二重积分的极坐标计算方法
- 格式:ppt
- 大小:1.24 MB
- 文档页数:41
二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθy=ρsinθ
x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:
一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθy=ρsinθ代进去可以得到一个关于ρ的等式;就是ρ的最大值而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθρ=2cosθ;此时0≤ρ≤2cosθ切线为x=0 所以-2/π≤θ≤2/π
扩展资料:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。
函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为
可得到二重积分在极坐标下的表达式:。
极坐标求二重积分公式极坐标系是一种空间坐标系,具有很多非常独特的优点,可以方便快捷地解决复杂的数学计算问题。
极坐标系下的二重积分也就是离散的一维积分叠加的次数,而极坐标系下的二重积分公式是用来计算极坐标系下函数的积分值的。
让我们先来看一下极坐标系下的二重积分公式,二重积分公式就是一种通用的数学公式,用来计算极坐标系下函数的积分值。
其公式为:$$iint_{R}f(r,theta),dA=int_{0}^{2pi}int_{0}^{r}f(r,theta), r,dr,dtheta$$其中,R是极坐标系下的积分区域,f(r,θ)是极坐标系下的函数,dA代表极坐标系下的区域积分面积元,r代表极坐标系下的极径,θ代表极坐标系下的极角。
极坐标系下的二重积分因为有一些特别的特性,可以被应用到经典力学、流体力学、热力学等科学基础领域之中,大大增强了这些学科的探索和实现能力。
此外,极坐标系的二重积分公式还可以被广泛应用到几何建模、真空电子学、信号处理中,大大提高了计算准确度和计算效率。
以上就是极坐标系下的二重积分公式,因其应用广泛,在数学和物理上也发挥了重要作用。
它可以帮助我们比较方便地解决复杂的数学计算问题,从而更好地探索自然现象。
然而,面对极坐标系下的二重积分公式,也存在一些不足之处。
久而久之,随着技术的进步,它的计算准确度和计算效率也受到了一定的限制,这也使得对复杂函数的计算变得更加困难。
另外,极坐标系的应用范围也是有限的,不能满足所有需求。
因此,在今后的研究中,需要充分利用极坐标系的优点,同时提出新的有效的数学计算方法,以提升极坐标系的计算准确度和计算效率,从而更好地应用于实际的科学技术中。
总的来说,极坐标系下的二重积分公式是一种十分有用的数学计算方法,它可以方便快捷地解决复杂的数学计算问题,但同时也存在一些不足之处,为此,今后我们还需要继续努力,在不断完善极坐标系的计算准确度和计算效率上,更好地满足科学技术对复杂函数的计算需求。
二重积分的几种计算方法二重积分是数学中的一种重要计算方法,用于计算二元函数在平面区域上的累计效应。
在实际问题中,二重积分常常用于计算平面区域上的面积、质量、重心、转动惯量等物理量。
在计算二重积分时,可以采用多种方法,如直角坐标系下的直接计算、极坐标系下的转化、换元积分法等。
接下来,我们将详细介绍这些计算方法。
一、直角坐标系下的直接计算方法二、极坐标系下的计算方法在一些情况下,特别是当被积函数具有旋转对称性时,我们可以利用极坐标系对二重积分进行变换,从而简化计算过程。
具体而言,对于形如$f(r,\theta)$的二元函数,我们可以通过进行坐标变换得到$f(x,y)$的形式,然后按照直角坐标系下的直接计算方法计算积分。
换句话说,我们先将极坐标系下的$r$和$\theta$表示转化为直角坐标系下的$x$和$y$表示,然后按照直角坐标系下的计算方法进行计算。
例如,对于极坐标下的面积分,我们有如下变换关系:$x=r\cos\theta$,$y=r\sin\theta$,从而可以将极坐标下的面积分转化为直角坐标下的面积分。
三、换元积分法在一些情况下,被积函数本身可能比较复杂,或者积分的区域形状比较复杂,这时可以通过换元积分法将原问题转化为更简单的形式,从而方便计算。
例如,对于形如$f(x,y)$的二元函数,我们可以通过变量替换将其转化为新的二元函数$g(u,v)$,并找到合适的Jacobian行列式来计算变换后的二重积分。
具体而言,变量替换的过程包括两个步骤:首先,通过$u=g_1(x,y)$,$v=g_2(x,y)$的关系找到$x$和$y$与$u$和$v$之间的函数关系;然后,计算Jacobian行列式$J=\frac{\partial(u,v)}{\partial(x,y)}$,并将其带入变换后的二重积分中进行计算。
需要注意的是,选取合适的变量替换和Jacobian行列式是成功应用换元积分法的关键。
综上所述,二重积分的计算方法包括直角坐标系下的直接计算、极坐标系下的转化和换元积分法等。
总结直角坐标与极坐标下计算二重积分的计
算步骤
直角坐标与极坐标下计算二重积分的计算步骤如下:
(1)直角坐标下计算二重积分:
① 确定积分区域:在直角坐标系中,使用对应的曲线方程或注明边界,确定二次积分区域。
② 设计被积函数:根据所求函数,设计被积函数。
③ 写出二次积分式:将被积函数带入二次积分式中计算。
(2)极坐标下计算二重积分:
① 确定积分区域:在极坐标系中,确定被积函数的积分区域。
② 设计被积函数:将被积函数转换成极坐标下的函数,即将直角坐标系下的函数用极坐标表示。
③写出二重积分式:将被积函数带入极坐标系下的二次积分式中计算。
注:以上步骤中,需注意积分区域的边界、被积函数的变化形式以及极坐标系与直角坐标系之间的转换关系。
第九节 在极坐标系下二重积分的计算根据微元法可得到极坐标系下的面积微元θσr d r dd = 注意到直角坐标与极坐标之间的转换关系为,c o s θr x = ,sin θr y =从而就得到在直角坐标系与极坐标系下二重积分转换公式为⎰⎰⎰⎰=D D rdrd r r f dxdy y x f θθθ)sin ,cos (),( (9.1)内容分布图示★ 利用极坐标系计算二重积分★ 二重积分化为二次积分的公式★ 例1 ★ 例2 ★ 例3★ 例4 ★ 例5 ★ 例6★ 例7 ★ 例8★ 内容小结 ★ 课堂练习★ 习题6-9★ 返回内容提要:一、二重积分的计算1.如果积分区域D 介于两条射线βθαθ==,之间,而对D 内任一点),(θr ,其极径总是介于曲线)(),(21θϕθϕ==r r 之间(图6-9-2),则区域D 的积分限).()(,21θϕθϕβθα≤≤≤≤r于是 ⎰⎰⎰⎰=D D rdrd r r f dxdy y x f θθθ)sin ,cos (),( .)sin ,cos ()()(21⎰⎰=θϕθϕβαθθθrdr r r f d (9.2)具体计算时,内层积分的上、下限可按如下方式确定:从极点出发在区间),(βα上任意作一条极角为θ的射线穿透区域D (图6-9-2),则进入点与穿出点的极径)(),(21θϕθϕ就分别为内层积分的下限与上限.2.如果积分区域D 是如图6-9-3所示的曲边扇形,则可以把它看作是第一种情形中当)()(,0)(21θϕθϕθϕ==的特例,此时,区域D 的积分限).(0,θϕβθα≤≤≤≤r 于是.)sin ,cos (),()(0⎰⎰⎰⎰=θϕβαθθθrdr r r f d dxdy y x f D (9.3)3.如果积分区域D 如图6-9-4所示,极点位于D 的内部,则可以把它看作是第二种情形中当πβα2,0==的特例,此时,区域D 的积分限).(0,20θϕπθ≤≤≤≤r于是.)sin ,cos (),()(020⎰⎰⎰⎰=θϕπθθθrdr r r f d dxdy y x f D (9.4)注:根据二重积分的性质3,闭区域D 的面积σ在极坐标系下可表示为⎰⎰⎰⎰==DD rdrd d θσσ (9.5) 如果区域D 如图6-9-3所示,则有⎰⎰⎰⎰⎰===βαθϕβαθθϕθθσd rdr d rdrd D )(21)(0 (9.6) 例题选讲:例1(讲义例1)计算⎰⎰++D yx dxdy 221,其中D 是由122≤+y x 所确定的圆域. 例2(讲义例2) 计算⎰⎰++D dxdy y x y x 2222)sin(π, 其中积分区域D 是由4122≤+≤y x 所确定的圆环域.例3(讲义例3)计算⎰⎰D dxdy x y 22, 其中D 是由曲线x y x 222=+所围成的平面区域. 例4(讲义例4)写出在极坐标系下二重积分⎰⎰Ddxdy y x f ),(的二次积分,其中区域}.10,11|),{(2≤≤-≤≤-=x x y x y x D 例5 计算dxdy y x D)(22+⎰⎰,其中D 为由圆y y x y y x 4,22222=+=+及直线03=-y x , 03=-x y 所围成的平面闭区域.例 6 将二重积分σd y x f D⎰⎰),(化为极坐标形式的二次积分,其中D 是曲线,222a y x =+ 42222a y a x =+⎪⎭⎫ ⎝⎛-及直线0=+y x 所围成上半平面的区域.例7(讲义例5)求曲线)(2)(222222y x a y x -=+和a y x ≥+22所围成区域D 的面积.例8(讲义例6)求球体22224a z y x ≤++被圆柱面ax y x 222=+)0(>a 所截得的(含在圆柱面内的部分)立体的体积(图6-9-9).课堂练习1.计算⎰⎰--D y x dxdy e22, 其中D 是由中心在原点, 半径为a 的圆周所围成的闭区域.2.计算,|2|22⎰⎰-+D d y x σ 其中3:22≤+y x D .。