高中数学 全称量词与存在量词
- 格式:ppt
- 大小:848.00 KB
- 文档页数:27
感悟“全称量词与存在量词”全称量词与存在量词是《课程标准》中新增加的内容,是现实生活世界中经常使用的两类量词,它可以更好地帮助同学们学习与掌握数学逻辑知识。
但学习这部分知识有一定难度,需要同学们从生活和数学中的一些实例来进行理解与领悟,本文对该部分内容作一阐释,供参考。
一、要点点拨1.全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示。
(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示。
2.全称命题与存在性命题(1)全称命题:含有全称量词的命题。
“x Mp x”。
∀∈,()(2)存在性命题:含有存在量词的命题。
“x Mq x”。
∃∈,()3.同一个全称命题、存在性命题,由于自然语言的不同,可以有不同的表述方法,现列表如下,在应用中应灵活选择。
4.对于全称命题和存在性命题进行否定时,要仔细推敲。
从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题。
常见词语的否定如下:二、范例剖析例1 下列语句是不是全称或者存在性命题: (1)有一个实数a ,a 不能取对数; (2)所有不等式的解集A ,都有A R ⊆; (3)三角形都是周期函数吗? (4)有的向量方向不定。
分析:利用全称量词与存在量词的概念来判断。
解析:(1)存在性命题; (2)全称命题; (3)不是命题; (4)存在性命题。
评注:(3)由于不是命题,当然就不是全称或者存在性命题了。
例2 写出下列命题的否定,并判断其真假: (1)p :x R ∀∈,2104x x -+≥; (2)q :所有的正方形都是矩形; (3)r :x R ∃∈,2220x x ++≤。
分析:(1)、(2)是全称命题,其否定应为存在性命题;(3)是存在性命题,其否定应为全称命题。
解析:(1)p ⌝:x R ∃∈,2104x x -+<,假命题。
全称量词和存在量词预习导学基础梳理.全称量词与全称命题.语“对所有的”、“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.常,将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示.那么,全称命题“对M中的任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”..存在量词和特称命题.语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示,含有存在量词的命题,叫做特称命题.称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,p(x0),读作“存在一个x0属于M,使p(x0)成立”..全称命题的否定.般地,对于含有一个量词的全称命题的否定,有下面的结论:称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).称命题的否定是特称命题..特称命题的否定.般地,对于含有一个量词的特称命题的否定,有下面的结论:称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).称命题的否定是全称命题.,►自测自评.命题“有理数的平方仍是有理数”,用符号“∀”写成全称命题为∀x∈{有理数},x2∈{有理数}..给出下列命题:①所有的偶数都不是素数;②∀x>5且x∈R,都有x>3;③有的奇数不是素数;④存在x∈R,x既能被5整数也能被3整除.其中是全称命题的命题序号是①②.随堂巩固.下列命题是特称命题的是(D).偶函数的图象关于y轴对称.正四棱柱都是平行六面体.不相交的两条直线是平行直线.存在无理数大于等于3.有下列命题:1)所有的素数是奇数;2)∀x∈R,(x-1)2+1≥1;3)有的无理数的平方是无理数;4)∃x0∈R,使2x20+x0+1=0;5)存在两条相交直线垂直于同一个平面;6)∃x 0∈R ,x 20≤0.中是真命题的为________________(填序号).案:(2)(3)(6).给下列四个结论:“∀x ∈R ,2x >0”的否定是“∃x ∈R ,2x >0”;“∀x ∈N ,(x -1)2>0”的否定是“∃x ∈N ,(x -1)2≠0”;“∃x ∈R ,lg x <1”的否定是“∀x ∈R ,lg x ≥1”;“∃x ∈R ,tan x =2”的否定是“∀x ∈R ,tan x >2或tan x <2”.中正确结论的序号是______.案:③④.判断下列命题的真假.1)有的正方形不是矩形;2)有理数是实数;3)存在一个数,它的相反数是它本身;4)∀x ∈N ,x 2>0;5)∀a ,b ∈R ,a 2+b 2≥(a +b )22;6)∃x ∈R ,x 2+1<0.析:(1)是假命题,所有的正方形都是矩形;2)是真命题,所有的有理数都是实数;3)是真命题,0的相反数就是它本身;4)是假命题,自然数0的平方不大于0;5)是真命题,因为对于任意实数a ,b ,都有a 2+b 2≥2ab ,从而有a 2+b 2≥(a +b )22恒成立; 6)是假命题,任何一个实数x 都不满足x 2+1<0. .命题p :∀x ∈[-1,2],4x -2x +1+2-a <0,若命题p 为真命题,求实数a 的取值范围. 析:依题意,∀x ∈[-1,2],4x -2x +1+2-a <0恒成立.t =2x ,由x ∈[-1,2],得t ∈⎣⎢⎡⎦⎥⎤12,4, 4x -2x +1+2-a <0,化为a >t 2-2t +2,即a >(t -1)2+1, 命题p 等价于∀t ∈⎣⎢⎡⎦⎥⎤12,4. >(t -1)2+1恒成立,令y =(t -1)2+1. t ∈⎣⎢⎡⎦⎥⎤12,4时,y max =(4-1)2+1=10, 以只须a >10,即可得p 为真命题,所求实数a的取值范围是(10,+∞).课时达标.下列是全称命题且是真命题的是(B).∀x∈R,x2>0.∀x∈Q,x2∈Q.∃x∈Z,x20>1.∀x,y∈R,x2+y2>0.下列命题中,真命题是(A).∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数.∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数.∀m∈R,使函数f(x)=x2+mx(x∈R)是偶函数.∀m∈R,使函数f(x)=x2+mx(x∈R)是奇函数析:∵当m=0时,f(x)=x2(x∈R),f(x)是偶函数.∵当m=1时,f(x)=x2+x(x∈R),f(x)既不是奇函数也不是偶函数.A对,B、C、D错.故选A..(2013·广州二模)命题“∃x0∈R,x20+4x0+5≤0”的否定是(C).∃x0∈R,x20+4x0+5>0.∃x0∈R,x20+4x0+5≤0.∀x∈R,x2+4x+5>0.∀x∈R,x2+4x+5≤0.命题“原函数与反函数的图象关于直线y=x对称”的否定是(C).原函数与反函数的图象关于直线y=-x对称.原函数不与反函数的图象关于直线y=x对称.存在一个原函数与反函数的图象不关于直线y=x对称.存在原函数与反函数的图象关于直线y=x对称.下列命题中的真命题是(D).∃x0∈R使得sin x0+cos x0=1.5.∀x∈(0,π),sin x>cos x.∃x0∈R使得x20+x0=-1.∀x∈(0,+∞),e x>x+1.已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(C).∃x0∈R,f(x)≤f(x0).∃x 0∈R ,f (x )≥f (x 0).∀x ∈R ,f (x )≤f (x 0).∀x ∈R ,f (x )≥f (x 0).命题∀x ∈R ,x 2-x +14≥0的否定是__________________________. 案:∃x 0∈R ,x 20-x 0+14<0. .有以下三个命题:∀α∈R ,在[α,α+π]上函数y =sin x 都能取到最大值1;②若∃a ∈R ,且a ≠0,f (x+a )=-f (x )时∀x ∈R 成立,则f (x )为周期函数;③∃x ∈⎝ ⎛⎭⎪⎫-74π,-34π,使sin x <cos x .中正确命题为______(填序号).析:①为假,如α=π,ɑ∈[π,2π]时y =sin x 最大值为0;为真,f (x +2a )-f (x +a )=f (x ),x ∈R 恒成立,T =2a ;为假,sin x >cos x .案:②.已知命题:“存在x ∈[1,2],使x 2+2x +a ≥0”为真命题,则a 的取值范围________. 案:[-8,+∞)0.(2013·揭阳二模)已知函数f (x )=4|a |x -2a +1.若命题:“∃x 0∈(0,1),使f (x 0)=0”是真命题,则实数a 的取值范围为________.案:⎝ ⎛⎭⎪⎫12,+∞ 1.指出下列命题是特称命题还是全称命题,并写出其否命题,判断否命题的真假:1)直线与x 轴都有交点;2)正方形都是菱形;3)梯形的对角线相等;4)存在一个三角形,它的内角和大于180°.案:(1)全称命题,否命题为:有些直线与x 轴没有交点.真命题.2)全称命题,否命题为:有些正方形不是菱形,假命题.3)全称命题,否命题为:有些梯形对角线不相等.真命题.4)特称命题,否命题为:所有三角形内角和小于或等于180°.真命题.2.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,使x 20+2ax 0+2-a =0”.若命题“p 且q ”是真命题,求实数a 的取值范围. 析:命题p :x 2-a ≥0,即a ≤x 2,∵x ∈[1,2]时,上式恒成立,而x 2∈[1,4],∴a ≤1. 题q :Δ=(2a )2-4(2-a )≥0,即a ≥1或a ≤-2. p 且q 为真命题,∴p ,q 均为真命题,∴a =1或a ≤-2.实数a 的取值范围是{a |a =1或a ≤-2}.体验高考.(2014·湖北卷)命题“∀x∈R,x2≠x”的否定是(D).∀x0∉R,x20≠x0.∀x0∈R,x20=x0.∃x∉R,x20≠x0.∃x0∈R,x20=x0.(2014·天津卷)已知命题p:∀x>0,总有(x+1)e x>1,则綈p为(B).∃x0≤0,使得(x0+1)e x0≤1.∃x0>0,使得(x0+1)e x0≤1.∀x>0,总有(x+1)e x0≤1.∀x≤0,总有(x+1)e x0≤1析:已知命题中含有“∀”,所以该命题是一个全称命题,由全称命题的否定形式可知,其否定是一个特称命题,把全称量词改为存在量词,然后把“(x+1)e x>1”改为“(x0+1)e x ≤1”即可得到该命题的否定为:“∃x0>0,使得(x0+1)e x0≤1”,故选B..(2013·重庆卷)命题“对任意x∈R,都有x2≥0”的否定为(A).存在x0∈R,使得x20<0.对任意x∈R,都有x2<0.存在x0∈R,使得x20≥0.不存在x∈R,使得x20<0.(2013·四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则(C ).綈p :∃x ∈A ,2x ∈B.綈p :∃x ∉A ,2x ∈B.綈p :∃x ∈A ,2x ∉B.綈p :∀x ∉A ,2x ∉B.(2013·新课标全国卷Ⅰ)已知命题綈p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是(B ) .p ∧q B .綈p ∧q.p ∧綈q D .綈p ∧綈q析:对于命题p ,由于x =-1时,2-1=12>13=3-1,所以是假命题,故綈p 是真命题;对于命题q ,设f (x )=x 3+x 2-1,由于f (0)=-1<0,f (1)=1>0,所以f (x )=0在区间(0,1)上有解,即存在x ∈R ,x 3=1-x 2,故命题q 是真命题. 上,綈p ∧q 是真命题,故选B.。
第10讲:全称量词与存在量词【课程目标】1.理解全称量词、全称量词命题的定义.2.了解存在量词、存在量词命题的定义.3.会判断一个命题是全称量词命题还是存在量词命题,并会判断它们的真假.【知识梳理】知识点:全称量词和存在量词【考点解读】考点一:全称量词与存在量词命题的识别 例1.用符号“∀”“∃”表达下列命题. (1)实数都能写成小数的形式;(2)存在一实数对()x y ,,使30x y ++<成立; (3)存在实数x ,使得32x x >.一偶三反1:下列命题中,存在量词命题的个数是( ) ①实数的绝对值是非负数; ②正方形的四条边相等; ③存在整数n ,使n 能被11整除. A .1 B .2 C .3 D .0一偶三反2:给出下列命题:①存在实数01x >,使201x >;②全等的三角形必相似;③有些相似三角形全等;④至少有一个实数a ,使210ax ax -+=的根为负数.其中存在量词命题的个数为( ) A .1B .2C .3D .4一偶三反3:下列命题不是存在量词命题的是( ) A .有些实数没有平方根B .能被5整除的数也能被2整除C .在实数范围内,有些一元二次方程无解D .有一个m 使2m -与||3m -异号考点二:全称量词与存在量词命题真假判断例2.下列四个命题中,既是特称命题又是真命题的是( )A .斜三角形的内角是锐角或钝角B .至少有一个实数x ,使30x >C .任一无理数的平方必是无理数D .存在一个负数x ,使12x>一偶三反1:下列命题中,是全称量词命题且是真命题的是( ) A .对任意的a 、b R ∈,都有222220a b a b +--+< B .菱形的两条对角线相等C .x R ∀∈xD .正方形是矩形一偶三反2:下列四个命题,真命题的是( ) A .2,10x Q x ∀∈-= B .,510x Z x ∃∈-= C .,143x N x ∃∈<<D .2,20x R x x ∀∈++>一偶三反3:下列四个命题中真命题的是( ) A .,033x Z x ∃∈<< B .,410x Z x ∃∈+= C .2,40x R x ∀∈-=D .2,60x R x x ∀∈++>考点三:含量词的命题真假求参(一)例3.若“任意1{|2x x x ∈≤≤,x m ≤”是真命题,则实数m 的最小值为( )A .-12B .-2C .12D .2一偶三反1:若命题“x R ∀∈,不等式210x ax ++≥”为真命题,则a 的最大值是( ) A .0 B .2C .52-D .3-一偶三反2:若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a >B .2aC .2a >-D .2a -一偶三反3:已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤C .13a >D .13a ≤考点四:含量词的命题真假求参(二)例4.已知集合{}{}25,121A x x B x m x m =≤≤=+≤≤--,(1)若命题:,p x B x A ∀∈∈是真命题,求m 的取值范围; (2)命题:,q x A x B ∃∈∈是真命题,求m 的取值范围.一偶三反1:命题:p 存在实数x ∈R ,使得方程2210ax x 成立。