第7章 随机解释变量
- 格式:doc
- 大小:551.00 KB
- 文档页数:18
第七章思考与练习参考答案1.答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在一定的范围内变化。
2.答:相关和回归都是研究现象及变量之间相互关系的方法。
相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。
3.答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数,样本相关系数。
复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数2R 的正的平方根。
偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。
4.答:回归模型假定总体上因变量Y 与自变量X 之间存在着近似的线性函数关系,可表示为t t t u X Y ++=10ββ,这就是总体回归函数,其中u t 是随机误差项,可以反映未考虑的其他各种因素对Y 的影响。
根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:tt X Y 10ˆˆˆββ+=。
总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。
两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。
第二,总体回归函数中的0β和1β是未知的参数,表现为常数;而样本回归直线中的0ˆβ和1ˆβ是随机变量,其具体数值随所抽取的样本观测值不同而变动。
计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
17、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。
第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。
(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
第七章 虚拟变量和随机解释变量本章将讨论两种不同的模型:虚拟变量模型和随机解释变量模型,以及模型设定的其它问题。
第一节 虚拟变量模型在我们以前考虑的模型中,解释变量都是定量变量(如成本、价格、收入、产出等),但在经济研究中,因变量经常受到一些定性变量的影响(如性别、种族、季节、不同历史时期等),我们把这类定性变量称为虚拟变量。
习惯上用D表示虚拟变量,虚拟变量的取值通常为0和1。
0表示变量具备某种属性,1表示变量不具备某种属性。
一、包含一个虚拟变量的模型如果我们要研究的问题中解释变量只分为两类。
则需引入一个模拟变量。
例9.1建立模型研究中国妇女在工作中是否受到歧视。
令Y=年薪,X=工作年限⎩⎨⎧=,女性,男性101D 可以建立如下模型:i i i i u D B X B B Y +++=210 )1.9( 与一般的回归模型一样,假定0)(=i u E 男性就业者的平均年薪:i i i i X B B D X Y E 10)0,(+== )2.9(女性就业者的平均年薪:210)1,(B X B B D X Y E i i i i ++== )3.9(如果B 2=0则说明不存在性别歧视,如果02<B ,则说明存在性别歧视。
图9.1表明男女就业者的平均年薪对工龄的函数具有相同斜率B 1,即随着工龄的增长男女工资的增长幅度相同;截距不同,说明男女的初始年薪不同。
我们称这种虚拟变量只影响截距不影响斜率的模型为加法模型。
图9.1不同性别就业者的收入(加法模型,B 2<0)如果随着工龄增加,男性与女性的年薪差距也发生变化,则模型(9.1)就变为i i i i i u X D B X B B Y +++=210 )4.9(图9.2描绘了男性年薪增加较快的情况。
我们称虚拟变量只影响斜率而不影响截距的模型为乘法模型如(9.4)如果男性与女性的初始年薪和年薪增加速度都有差异,我们可以将加法模型和乘法模型结合起来,得到如下模型i i i i i i u D B X D B X B B Y ++++=3210 )5.9(模型(9.5)可以用来表示截距和斜率都发生变化的模型。
计量经济学第一部分:名词解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用¶µ01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
第7章 多重共线性习 题一、单项选择题1.如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量( )A.不确定,方差无限大B.确定,方差无限大C.不确定,方差最小D.确定,方差最小2.多元线性回归模型中,发现各参数估计量的t 值都不显著,但模型的F 值确很显著,这说明模型存在( )A .多重共线性B .异方差C .自相关D .设定偏误 3.逐步回归法既检验又修正了( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性4.如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )A .无偏的 B. 有偏的 C. 不确定 D. 确定的 5.设线性回归模型为,下列表明变量之间具有完全多重共线性的是( )A .B .C .D .其中v 为随机误差项6.简单相关系数矩阵方法主要用于检验( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性 7.设为解释变量,则完全多重共线性是( )8.下列说法不正确的是( )A. 多重共线性产生的原因有模型中大量采用滞后变量,)(22很大或R R 01122i i i iY X X u βββ=+++1202*0*0i i X X ++=1202*0*0i i X X v +++=1200*0*0i i X X ++=1200*0*0i i X X v +++=21,x x 221211211.0.021.0(.02x x A x x B x e C x x v v D x e +==++=+=为随机误差项)B. 多重共线性是样本现象C. 检验多重共线性的方法有DW检验法D. 修正多重共线性的方法有增加样本容量二、多项选择题1.能够检验多重共线性的方法有()A. 简单相关系数矩阵法B. t检验与F检验综合判断法C. DW检验法D. ARCH检验法E. White 检验2.如果模型中解释变量之间存在共线性,则会引起如下后果()A. 参数估计值确定B. 参数估计值不确定C. 参数估计值的方差趋于无限大D. 参数的经济意义不正确E. DW统计量落在了不能判定的区域3.能够检验多重共线性的方法有()A. 简单相关系数矩阵法B. DW检验法C. t检验与F检验综合判断法D. ARCH检验法E. 辅助回归法(又待定系数法)三、判断题1.多重共线性问题是随机扰动项违背古典假定引起的。
第二部分:简答题第一章1、什么是计量经济学?答:计量经济学包括广义计量经济学和狭义计量经济学,本课程中的计量经济学模型,就是狭义计量经济学意义上的经济数学模型:计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为主要内容,是由经济学、统计学和数学三者结合而成的交叉性学科。
2、计量经济学方法与一般经济数学方法有什么区别?答:计量经济学方法揭示经济活动中具有因果关系的各因素间的定量关系,它用随机性的数学方程加以描述;而一般经济数学方法揭示经济活动中各个因素间的理论关系,更多地用确定性的数学方程加以描述。
3、如何理解计量经济学在当代经济学科中的重要地位?当代计量经济学的基本特点?答:计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,计量经济学在经济学科中占据了重要的地位,主要表现在:①。
在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具权威性的一部分;②。
在1969至2003年诺贝尔经济学奖的53位获奖者中有10位与研究和应用计量经济学有关,居经济学各分支学科之首。
此外,绝大多数获奖者的研究中都应用了计量经济学方法。
③。
计量经济学方法与其他经济数学方法的结合应用得到了长足发展。
从当代计量经济学的发展动向看,其基本特点包括:⑴。
非经典计量经济学的理论与应用研究成为计量经济学越来越重要的内容;⑵。
计量经济学方法从主要用于经济预测转向经济理论假设和政策假设的检验;⑶。
计量经济学模型的应用从传统的领域转向新的领域,从宏观领域的研究开始转向微观领域的研究;⑷。
计量经济学模型的规模不再是水平高低的衡量标准,人们更喜欢建立一些简单的模型,从总量上和趋势上说明经济现象。
4、建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤包括:①设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;②收集样本数据,要考虑样本数据的完整性、准确性、可比性和一致性;③估计模型参数;④检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系?A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.∑(y-y c )=最小值B.∑(y-y c )=0C.∑(y-y c )2=最小值D.∑(y-y c )2=0E.∑(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n yx xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xxxy xyyy xx xyy x ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值一致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
第六章动态经济模型:自回归模型和分布滞后模型6.1 (1)错。
(2)对。
(3)错。
估计量既不是无偏的,又不是一致的。
(4)对。
(5)错。
将产生一致估计量,但是在小样本情况下,得到的估计量是有偏的。
(6)对。
6.2对于科克模型和适应预期模型,应用OLS法不仅得不到无偏估计量,而且也得不到一致估计量。
但是,部分调整模型不同,用OLS法直接估计部分调整模型,将产生一致估计值,虽然估计值通常是有偏的(在小样本情况下)。
6.3科克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即:Yt=α+βXt÷β λ Xt-ι ÷β λ2χt.2 +...+ ut其中O<λ<l0这实际上是假设无限滞后分布,由于0<入<1, X的逐次滞后值对Y的影响是逐渐递减的。
而阿尔蒙方法的基本假设是,如果Y依赖于X的现期值和若干期滞后值, 则权数由一个多项式分布给出。
由于这个原因,阿尔蒙滞后也称为多项式分布滞后。
即在分布滞后模型工=α + β0X t + B1X—+∙∙∙ ++ %中,假定:βi =tz0 +tz1z + a2i2 H ------ F a p i p其中P为多项式的阶数。
也就是用一个P阶多项式来拟合分布滞后,该多项式曲线通过滞后分布的所有点。
6.4(1)估计的Y值是非随机变量X1和X2的线性函数,与扰动项v无关。
(2)与利维顿方法相比,本方法造成多重共线性的风险要小一些。
6.5(1)M∣= aγxγ2+ βλγλY t-∕3lχl(l-χ2)Y l.l+ β2γ2R t-β2r2(1 -∕1)R t.l ÷(2 - ∕l—χ2)μt-∖-(1-∕ι )(1-Yι)M t_2÷[u t—(2 —∕1-χ2)〃1 ÷(I -∕ι )(1-Yz )u t-21 其中&)是a、为和72的函数。
(2)第(1)问中得到的模型高度参数非线性,它的参数需采用非线性回归技术来估计。
第7章 随机解释变量单方程线性计量经济学模型假定解释变量是确定性变量,并且与随机误差项不相关,违背这一基本假设的问题被称为随机解释变量问题。
本章介绍了随机解释变量问题的概念、产生的原因和后果、检验方法以及解决方法。
随机解释变量问题的概念对于计量经济模型n21i i k i k i 22i 110 ,,,ββββ=+++++=u X X X Y i(7.1.1)其中一个基本假设是解释变量k 21,,X X X 是确定性变量,即解释变量与随机扰动项不相关。
但是在现实经济生活中,这个假定不一定成立,这一方面是因为用于建模的经济变量的观测值一般会存在观测误差,另一方面是经济变量之间联系的普遍性使得解释变量可能在一定程度上依赖于应变量,即解释变量X 影响应变量Y ,而应变量Y 也会反过来影响解释变量X 。
模型中如果存在一个或多个随机变量作为解释变量,就称为模型出现了随机解释变量问题。
其中k x 可能与随机误差项u 不相关,就是说,解释变量121,,-k x x x 都是外生的,但k x 有可能在方程(4.4.1)中是内生的,则称原模型存在随机解释变量问题。
内生性可能源自于省略误差、测量误差,联立性等①。
为讨论方便,我们假设中2X 为随机解释变量。
在模型()中,根据解释变量2X 与随机误差项的关系,可以分为三种类型: 1)随机解释变量与随机干扰项独立)()(),(),(222===u E x E u x E u X Cov(7.1.2)2)随机解释变量与随机干扰项同期无关但异期相关n 21i 0),(),(i 2i 2 ,,,===u x E u X Cov i i①具体详见《Econometric analysis of cross section and panal data 》(Jeffrey Wooldrige,2007 )。
(7.1.3)n21i 0),(),(s -i 2s -i 2 ,,,=≠=u x E u X Cov i i(7.1.4)3)随机解释变量与随机干扰项同期相关n 21i 0),(),(i 2i 2 ,,,=≠=u x E u X Cov i i(7.1.5)实际经济问题中的随机解释变量在许多经济现象中,自变量的非随机性假定有时是不符合实际的。
因为,⑴ 许多经济变量是不能用控制的方法进行观测的,所以作为模型中的解释变量其取值就不可能是确定的,而是随机的。
⑵ 由于随机误差项中包含了模型中略去的解释变量,而略去的解释变量同模型中保留的解释变量往往存在一定的相关关系。
⑶ 在自回归模型中,因变量作为解释变量也必定是随机变量。
因此,我们必须对模型中的解释变量为随机变量且与随机项相关的情形进行讨论。
在单方程计量经济学模型中,凡是外生变量都被认为是确定性的,于是随机解释变量问题主要变现于用滞后被解释变量作为模型的解释变量的情况。
同时,由于经济活动具有连续性,使得这类模型在以时间序列数据作样本的模型中占据较大份额。
例如,消费不仅受收入的影响,还受前期消费水平的影响。
投资不仅受收入的影响,还受前期投资水平的影响。
但是,并不是所有包含滞后被解释变量的模型都会带来随机解释变量问题,下面通过几个例子来说明。
耐用品的存量由前一个时期的存量和当期收入共同决定,于是著名的“耐用品存量调整模型”表示为t t t t u Q I Q +++=-1210βββ n t ,,3,2,1 = (7.2.1)这是一个滞后被解释变量作为解释变量的自回归模型。
但是如果模型中不存在随机误差项的序列相关性,那么随机解释变量t t t u u Q 相关,而与只与11--不相关,属于上述的第一种情况。
再如,在著名的“合理预期的消费函数模型”中,首先认为消费是由对收入的预期所决定的,或者说消费是有计划的,而这个计划是根据对收入的预期制定的。
于是有:1110110---++=++=t e t t t e t t u IC u I C ββββ (7.2.2)其中,et I 表示t 期收入预期值,而预期收入与实际收入之间存在差距,用函数形式表现出来为:()e t t e t I I I 11-+-=λλ (7.2.3)该式是由合理预期理论给出来的,因此可以进一步推导出()t e t t t u I I C ++-+=-11101λβλββ()()t t t t u u C I +--+-+=--101101βλλββ()()111011---++-+-=t t t t u u C I λλλβλβ (7.2.4) 在该模型中,作为解释变量的1-t C 是一个随机解释变量,同时由于11--t t u C 与高度相关,所以它与模型(7.2.4)中的随机误差项1--t t u u λ也高度相关。
属于上述第三种类型。
随机解释变量的后果当模型存在随机解释变量时,如果仍采用普通最小二乘法估计模型参数,不同性质的随机解释变量会产生不同的后果。
对一元线性回归模型i i 10μββ++=X Y i在前面得到如下最小二乘估计量:(7.3.1)随机解释变量X 与随机干扰项μ的关系不同,参数OLS 估计量的统计性质也会不同。
7.3.1估计量的渐近特征如果一个变量是随机变量,它的精确抽样分布是很难找到的,只能是渐进结果。
例如,∑∑∑∑+==2iii12iii1y xx x x μββ当线性回归模型满足最小二乘法的假定条件时,其参数的最小二乘估计量具有无偏性和有效性。
优势最小二乘估计量并不具有这种统计特征,但随着样本容量的增加却具有了这种特征。
1)渐近无偏性设∧nβ是参数β的估计量,其中n 为样本容量,设依次抽样的样本容量n 分别为r n n n <<< 21,则∧nβ是一个随机变量,其数学期望值为E(∧n β),方差为Var(∧nβ)=E[∧nβ-E(∧nβ)]2。
随着样本容量n 取值的不同,得到下面随机解释变量序列|∧nβ|∧∧∧=rn n n βββ,,,21| E(∧nβ)|∧∧∧=)(,,)(),(21rn n n E E E βββ| Var(∧nβ)|222)]([,,)]([,)]([2211∧∧∧∧∧∧---=rr n n n n n n E E E E E E ββββββ (7.3.2)所谓渐近分布是指。
当样本容量n 趋于无穷大时,上面各随机变量序列分别收敛到一定分布。
对于均值、方差存在以下关系。
)E() E( n∧∧∞→=ββn Lim2n)]E([E ) Var( ∧∧∧∞→-=βββn Lim (7.3.3)其中)E(∧β,2)]E([E ∧∧-ββ分别是∧nβ的渐近期望值和渐进方差。
如果ββ=∧∞→) E( nn Lim则称∧nβ是β的渐近无偏估计。
即当样本容量n 充分大时,∧nβ的均值趋向于总体参数β。
以上的讨论是在样本容量充分大的情况下进行的。
如果小样本估计量是有偏的,但其估计量具有渐近无偏性,我们就可以增加样本来优化估计结果。
2)一致性一致性估计是指对于任意给定的两个任意小的正数ηε,,总存在一个充分大的样本容量0n ,使得当n>0n 时,满足ηεββ->⎭⎬⎫⎩⎨⎧<-∧1||n P (7.3.4)称估计序列ββ是∧n 的一致估计序列,即当样本容量n 充分大时,∧nβ值趋向于总体真实值的概率接近于1,记为ββ=∧∞→nn L P im (7.3.5)也可以简记为 ββ=∧lim P综上所述,由数理统计的理论可知,要想建立一个一致性估计量,必须满足两个条件ββ=∧∞→)(im n n E L 和0)(im =∧∞→nn Var L β即估计量∧nβ具有渐近无偏性,并且当样本容量充分大时,∧nβ的方差趋近于0。
3)随机解释变量模型最小二乘估计量的统计特征 随机解释变量X 的OLS 估计量可能出现下面三种情况(1)如果X 与随机误差项u 相互独立,即0)()()(==i i i i u E X E u X E ,得到的参数估计量仍然是无偏一致估计量。
由于()∑∑∑∑-=-=ii i i iii u X u X u X Xu x因此则有 []1211)()(1)(βββ=-+=∑∑∑∧iii i u E X u X E x E (7.3.6)这说明∧1β是1β的无偏估计量。
同理可以证明∧0β是0β的无偏估计量。
(2)如果X 与μ同期不相关,而异期相关,得到的参数估计量有偏,但却是一致的。
由(7.3.1)易知(7.3.7) 尽管i X 与i u 同期无关,但对任一的分母中一定包含不同期的X ;由异期相关性知i k 与i u 相关,导致,ββ1i )ˆ(≠E 即参数估计量是有偏的。
但是∑∑∑+=+=)()()ˆ(i1i 211μβμββi ii k E x xE E 1i 12i 12i i )(ar ),(ov )1lim()1(lim )(lim βμβμβμβ=+=+=+∑∑∑∑∞→i i i i i i n X V X C x nP x n P x x P(7.3.8)即在假定01im2≠∑i x nL P 的情况下,分子项等于0,于是上式成立。
这说明最小二乘估计量∧1β虽然是有偏的,但它是1β的一致估计量。
(3)如果随机解释变量X 与随机误差项u 同期相关,得到的参数估计量有偏且非一致。
由于 Cov ()0,≠i i u X 所以则有0),(1im≠=∑i i i i u X Cov u X nL P (7.3.9) 即12111lim 1lim 1limlim βββ≠-+=∑∑∑∧i ii i x nP u n P X u X n P P (7.3.10)这说明最小二乘估计量∧1β是有偏的,也不是1β的一致估计量。
同理也可以证明∧0β是有偏的,也不是0β的一致估计量。
但是需要注意的是,如果模型中带有滞后被解释变量作为解释变量,则当该滞后被解释变量与随机干扰项同期相关时,普通最小二乘估计量是有偏的且非一致的。
即使同期无关,其普通最小二乘估计量也是有偏的,因为此时肯定会出现异期相关。
总之,在存在随机解释变量问题时,采用OLS 法估计模型参数,得到的参数估计量在小样本情况下是有偏的,在大样本情况下也不具有渐进无偏性,就有可能产生严重的误导结果。
随机解释变量的检验(内生性)随机解释变量的内生性检验在国内,暂时还很少提及,这里简单介绍下国外学者的主要检验方法之一—豪斯曼检验(Hausman,1978)。
举例说明,假定我们有单一的被怀疑的内生变量u z z x y ++++=231210ββββ (7.4.1)其中,假定x 是内生性变量,21,z z 是外生的。
如果x 与u 不相关,我们应该用OLS 法估计(4.4.20)模型。