.面积相等的两个等边三角形全等D.面积相等的两个长方形全等【考点】全等图形.【分析】只有一边和一直角对应相等的两个三角形不能判定全等;只有一对对应边相等的两个等腰三角形不一定全等;面积相等的两个等边三角形边长一定相等,因此一定全等;面积相等的两个长方形边长不一定相等,故不一定全等.【解答】解:A、斜边对应相等的两个直角三角形全等,说法错误;B、底边对应相等的两个等腰三角形全等,说法错误;C、面积相等的两个等边三角形全等,说法正确;D、面积相等的两个长方形全等,说法正确;故选:C.6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形ABCD,正方形CEFG,正方形KHIJ,正方形JLMN的边长分别是3,5,2,3,则最大正方形ROPQ的面积是()A.13 B.26 C.47 D.94【考点】勾股定理.【分析】由勾股定理得出DG2=32+52,KN2=22+32,PO2=DG2+KN2,即可得出最大正方形的面积.【解答】解:由勾股定理得:DG2=32+52,KN2=22+32,PO2=DG2+KN2即最大正方形E的面积为:PO2=32+52+22+32=47.故选:C.7.如果不等式组的解集是x>7,则n的取值范围是()A.n≤7 B.n≥7 C.n=7 D.n<7【考点】解一元一次不等式组.【分析】求出每个不等式的解集,根据不等式的解集和不等式组的解集即可求出答案.【解答】解:,∵解不等式①得:x>7,∵不等式②的解集是x>n,不等式组的解集为x>7,∴n≤7.故选:A.8.在平面直角坐标系中,已知A(﹣1,﹣1)、B(2,3),若要在x轴上找一点P,使AP+BP 最短,则点P的坐标为()A.(0,0)B.(﹣,0)C.(﹣1,0)D.(﹣,0)【考点】轴对称-最短路线问题;坐标与图形性质.【分析】根据题意画出坐标系,在坐标系内找出A、B两点,连接AB交x轴于点P,求出P点坐标即可.【解答】解:如图所示,连接AB交x轴于点P,则P点即为所求点.∵A(﹣1,﹣1),设直线AB的解析式为y=kx+b(k≠0),∴,解得,∴直线A′B的解析式为y=x+,∴当y=0时,x=﹣,即P(﹣,0).故选D.9.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤【考点】一次函数的性质.【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【解答】解:将A(1,1)代入直线中,可得+b=1,解得b=;将B(3,1)代入直线中,可得+b=1,解得b=﹣;将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选B.10.如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABO,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.下列结论正确的有()个:(1)△OBC≌△ABD;(2)点E的位置不随着点C位置的变化而变化,点E的坐标是(0,);(3)∠DAC的度数随着点C位置的变化而改变;(4)当点C的坐标为(m,0)(m>1)时,四边形ABDC的面积S与m的函数关系式为S=m2.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;坐标与图形性质;等边三角形的性质.【分析】(1)易证∠OBC=∠ABD,即可证明△OBC≌△ABD,即可解题;(2)根据(1)容易得到∠OAE=60°,然后在中根据直角三角形30°,所对的直角边等于斜边的一半可以得到AE=2,从而得到E的坐标是固定的.(3)根据∠OAE=60°可得∠DAC=60°,可得∠DAC的度数不会随着点C位置的变化而改变;即可证明该结论错误;(4)根据△OBC≌△ABD,可得四边形ABDC的面积S=S△ACD+S△ABD=S△ACD+S△OBC,即可解题.【解答】解:(1)∵△AOB是等边三角形,∴OB=AB,∠OBA=∠OAB=60°,又∵△CBD是等边三角形∴BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(1)正确;(2)∵△OBC≌△ABD,∵∠BAD=∠BOC=60°,又∵∠OAB=60°,∴∠OAE=180°﹣∠OAB﹣∠BAD=60°,∴Rt△OEA中,∵∠OAE=60°,∴∠AEO=30°,∴AE=2OA=2,∴OE==,∴点E的位置不会发生变化,E的坐标为E(0,);(2)正确;(3)∵∠OAE=60°,∴∠DAC=60°,∴∠DAC的度数不会随着点C位置的变化而改变;(3)错误;(4)∵△OBC≌△ABD,∴四边形ABDC的面积S=S△ACD+S△ABD=S△ACD+S△OBC=AC•ADsin∠DAC+OB•OCsin∠BOC=×(m﹣1)m×+×1×m×=m2,故(4)正确;故选.二、填空题(每小题3分,共24分)11.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=﹣6.【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.12.在直角坐标系中,若点A(m+1,2)与点B(3,n)关于y轴对称,则m+n=﹣2.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m+1,2)与点B(3,n)关于y轴对称,∴m+1=﹣3,n=2,解得:m=﹣4,n=2,则m+n=﹣4+2=﹣2.故答案为:﹣2.13.已知△ABC是等腰三角形,若∠A=50°,则∠B=50°或65°或80°.【考点】等腰三角形的性质.【分析】此题要分三种情况进行讨论:①∠C为顶角;②∠A为顶角,∠B为底角;③∠B为顶角,∠A为底角.【解答】解:∵∠A=70°,△ABC是等腰三角形,∴分三种情况:①当∠C为顶角时,∠B=∠A=50°,②当∠A为顶角时,∠B=÷2=65°,③当∠B为顶角时,∠B=180°﹣50°×2=80°,综上所述:∠B的度数为50°、65°、80°,故答案为:50°或65°或80°.14.命题“直角三角形斜边上的中线是斜边的一半”的逆命题是假命题(填“真”或“假”).【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.然后判断真假即可.【解答】解:命题“直角三角形斜边上的中线是斜边的一半”的逆命题是一边上的中线等于这边的一半的三角形是直角三角形,为假命题,故答案为:假.15.如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为24.【考点】勾股定理;勾股定理的逆定理.【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.【解答】解:在RT△ABC中,AB===5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,∴阴影部分的面积=△ABD的面积﹣△ABC的面积=AB×BD﹣BC×AC=30﹣6=24.故答案为:24.16.如图,函数y=﹣2x和y=kx+4的图象相交于点A(m,3),则关于的x不等式kx+4+2x ≥0的解集为x≤﹣1.5.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式kx+4+2x ≥0的解集即可.【解答】解:将点A(m,3)代入y=﹣2x得,﹣2m=3,解得,m=﹣,所以点A的坐标为(﹣1.5,3),由图可知,不等式kx+4+2x≥0的解集为x≤﹣1.5.故答案为x≤﹣1.5.17.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P 的坐标是(6,4).【考点】坐标与图形性质.【分析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.【解答】解:设点P的横坐标为x,则点P的纵坐标为x﹣2,由题意得,x+x﹣2=10,解得x=6,x﹣2=4,∴P(6,4).故答案为:(6,4).18.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE=39°.【考点】全等三角形的判定与性质.【分析】连接AE、BD,证△DAB≌△BCF,得出BD=BF,关键等腰三角形的性质推出∠BDF=∠BFD,求出∠ADF=∠CFD,求出∠ABF=∠BFC+2∠CFD,∠BAF=∠AFC+2∠CFE,代入求出即可.【解答】解:连接BD、AE,∵DA⊥AB,FC⊥AB,∴∠DAB=∠BCF=90°,在△DAB和△BCF中,,∴△DAB≌△BCF(SAS),∴BD=BF,∴∠BDF=∠BFD,又∵AD∥CF,∴∠ADF=∠CFD,∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,同理可得,∠BAF=∠AFC+2∠CFE,又∵∠AFB=51°,∴∠ABF+∠BAF=129°,∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,∴∠DFE=39°,故答案为:39°.三、解答题(第19题6分,第20、21、22题8分,第23题12分,第24题各10分,第25题14分,共66分)19.解不等式2(x﹣1)≥4﹣3(x﹣3),并把解在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】去括号、移项、合并同类项、系数化为1即可求解,然后在数轴上表示出来即可.【解答】解:去括号,得2x﹣2≥4﹣3x+9,移项,得2x+3x≥4+9+2,合并同类项,得5x≥15,洗漱化成1得x≥3..20.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.【解答】解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=CF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF,BF=CE.21.在平面直角坐标系中,已知一条直线经过点A(1,1),B(﹣2,7)和C(a,﹣3),求a的值.【考点】一次函数图象上点的坐标特征.【分析】设直线AB解析式为y=kx+b,将A与B坐标代入求出k与b的值,确定出直线AB解析式,代入C坐标即可求得a的值.【解答】解:设直线AB解析式为y=kx+b,将点A(1,1),B(﹣2,7)代入得:,解得:k=﹣2,b=3,∴直线AB解析式为y=﹣2x+3,∵直线AB经过点C(a,﹣3),∴﹣3=﹣2a+3∴a=3.22.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.【考点】勾股定理.【分析】(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)设CD的长为x,然后用x表示出DB、DE、BF利用勾股定理得到有关x的方程,解之即可.【解答】解:(1)画角平分线正确,保留画图痕迹(2)设CD=x,作DE⊥AB于E,则DE=CD=x,∵∠C=90°,AC=6,BC=8.∴AB=10,∴EB=10﹣6=4.∵DE2+BE2=DB2,∴x2+42=(8﹣x)2,x=3,即CD长为3.23.荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.【考点】二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.【解答】解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元);∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.24.小灰灰和灰太狼一起进行晨练,小灰灰从狼堡先跑8分钟后,灰太狼才从同一起点沿同一路线开始跑,它们的速度一直保持不变,经过2分钟后两人相遇,小灰灰跑过的路程s 和所用的时间t之间的关系如图所示,根据图象回答下列问题:(1)写出这个情景中的变量是时间t和路程S;(2)小灰灰的速度是每分钟100米;(3)在图中画出灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象,并写出函数表达式.(不要求写出自变量t的取值范围)【考点】一次函数的应用.【分析】(1)根据图中信息得出变量即可;(2)根据图中信息得出速度即可;(3)根据题意画出图象即可.【解答】解:(1)这个情景中的变量是时间t和路程S,故答案为:时间t和路程S;(2)小灰灰的速度是米/每分钟,故答案为:100;(3)灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象如图,故函数表达式为:y=200x﹣400.25.如图,△OAB是等边三角形,过点A的直线l:y=﹣x+m与x轴交于点E(4,0)(1)求m的值及△OAB的边长;(2)在线段AE上是否存在点P,使得△PAB的面积是△OAB面积的一半?若存在,试求出点P的坐标,若不存在,请说明理由;(3)在直线AE上是否存在点M,使得MA=MB?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)将E坐标代入直线l解析式求出m的值,确定出直线l,根据三角形AOB为等边三角形,且A在直线l上,设等边三角形边长为2a,表示出A坐标,代入直线l方程求出a的值,即可确定出等边三角形边长;(2)求出三角形AOB面积,由△PAB的面积是△OAB面积的一半,确定出三角形PAB 面积,求出B到AE的距离BD,确定出AP长,由P在直线l上,设出P坐标,利用两点间的距离公式求出p的值,确定出P坐标即可;(3)首先求得AB的解析式,然后求得经过AB的中点且与AB垂直的直线的解析式,然后求得与AE的交点即可.【解答】解:(1)将E(4,0)代入直线l方程得:0=﹣4×+m,即m=,∴直线l解析式为y=﹣x+,过A作AC⊥OB,∵△ABC为等边三角形,∴OC=BC=OB,设等边△ABC边长为2a,则有OC=a,AC==a,即A(a,a),代入直线l方程得:a=﹣a+,解得:a=1,即A(1,),则OAB边长为2;(2)过B作BD⊥AE,∵直线l的斜率为﹣,即倾斜角为150°,AB=BE=2,∴∠AEB=∠BAE=30°,∴BD=1,∵S△PAB=S△OAB,S△OAB=×2×=,∴S△PAB=AP•BD=AP=,即AP=,设P坐标为(p,﹣p+),∴AP2=(1﹣p)2+(+p﹣)2=3,解得:p=或p=﹣,则P的坐标为(,)或(﹣,);(3)∵A的坐标是(1,),△OAB是等边三角形,∴B的坐标是(2,0).∴AB的中点的坐标是(,).设AB的解析式是y=kx+b,根据题意得:,解得:,则AB的解析式是y=﹣x+2.设经过AB的中点且与AB垂直的直线的解析式是y=x+c,则×+c=,解得:c=0,则解析式是y=x.代入y=﹣x+得x=﹣x+,解得:x=2.则y=.则M的坐标是(2,).2016年8月27日。
2018-2019年八年级(上)数学期末考试卷全卷满分100分.考试时间为100分钟.一、选择题(本大题共6小题,每小题2分,共12分.) 1.在下列各数中,无理数是 A . 4B .3πC .227D . 38 2.在平面直角坐标系中,若点P 坐标为(2,-3),则它位于第几象限 A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知一次函数y =kx +b ,函数值y 随自变量x 的增大而减小,且kb <0,则函数y =kx +b 的图像大致是 AB4.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F , 过F 作DE ∥BC ,交AB 于点D ,交AC 于点E .若BD =3, DE =5,则线段EC 的长为 A .3B .4C .2D .2.55.在平面直角坐标系中,把直线y =-2x +3沿y 轴向上平移 两个单位长度后,得到的直线的函数关系式为 A . y =-2x +1B . y =-2x -5C . y =-2x +5D . y =-2x +76.下列关系中,y 不是..x 的函数关系的是A .长方形的长一定时,其面积y 与宽xB .y =xC .高速公路上匀速行驶的汽车,其行驶的路程y 与行驶的时间xD .y =x 二、填空题(本大题共10小题,每小题2分,共20分.) 7.16的平方根是 ▲ ,5的算术平方根是 ▲ .8.小亮用天平称得一个罐头的质量为2.026 kg ,近似数2.026精确到0.1是 ▲ . 9.如图,AB =AC ,要使△ABE ≌△ACD ,应添加的条件是 ▲ .(添加一个条件即可)10.已知甲、乙从同一地点出发,甲往东走了4 km ,乙往南走了3 km ,这时甲、乙相距 ▲ km .ABCE DF(第4题)A(第13题)ABCDE (第9题) (第12题)11.点A (2,-3)关于x 轴对称的点的坐标为 ▲ ,点B (-3,1)到y 轴的距离 是 ▲ .12.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,则关于x 的不等式x +b >kx -1的解集为 ▲ .13.如图,在△ABC 中,AB =AC ,D 为BC 的中点,且∠BAD =25°,则∠C 的度数是 ▲ °. 14.某社区有一块空地需要绿化,某绿化组承担了此项任务,该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示.3小时后,绿化 组每小时比开始多完成50 m 2,则当t >3时,S 与t 的函 数关系式为 ▲ .15.如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的 点F 处,折痕为AE .已知AB =6cm ,BC =10cm . 则EC 的长为 ▲ cm .16.如图,一束光线从点O 射出,照在经过A (1,0)、B (0,1)的镜面上的点D ,经AB反射后,反射光线又照到竖立在y 轴位置的镜面,经y 轴再反射的光线恰好通过点A ,则点D 的坐标为 ▲ .三、解答题(本大题共10小题,共68分.) 17.(4分)计算:(π+1)0+||3-2-(-3)2.18.(6分)求下列各式中的x .(1)4x 2 =81; (2)(x +1)3-27=0.)(第14题)E(第15题)19.(6分)已知:如图,AC=AE,∠1=∠2,AB=AD. 求证:BC =DE.20.(6分)已知一次函数y=kx+b的图像经过点(1,2),(0,4).(1)求一次函数的表达式;(2)在所给直角坐标系中画出此函数的图像;(3)根据图像回答:当x▲时,y>0.21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是▲.O4321-44321-3-2-1-1-2-3-4y55-5-5BAC(第19题)AC12BD ExO4321-44321-3-2-1-1-2-3-4y(第20题)(第21题)22.(8分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.(7分)已知:如图,∠BAC 的平分线与BC 的垂直平分线交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F .求证:BE =CF .A(第23题)24.(8分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD 中,BC =4,AB =2,点E 为AD 的中点,BD 和CE 相交 于点P .求△BPC 的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:请你按照小明的思路解决这道思考题.(第24题)A BCD E P建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P 的坐标,从而可求得△BPC 的面积.25.(8分)小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图像.(注:小明和妈妈始终在同一条笔直的公路上行走,图像上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当x的值为▲时,小明与妈妈相距1 500米.分)(第25题)26.(9分) 【模型建立】(1)如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E . 求证:△BEC ≌△CDA ; 【模型应用】(2)① 已知直线l 1:y =43x +4与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转45o 至直线l 2,如图2,求直线l 2的函数表达式;② 如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为(8,-6),点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线y =-2x +6上的动点且在第四象限.若△APD 是以点D 为直角顶点的等腰直角三角形,请直接写出点D 的坐标.(第26题)ABC DE(图1)(图2) (图3)2018-2019年八年级(上)数学期末考试卷参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.±4, 5 8.2.0 9. AD =AE (答案不唯一) 10.511.(2,3) 3 12.x >-1 13.65 14. S =200t -300 15.83 16.)32,31(三、解答题(本大题共9小题,共68分)17.(1)解:原式=1+2-3-3 ……………………………………………………2分=-3……………………………………………………………………4分18.(1)解:481=x 2 ……………1分 (2)解:27=)1+x (3………………1分 481±=x ……………2分 3=1+x … …………2分29±=x ………3分 2=x ……………3分19.证明:∵∠1=∠2∴∠1+∠EAB =∠2+∠EAB即∠CAB =∠EAD …………………………………………………… …………2分 在△CAB 和△EAD 中,CA =EA ,∠CAB =∠EAD ,AB =AD∴△CAB ≌△EAD (SAS )……………………………………………………5分 ∴BC =DE ……………………………………………………………………6分 20.(1) 将(1,2)和(0,4)分别代入y =kx +b ,得⎩⎨⎧=+=b b k 42 解得 ⎩⎨⎧=-=42b k∴y =-2x +4 ………………………………………………………………………3分 (2)列表,描点,连线 (图像略)…………………………………………………5分 (3)<2……………………………………………………………………………………6分 21.(1)图略 …………………………………………………………………………………2分 (2)图略 …………………………………………………………………………………4分 (3)(a +4,-b ) ……………………………………………………………………… 6分 22.(1)由题意设y =kx +b , 将x =15,y =25和x =20,y =20分别代入y =kx +b ,得⎩⎨⎧+=+=b k bk 20201525 ………………………………………………………………………2分解得 ⎩⎨⎧=-=401b k ………………………………………………………………………3分∴y =-x +40…………………………………………………………………………4分 (2)将x =35代入y =-x +40得y =5 (35-10)×5=125(元)答:当销售价定为35元时,此时每日的销售利润是125元. ………………………8分 23.解:连接DB 、DC∵点D 在BC 的垂直平分线上∴DB =DC ……………………………………………………………………………1分 ∵AD 平分∠BAC , DE ⊥AB ,DF ⊥AC∴DE =DF ∠BED =∠CFD =90o …………………………………………3分在Rt △BED 和Rt △CFD 中,∠BED =∠CFD =90o⎩⎨⎧==DF DE DCDB ∴Rt △BED ≌Rt △CFD (HL )………………………………………………………5分 ∴BE =CF ………………………………………………………………………………7分 24.解:建立如图直角坐标系,则由题意得 A (0,2),B (0,0),C (4,0),D (4,2),E (2,2)………………………………………………………………………………1分 由待定系数法求得BD :y =x 21CE :y =-x +4…………………………………5分 ⎪⎩⎪⎨⎧+-==4x y 2x y 解得P )34,38( …………………………………………………7分∴△BPC 的面积=4×34×21=3825.(1)45×50=2250(米),点C 的坐标为(45,750)…………1分 设线段BC 的函数表达式为:y =kx +b , 把(30,3000),(45,750)代入得⎩⎨⎧=+=+75045300030b k b k , 解得:⎩⎨⎧=-=7500150b k ∴y =﹣150x +7500 …………………3分 (2) 设AC 的函数表达式为:y =k 1x+b 1把(0,3000),(45,750)代入得⎩⎨⎧=+=75045300011b k b解得:⎩⎨⎧=-=30005011b k ∴y =﹣50x +3000妈妈的函数表达式:y =﹣50x +3000 …………4分750 ÷250=3分,∴E (48,0)ED 的函数表达式:y =250x -12000 ………………………………………………………5分 ⎩⎨⎧-=+-=12000250300050x y x y 解得:⎩⎨⎧==50050y x∴D (50,500)实际意义:小明将在50分钟时离家500米的地方将伞送到妈妈手里………………6分 (3)线段OB 的函数解析式为:y =100x (0≤x ≤30), 由(1)线段BC 的表达式为∴y=﹣150x +7500,(30<x ≤45)当小明与妈妈相距1500米时,即﹣50x +3000﹣100x =1500或100x ﹣(﹣50x +3000)=1500或(﹣150x +7500)﹣(﹣50x +3000)=1500, x =10或x =30,∴当x 为10或30时,小明与妈妈相距1500米 ……………………………………8分 26.(1)证明:∵△ABC 为等腰直角三角形 ∴CB =CA 又∵,AD CD BE EC ⊥⊥ 90=∠=∠∴E D 9090180=-=∠+∠BCE ACD 又∵EBC BCE ∠+∠=90EBC ACD ∠=∠∴在△ACD 与△CBE 中⎪⎩⎪⎨⎧=∠=∠∠=∠CB CA EBC ACD E DCBE ACD ∆≅∆∴ ………………………………………………………3分(2)过点B 作AB BC ⊥交l 2于C过C 作y CD ⊥轴于D∵BAC ∠=45Δ为等腰ΔRt ABC ∴ 由(1)可知:BAO CBD ∆∆≅OB CD ,AO BD ==∴∵1.l y x =+4433 0-==x y , 3,0)(-∴A40==y ,x (0,4)B ∴ ……………………………………………………………4分4 3====∴OB CD AO BD ,4,7)(7.34-∴=+=∴C OD ……………………………………………………………5分设2l 的解析式为b kx y +=⎩⎨⎧+-=+-=∴b k b k 3047 ⎩⎨⎧-=-=∴217b k 2l 的解析式:217--=x y ……………………………………………………………7分 (3)D (4,-2),(322-,320)………………………………………………………………9分。
一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √9B. 0.123456789C. πD. -32. 已知a=5,b=-3,则a² - 2ab + b²的值为()A. 16B. 10C. 4D. 23. 如果一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的周长为()A. 22cmB. 24cmC. 26cmD. 28cm4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = x - 15. 已知一次函数y=kx+b的图象经过点(1,2)和点(-2,-4),则该函数的解析式为()A. y = 2x - 2B. y = -2x + 2C. y = 2x + 2D. y = -2x - 26. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()A. 15°B. 45°C. 60°D. 75°7. 下列各数中,能被3整除的是()A. 12345B. 23456C. 34567D. 456788. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 等腰三角形D. 平行四边形9. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²10. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解为()A. x = 2,x = 3B. x = 3,x = 2C. x = 1,x = 6D. x = 6,x = 1二、填空题(每题3分,共30分)11. (3分)若a=2,b=-3,则a² - 2ab + b²的值为______。
一、选择题(每题3分,共30分)1. 下列数中,哪个数是负数?A. -5B. 0C. 5D. -102. 下列图形中,哪个图形是轴对称图形?A. 矩形B. 等腰三角形C. 平行四边形D. 正方形3. 下列等式中,哪个等式是正确的?A. 3a + 2 = 2a + 5B. 2a + 3 = 3a + 2C. 3a - 2 = 2a - 5D. 3a + 2 = 2a + 54. 下列数中,哪个数是质数?A. 10B. 11C. 12D. 145. 下列运算中,哪个运算是正确的?A. 5 × (3 + 2) = 25B. 5 × (3 + 2) = 35C. 5 × (3 - 2) = 25D. 5 × (3 - 2) = 156. 下列图形中,哪个图形的面积最大?A. 正方形B. 长方形C. 等腰三角形D. 等边三角形7. 下列代数式中,哪个代数式是同类项?A. 2x^2 + 3yB. 4x^2 + 5xyC. 3x^2 + 2y^2D. 5x^2 - 3xy8. 下列方程中,哪个方程的解是x = 2?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 59. 下列函数中,哪个函数是正比例函数?A. y = 2x + 3B. y = 3x^2C. y = 2xD. y = 3x^310. 下列数中,哪个数是立方根?A. 27B. 64C. 81D. 100二、填空题(每题3分,共30分)11. 3 + 5 = ________,5 - 3 = ________,3 × 5 = ________,5 ÷ 3 = ________。
12. 下列数中,_______是正数,_______是负数,_______是零。
13. 下列图形中,_______是轴对称图形,_______是中心对称图形。
14. 下列方程中,_______的解是x = 3。
2018-2019学年八年级(上)期末数学试卷
一、仔细选一选(每小题3分,共30分)
1.下列计算正确的是()
A.=2 B.=±2 C.=2 D.=±2 2.若m>n,下列不等式不一定成立的是()
A.m+2>n+2 B.2m>2n C.>D.m2>n2
3.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()
A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
C.a:b:c=::D.a=6,b=10,c=12
4.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y =kx+b的说法正确的是()
A.经过第一、二、四象限B.与x轴交于(1,0)
C.与y轴交于(0,1)D.y随x的增大而减小
5.估计的值应在()
A.5和6之间B.6和7之间C.7和8之间D.8和9之间6.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2>kx+b的解集为()
A.x<﹣2 B.x>﹣1 C.x<﹣1 D.x>﹣2
7.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=5,BF=3,EF =2,则AD的长为()
A.4 B.5 C.6 D.7
8.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()
A.2个B.3个C.4个D.5个
9.不等式﹣4x﹣k≤0的负整数解是﹣1,﹣2,那么k的取值范围是()A.8≤k<12 B.8<k≤12 C.2≤k<3 D.2<k≤3
10.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的
是()
A.①②③④B.②④C.①②③D.①③④
二、认真填一填(每小题4分,共24分)
11.不等式2x﹣5>4x﹣1的最大整数解是.
12.若式子在实数范围内有意义,则x的取值范围是.
13.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB
=,则CD=.
14.对于正实数a,b作新定义:a⊙b=2﹣,若25⊙x2=4,则x的值为.15.在计算机编程中有这样一个数字程序:对于二个数a,b,用min{a,b}表示这两个数中较小的数.例如:min{﹣1,2}=﹣1,则min{x+1,﹣2x+2}的最大值为.16.在边长为6的正方形ABCD中,点E是射线BC上的动点(不与B,C重合),连结AE,将△ABE沿AE向右翻折得△AFE,连结CF和DF,若△DFC为等腰三角形,则BE的长为.
三、全面解一解(共68分,各小题都必须写出解答过程
17.解下列不等式组,并把解集在数轴上表示出来:
18.如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD
求证:(1)∠BAC=∠ECD;
(2)BC=ED.
19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1)
(1)将△ABC关于y轴对称得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;
(2)把△A1B1C1平移,使点B1平移到B2(3,1),请作出△A1B1C1平移后的△A2B2C2,并写出A2的坐标;
(3)已知△ABC中有一点D(a,b),求△A2B2C2中的对应点D2的坐标.
20.如图1,在△ABC中,AB=2,AC=,AD是△ABC的高,且BD=1.(1)求BC的长;
(2)E是边AC上的一点,作射线BE,分别过点A,C作AF⊥BE于点F,CG⊥BE于点G,如图2,若BE=,求AF与CG的和.
21.如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B 两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
22.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320
元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
23.在平面直角坐标系xOy中,A(0,2),B(4,2),C(4,0).P为长方形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分长方形ABCO为四个小长方形,若这四个小长方形中有一个长方形的周长等于OA,则称P为长方形ABCD 的长宽点,例如:如图中的P(,)为长方形ABCO的个长宽
点.
(1)在点D(,),E(2,1),F(,)中,长方形ABCO的长宽点是;
(2)若G(a,)为长方形ABCO的长宽点,求a的值;
(3)若一次函数y=k(x﹣2)﹣2(k≠0)的图象上存在长方形ABCO的长宽点,求k 的取值范围.
24.如图,直线l:y=kx+3与x轴、y轴分别交于A、B两点,=,OM⊥AB,垂足为点M,点P为直线l上的一个动点(不与A、B重合).
(1)求直线y=kx+3的解析式;
(2)当点P运动到什么位置时△BOP的面积是6;
(3)在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与△OMP全等,若存在,请求出所有符合条件的点P的坐标,若不存在,请说明理由.。