金属箔式应变片实验
- 格式:doc
- 大小:74.25 KB
- 文档页数:8
实验十一金属箔式应变片:单臂,半桥,全桥比较实验目的比较单臂,半桥,全桥的性能及相互之间的关系,了解其特点。
基本原理不同受力方向的两片应变片接入电桥作为邻臂,电桥输出灵敏度提高,非线性得到改善。
当两片应变片阻值和应变量相同时,其桥路输出电压U0=EKa/2,当四片应变片阻值和应变量相同时,其桥路输出电压U0=EKa,E为电桥电源电压。
所需单元和部件直流稳压电源、差动放大器、电桥、F/V表、测微头、双平行梁、应变片、主、副电源有关旋钮的初始位置直流稳压电源置于2V档,F/V表置于2V档,差动放大器增益置于最大实验步骤(1)将差动放大器调零后,关闭主、副电源。
(2)接线,R4=Rx为工作片,r及W1为电桥平衡网络。
(3)调整测微头是双平行梁处于水平位置(目测),将直流稳压电源置于4V档。
选择适当的放大增益,然后调整电桥平衡电位器W1,是表头显示零(需预热几分钟表头才能稳定下来)。
(4)旋转测微头,使梁移动,每隔0.5mm读一个数,将测得数值填入下表,然后关闭主、副电源。
位移(mm)11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0电压(V)0.000 0.011 0.020 0.032 0.043 0.055 0.067 0.080 (5)保持放大器增益不变,将R3固定电阻换为与R4工作状态相反的另一片应变片即取二片受力方向不同的应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V表显示为零,重复(4)过程同样测得读数,填入下表位移(mm)11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0电压(V)0.000 0.018 0.042 0.065 0.089 0.114 0.137 0.162 (6)保持放大器增益不变,将R1、R2电阻换为另两片受力应变片,组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出,接成一个直流全桥。
一、实验目的1. 了解金属箔式应变片的工作原理和结构特点。
2. 掌握金属箔式应变片的安装方法及注意事项。
3. 通过实验验证金属箔式应变片的性能,包括灵敏度、非线性误差、温度系数等。
二、实验原理金属箔式应变片是一种将应变转换为电信号的传感器。
当应变片受到拉伸或压缩时,其电阻值发生变化,从而产生电压信号。
实验中,利用金属箔式应变片组成的电桥电路,通过测量电桥输出电压的变化,来反映应变片受到的应变。
三、实验仪器与材料1. 金属箔式应变片2. 电桥电路3. 稳压电源4. 电压表5. 数字多用表6. 加载装置7. 温度计8. 实验台四、实验步骤1. 将金属箔式应变片安装在实验台上,确保其固定牢固。
2. 将应变片接入电桥电路,连接稳压电源和电压表。
3. 在加载装置上施加一定的力,观察电压表读数的变化。
4. 记录不同加载力下的电压值。
5. 改变加载方向,重复步骤3和4,观察电压值的变化。
6. 测量应变片的温度,记录不同温度下的电压值。
7. 利用数字多用表测量应变片的电阻值。
五、实验结果与分析1. 灵敏度测试根据实验数据,绘制应变片电压值与加载力的关系曲线。
根据曲线斜率,计算应变片的灵敏度。
2. 非线性误差测试根据实验数据,绘制应变片电压值与加载力的关系曲线。
通过曲线拟合,得到线性拟合曲线,计算非线性误差。
3. 温度系数测试根据实验数据,绘制应变片电压值与温度的关系曲线。
通过曲线拟合,得到线性拟合曲线,计算温度系数。
六、实验结论1. 通过实验验证了金属箔式应变片的工作原理和结构特点。
2. 实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度。
3. 温度对金属箔式应变片的影响较小,温度系数较小。
七、实验总结本次实验对金属箔式应变片进行了性能测试,了解了其工作原理和结构特点。
通过实验,掌握了金属箔式应变片的安装方法及注意事项。
实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度,适用于各种应变测量场合。
1 实验报告姓名: 学号: 班级:实验项目名称:实验一 金属箔式应变片性能——单臂电桥,半桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。
实验原理:单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。
电桥的灵敏度:电桥的输出电压(或输出电流)与被测应变在电桥的一个桥臂上引起的电阻变化率之间的比值,称为电桥的灵敏度。
如图是直流电桥,它的四个桥臂由电阻R1、R2、R3、R4组成,U 。
是供桥电压,输出电压为:当R1×R3=R2×R4则输出电压U 为零,电桥处于平衡状态。
如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U 发生变化。
当臂工作时,电桥只有R4桥臂为应变片,电阻变为R +R ,其余各臂仍为固定阻值R,代入上式 有组桥时,R1和R3,R2和R4受力方向一致。
实验步骤(电路图):(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。
(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F /V 表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F /V 表显示为零,关闭主、副电源。
(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。
R4为应变片;将稳压电源的切换开关置±4V 档,F /V 表置20V 档。
调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F /V 表显示为零,然后将F /V 表置2V 档,再调电桥W1(慢慢地调),使F /V 表显示为零。
图1金属箔式应变片性能—单臂电桥电路(4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。
150实验三十六 金属箔式应变实验练习一 金属箔式应变片——单臂电桥性能实验一、 实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。
金属的电阻表达式为: SlR ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。
对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2) 式中的ll ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×m mm m610-)。
若径向应变为r r∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l rr∆-=∆μ,因为SS ∆=2(rr ∆),则(2)式可以写成:llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数0k =2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。
通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4)式中 ζ——测试的应力; E ——材料弹性模量。
可以测得应力值ζ。
一、实验目的:了解金属箔式应变片,单臂、半桥、全桥电桥的工作原理。
二、实验原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。
此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。
它可用于能转化成形变的的各种物理量的检测。
贴片式应变片的应用:在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片半导体应变片很少应用(温漂、稳定性、线性度不好且易损坏),一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。
箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如下图所示:金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件。
电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为△R/R=Kε。
式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。
电桥是完成电阻到电压的比例变化,测取电压值。
(1)单臂电桥: 输出电压U01=EKε/4,输出信号最小,线性、稳定性较差。
(2)半桥:选用不同受力方向的应变片接入电桥作为邻边。
当两片应变片阻值和应变量相同时,其桥路输出电压U02=EKε/2,整体性能比单臂有所改善。
(3)全桥:将受力性质相同的两应变片接入电桥对边,不同的接入邻边,其桥路输出电压U03=KEε。
输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
(4)比较:量程不同,精度不同,选用比较多的是半桥或全桥。
三、使用仪器、材料:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源;准备导线;副电源管下面电路部分。
实验一金属箔式应变片特性及应用实验一、实验目的:1.了解金属箔式应变片的应变效应,单臂、半桥、全桥工作原理和性能及优缺点。
2. 了解金属箔式应变片的实际应用。
二、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表。
、三、实验内容及操作步骤:1、观察应变式传感器的结构及实验装置:应变式传感器及实验装置示意图见图1-1所示。
应变式传感器已装于应变传感器模板上,传感器中各应变片已接入模板的左上方的R1、R2、R3、R4,加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。
2、差动运算放大器放大倍数设定及零点的调节:接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零。
调整方法是将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源。
3、应变片单臂桥接法特性测试:注:1. 图1-2中R1、R3的图标表示该应变片受拉伸作用,ΔR为正值。
2.图1-2中R2、R4的图标表示该应变片受拉伸作用,ΔR为负值。
图1-2 应变式传感器单臂电桥实验接线图1).将应变片式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。
检查接线无误后,合上主控箱电源开关。
调节Rw1,使数显表显示为零。
2).在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500g)砝码加完。
记下实验结果填入表1-1中(见附录)。
实验1,2 金属箔式应变片性能实验1,2金属箔式应变片性能箔式单臂应变计1的性能测试实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。
实验原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。
应变计是最常用的力传感元件。
使用应变计进行试验时,应将应变计牢固粘贴在试验体表面。
当试件在应力作用下变形时,应变计的敏感网格随之变形,其电阻也随之变化。
通过测量电路将其转换为电信号输出显示。
电桥电路是最常用的非电量电测量电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻r1、r2、r3、r4中,电阻的相对变化率分别为△r1/r1、△r2/r2、△r3/r3、△r4/r4,当使用一个应变片时,σr=△r/r;当二个应变片组成差动状态工作.则有σr=2△r/r,用四个应变片组成二个差对工作,且r1=r2=r3=r4=r,σr=4△r/r。
其中r1、r2、r3、r4、r的电阻值均为350ω左右。
由此可知,单臂、半桥、全桥电路的灵敏度依次增大。
所需单元和组件:直流稳压电源、电桥、差动放大器、双平行梁测微头、应变计f/v表、主、副电源。
旋钮初始位置:将直流稳压电源调至±2V,将F/V表调至2V,差动放大增益最大。
实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔有结构的小方形薄片。
上、下梁外表面分别粘贴两块应力应变片和一块补偿应变片。
测微计头位于双平行梁前面的支架上,可上下前后左右调整。
(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器差分放大器的输出端与F/V表的输入插座VI相连,差分放大器的接地与F/V表的接地相连;打开主电源和辅助电源;将差分放大器的增益调整到最大位置,然后调整差分放大器的调零旋钮,使F/V表显示为零,并关闭主电源和二次电源。
(3)根据图1接线r1、r2、r3为电桥单元的固定电阻。
实验一金属箔式应变片实验报告一、引言金属箔式应变片是一种常用的测量材料应变的传感器。
它由一层金属箔制成,可以通过测量箔片在外力作用下的形变来推算出材料的应力和应变。
本实验旨在通过使用金属箔式应变片,了解其原理并掌握测量材料应力和应变的方法。
二、实验目的1.了解金属箔式应变片的原理和使用方法;2.熟悉测量材料应变的实验步骤和操作技巧;3.通过实验,掌握金属箔式应变片的线性度和稳定性。
三、实验器材1.金属箔式应变片2.可调节力臂的托盘3.数字万用表4.检测电缆5.基板四、实验步骤1.准备工作(1)将金属箔式应变片粘贴在基板上,确保其与基板良好接触。
(2)将检测电缆与金属箔式应变片焊接连接,确保连接良好。
(3)将托盘放在平稳的台面上,并将托盘的力臂调整至合适位置。
2.实验测量(1)将标准质量放置在托盘的力臂上,记录下其质量数值。
(2)通过将标准质量增加或减小,使得金属箔式应变片在不同的载荷下产生不同的应变。
(3)使用数字万用表测量金属箔式应变片上的电压输出值,并记录。
3.实验数据处理(1)将实验得到的电压输出值与标准质量进行对应,得到应变值。
(2)通过计算应变的变化率,得到材料的应力和应变关系。
(3)绘制应力-应变曲线,并用最小二乘法拟合出线性程度。
五、实验结果与讨论在实验中我们得到了金属箔式应变片的电压输出值和标准质量的对应关系,并通过计算得出了应变的变化率。
将应力与应变关系绘制成图表,通过拟合得出了线性程度。
在实验中,我们还观察了金属箔式应变片的稳定性,并分析了其受到外界条件变化的影响。
六、实验结论通过实验,我们了解了金属箔式应变片的原理和使用方法,并掌握了测量材料应变的实验步骤和操作技巧。
通过对实验数据的处理和分析,我们得出了金属箔式应变片的线性程度和稳定性,并得出了应力与应变的关系。
实验结果表明,金属箔式应变片可以有效测量材料的应变,并具有较好的线性度和稳定性,适用于材料应变的测量。
实验一-金属箔式应变片实验报告金属箔式应变片实验报告一、实验目的1.学习和了解金属箔式应变片的基本原理和应用。
2.掌握应变片的粘贴和测试方法。
3.通过实验数据分析,理解应变、应力和弹性模量的关系。
二、实验原理金属箔式应变片是一种用于测量物体应变的传感器,其工作原理基于电阻的应变效应。
当金属导体受到拉伸或压缩时,其电阻值会发生变化。
这种现象称为“应变效应”。
利用这一原理,可以将应变片粘贴在待测物体上,通过测量电阻值的变化来推算物体的应变。
三、实验步骤1.准备材料:金属箔式应变片、放大镜、砂纸、酒精、丙酮、吹风机、应变计、电阻表、加载装置(如砝码或液压缸)。
2.选定待测物体并清理表面。
对待测物体表面进行打磨、清洁和干燥处理,确保表面无油污和杂质。
3.粘贴应变片:将金属箔式应变片粘贴在待测物体表面,确保应变片与物体表面完全贴合,无气泡和褶皱。
使用放大镜观察应变片的位置和贴合程度。
4.连接电阻表:将应变片的引脚连接到电阻表上,确保连接稳定可靠。
5.加载待测物体:采用适当的加载装置对待测物体进行加载,使物体产生应变。
记录加载过程中电阻表读数的变化。
6.数据记录:在加载过程中,每隔一定时间记录一次电阻表读数,并观察应变片应变的规律。
当应变达到最大值时,停止加载并记录最终的电阻值。
7.数据处理和分析:根据记录的电阻值和已知的应变系数,计算出物体的应变值。
分析应变、应力和弹性模量之间的关系。
四、实验结果与分析1.应变测量结果:通过电阻表测量得到应变片的电阻值变化量,根据应变系数计算得到物体的应变值。
2.应力和弹性模量之间的关系:根据弹性力学的基本原理,应力和弹性模量之间存在一定的关系。
本实验中,通过测量物体的应变和应力,可以进一步计算出物体的弹性模量。
3.应变片灵敏度的分析:通过比较不同应变片在同一物体上的测量结果,可以分析应变片的灵敏度和精度。
五、实验总结通过本次实验,我们学习和了解了金属箔式应变片的基本原理和应用,掌握了应变片的粘贴和测试方法,并通过实验数据分析,理解了应变、应力和弹性模量的关系。
实验一金属箔式应变片一、实验目的:1.了解应变的基本概念和物理意义;2.掌握应变片的安装方法和使用原理;3.了解测试数据的处理方法。
二、实验原理应变是物体在外力作用下产生的形变量与物体原来长度或形状的比值。
在力学中,应变定义为一个物体相对于初始状态的形变量与初始状态的形状或尺寸的比值。
表示应变的符号为ε。
应变与应力是材料力学中的两个重要参数。
应力是指材料在受外力作用下,单位面积内所受的力,表示材料的强度;而应变则是指材料在承受力的作用下所发生的变形。
应变片又称应变计,是一种能够测量物体表面应变量的精密传感器。
在应变片上会产生一定的电势差,这个电势差与应变有直接的关系。
应变片是一种基于皮尔森效应的电性传感器,其基本原理是:挽联金属箔条被粘贴(或沉积)在被测介质物体表面上,外接电路中流过的电流及周期特征决定着挽联箔片上测量出的电势差,由这个电势差可以反推出应变值。
三、实验材料和装置材料:金属箔式应变片、模拟应变片、贴纸。
装置:计算机、应变数据采集卡、信号调理器、电源、电压表、安装工具等。
四、实验步骤1.测量项选择打开计算机,在数据采集卡软件界面上选择“应变片”项,并进入“加工”功能界面。
2.应变片安装用贴纸将金属箔式应变片贴在一块平整的金属表面上,注意箔片两端的导线应向空间内侧引出,以避免外界剪切力影响测量结果。
保护箔片贴在表面时,必须防止其脱落和移位,必要时可利用胶水将其牢固地固定在表面上。
3.参数配置在软件界面的“参数配置”中,设置好所测对象的参数,包括应变片的灵敏度、桥路电阻、补偿电阻、预加重系数,以便进行数据采集和信号处理。
4.调零和推力校准在应变片和设备的接线均正确的前提下,点选“联校”功能,进行调零和推力校准。
通过增大或减小推力,使“预测值”尽量接近真实值,以达到最佳测量效果。
5.检验测量结果打开软件界面的“数据列表”、“数据曲线”等功能,以检验实验结果,并进行数据筛选和分析处理。
五、实验注意事项1.应变片在安装时,应尽量避免受到外力的干扰和损坏,以保证测量准确度;2.应变数据采集和信号处理,要同时进行调零和推力校准,这是保证实验结果准确的一项重要措施;3.在实验中要仔细检查设备的接线和软件的参数设置,以保证工作和结果的可靠性;4.实验结束后,应及时完成数据分析和处理,并注意保存测量结果。
金属箔式应变片传感器特性及应用实验1.掌握金属箔式应变片的工作原理;2.掌握金属箔式应变片调理电路的工作原理;3.掌握电桥电路的工作特性。
1.分析测试电阻应变式称重传感器的电阻变化特性;2.连接传感器物理信号到电信号的转换电路;3.软件记录测传感器特性采样点,并绘制曲线;4.分析总结传感器的静态特性。
1.开放式传感器电路实验主板;2.双孔悬臂梁式称重传感器模块;3.差分放大器模块;4.砝码一套;5.跳线若干;6.万用表;7.一字螺丝刀。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感电阻丝。
它能转换被测部位受力状态的变化。
将应变片粘贴于被测物体表面上。
在外力作用时,被测物体表面发生微小的机械形变,应变片敏感栅也随同变形,其电阻值会产生相应变化。
在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
电阻丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为:⁄K∙ε=ΔR R⁄为电阻丝电阻相对变化。
式中,ΔR RK为应变灵敏系数,通常金属丝的K为2左右。
ε为电阻丝长度相对变化:ε=ΔL L⁄电桥的作用是完成电阻到电压的比例变化。
电桥电路的输出电压反映了应变片的受力状态。
在全桥测量电路中,将受力性质相同的两片应变片接入电桥对边,不同的接入邻边。
应变片初始阻值R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U=EK。
实验套件提供了最大量程为600g,应变片电阻阻值1k,贴有4片金属箔式应变片的双孔悬臂梁传感器一只。
传感器共有8条彩色连线,如图1-1左图所示。
上侧贴有两片应变片,下侧贴有两片应变片。
若要连接全桥电路,只需按图1-1右图所示的颜色连线就可以构成。
若需构成半桥或1/4桥,可对应电路,找到相应的桥臂,用对应颜色的连线连接,并切换对应的桥臂电阻开关即可。
图1-1 双孔悬臂梁与连线示意图金属箔式应变片原理图如图1-2所示,利用该原理图可以灵活的组成用于测量应变片的全桥、半桥、1/4桥电路。
【精品】实验一金属箔式应变片性能实验目的:探究金属箔式应变片的性能,包括灵敏度、线性性以及温度特性。
实验步骤:1. 准备实验所需材料和仪器:金属箔式应变片、应变测量仪、电阻箱、电流表、交流电源、温度计。
2. 将金属箔式应变片放置在被测物体上,确保箔片与测量物体紧密接触。
3. 将应变测量仪连接到金属箔式应变片上,并设置合适的测量范围。
4. 通过电阻箱和电流表连接一个稳定的电流源,并将电流流过金属箔式应变片。
5. 记录应变测量仪显示的电压值,并结合电流和电阻计算出应变值。
6. 测量不同应变下的电压和应变值,并记录数据。
7. 分析数据,计算出金属箔式应变片的灵敏度,即电压与应变之间的比例关系。
8. 进行线性性测试,通过改变电流大小,测量不同应变下的电压,并绘制电压-应变曲线。
9. 测量金属箔式应变片在不同温度下的性能,并记录数据。
10. 计算出温度对金属箔式应变片性能的影响。
实验注意事项:1. 在进行实验前,保证仪器和设备正常工作,测量范围和设置正确。
2. 实验过程中应注意安全,谨防电流过大导致触电风险。
3. 在记录数据时要准确无误,避免误差产生。
4. 在测量温度时,使用合适的温度计,并保证测量准确。
5. 实验结束后要及时关闭电源并安全处理实验废弃物。
实验结果分析:通过实验可以得出金属箔式应变片的灵敏度、线性性以及温度特性等性能。
根据实验数据,可以计算出灵敏度,并绘制出电压-应变曲线。
同时,通过测量不同温度下的性能数据,可以分析温度对金属箔式应变片性能的影响。
这些结果对于金属箔式应变片在工程应用中的选择和设计具有重要的指导作用。
金属箔式应变片性能实验报告金属箔式应变片是一种常见的测量物体变形的仪器,主要用于测量实验中材料的力学特性和应变分布。
本实验通过对金属箔式应变片的性能进行测试,旨在探究其力学性能并评估其应用的可行性。
以下是关于金属箔式应变片性能实验的报告。
一、实验目的:1.掌握金属箔式应变片的基本原理和工作方式;2.了解金属箔式应变片的力学性能,如线性范围、敏感系数等;3.研究金属箔式应变片的应变分布,并评估其应用可行性。
二、实验器材:1.金属箔式应变片;2.电桥;3.高精度电压源;4.五步电压变阻箱;5.数字万用表;6.计算机及相应软件。
三、实验步骤:1.将金属箔式应变片安装在待测物体上,并确保其平整、牢固;2.通过电桥连接金属箔式应变片的导线,并设置适当的电压源;3.将五步电压变阻箱设置为规定的输出电压,并通过电流表测量电压源的电流;4.使用数字万用表测量金属箔式应变片的输出电压,并记录测量值;5.重复步骤3和步骤4,改变电阻箱的输出电压,并记录相应的电流和电压值;6.使用计算机及相应软件进行数据处理,并计算金属箔式应变片的力学性能指标。
四、实验结果与讨论:通过实验测量得到的数据可以用于评估金属箔式应变片的力学性能。
其中,线性范围是指金属箔式应变片能够线性响应的应变范围,即在该范围内,输出的电压与应变呈线性关系;敏感系数是指单位应变的变化引起的电压变化,可以通过计算斜率得到。
五、实验结论:六、实验心得:通过本次实验,我进一步了解了金属箔式应变片的原理和工作方式,并学习了其性能测试的方法和步骤。
同时,实验过程中,我也体会到了仪器的正确使用和数据处理的重要性,这对于实验结果的准确性和可靠性至关重要。
通过本次实验,我不仅增加了实验操作技能,还加深了对材料力学性能的理解,提高了实验设计和数据分析的能力。
自动化传感器实验报告二金属箔式应变片一、实验目的1. 了解金属箔式应变片的结构和原理;2. 熟悉金属箔式应变片的使用方法,了解应变片的贴合技巧;3. 学习如何采集应变片传感器的数据,并进行数据分析。
二、实验原理金属箔式应变片由两片弯曲的金属箔片组成,当物体受力时,金属箔片的形状产生微小变化,从而改变了电阻值,将电阻变化转化为电压信号后,通过放大电路进行放大,最终采集到微小的应变信号。
三、实验材料和器材1. 金属箔式应变片;2. 铝板;3. 双面胶带;4. 金属线;5. 多用示波器;6. 数字万用表;7. 功率放大器;8. 电压源。
四、实验步骤1. 将铝板剪成与应变片相同大小的矩形块;2. 在铝板上面涂上一层双面胶带;3. 将应变片轻轻地压在双面胶带上,注意不要用力,以免损坏应变片;4. 拉伸铝板,记录应变片在不同应变程度下的电压信号并记录下来;5. 通过功率放大器,将电压信号输出,并用数字万用表测量;6. 重复步骤4和5直到所有数据得到记录。
五、实验结果1. 在不同应变程度下,记录应变片电压信号的数据如下表所示。
应变程度(%)电压信号(mV)0% 0.01mV5% 0.05mV10% 0.10mV15% 0.15mV20% 0.21mV25% 0.27mV2. 通过数据分析,得到应变片的灵敏度为0.054mV/%,即在每增加1%的应变程度时,应变片电压会相应增加0.054mV。
六、实验分析1. 实验中,使用铝板来搭载应变片,是因为铝板的本身就具有一定的弹性,能够很好地承受力的作用。
2. 在实验中,应注意不要用力过大,否则会造成应变片的破损。
3. 在进行数据分析时,应遵循精确性的原则,以免误差产生。
通过本次实验,我们深入了解和学习了金属箔式应变片的使用和数据分析技术,对于传感器的使用和故障分析具有一定的参考价值。
金属箔式应变片性能实验报告金属箔式应变片性能实验报告引言:金属箔式应变片是一种常用的测量应变的工具,广泛应用于工程领域。
本实验旨在研究不同材料、不同厚度的金属箔式应变片的性能,并探讨其在实际应用中的优缺点。
一、实验目的通过对金属箔式应变片的性能测试,了解其应变灵敏度、线性范围、温度影响等特性,为其在工程实践中的应用提供参考。
二、实验材料与方法1. 实验材料:选取了不同材料的金属箔式应变片,包括铜、铝和钢等常见金属材料,并分别制备了不同厚度的应变片。
2. 实验仪器:使用电子拉伸试验机进行拉伸实验,并配备应变片固定装置和应变片读数装置。
3. 实验方法:a) 将不同材料、不同厚度的金属箔式应变片固定在试样上,并连接至电子拉伸试验机。
b) 在一定拉伸速率下,进行拉伸实验,并记录应变片的电阻变化。
c) 根据拉伸实验得到的电阻变化数据,计算得到应变值,并与拉伸试验机的应变计进行对比。
三、实验结果与分析1. 应变灵敏度:通过实验发现,不同材料、不同厚度的金属箔式应变片对应变的灵敏度存在差异。
以铜材料为例,当厚度相同时,应变灵敏度随着拉伸速率的增加而增加。
而当拉伸速率相同时,厚度较薄的应变片具有更高的灵敏度。
这说明金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。
2. 线性范围:实验结果显示,金属箔式应变片的线性范围与其材料和厚度密切相关。
以钢材料为例,当厚度较小时,其线性范围较宽,能够准确测量较小的应变值。
然而,当厚度较大时,线性范围会受到限制,无法测量较大的应变值。
因此,在实际应用中,需根据测量需求选择合适的金属箔式应变片材料和厚度。
3. 温度影响:温度是影响金属箔式应变片性能的重要因素之一。
实验结果表明,金属箔式应变片的电阻值随温度的变化而变化,从而影响应变值的计算。
在实际应用中,需对金属箔式应变片进行温度补偿,以提高测量的准确性。
四、实验结论通过对金属箔式应变片的性能测试,可以得出以下结论:1. 金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。
实验A 金属箔式应变片――单臂电桥性能实验
一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、4
1位数显万用表(自备)。
2
图1 应变片单臂电桥性能实验安装、接线示意图
四、实验步骤:
应变传感器实验模板说明:
实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R
2、R
3、R4和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。
常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。
〕安装接线。
2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1接线图)。
调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。
记下实验结果填入表1画出实验曲线。
4、根据表1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δ,
δ=Δm/y FS ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:y FS 满量程输出平均值,此处为200g(或500g)。
实验完毕,关闭电源。
五、思考题:
单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。
实验B 金属箔式应变片—半桥性能实验
一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。
二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。
三、需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。
四、实验步骤:
1、将托盘安装到应变传感器的托盘支点上。
将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
图2 应变式传感器半桥接线图
2、拆去放大器输入端口的短接线,根据图2接线。
注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。
调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。
记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。
实验完毕,关闭电源。
三、思考题:
1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。
2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。
实验C 金属箔式应变片—全桥性能实验
一、实验目的:了解全桥测量电路的优点。
二、基本原理:全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三、需用器件和单元:同实验二。
四、实验步骤:
1、将托盘安装到应变传感器的托盘支点上。
将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
图3—1 全桥性能实验接线图
2、拆去放大器输入端口的短接线,根据图3—1接线。
实验方法与实验二相同,将实验数据填入表3画出实验曲线;进行灵敏度和非线性误差计算。
实验完毕,关闭电源。
重量
电压
五、思考题:
1、测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
2某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图3—2,如何利用这四片应变片组成电桥,是否需要外加电阻。
图3-2应变式传感器受拉时传感器圆周面展开图
实验D 金属箔式应变片单臂、半桥、全桥性能比较
一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:如图4 (a)、(b)、(c)
(a)单臂(b)半桥(c)全桥
图4 应变电桥
(a)、U0=U①-U③
=〔(R1+△R1)/(R1+△R1+R2)-R4/(R3+R4)〕E
=〔(1+△R1/R1)/(1+△R1/R1+R2/R2)-(R4/R3)/(1+R4/R3)〕
E
设R1=R2=R3=R4,且△R1/R1<<1。
U0≈(1/4)(△R1/R1)E
所以电桥的电压灵敏度:S=U0/(△R1/R1)≈kE=(1/4)E
(b)、同理:U0≈(1/2)(△R1/R1)E
S=(1/2)E
(C)、同理:U0≈(△R1/R1)E
S=E
三、需用器件与单元:主机箱、应变传感器实验模板、托盘、砝码。
四、实验步骤:根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。
阐述理由(注意:实验一、二、三中的放大器增益必须相同)。
实验完毕,关闭电源。
实验E 直流全桥的应用—电子秤实验
一、实验目的:了解应变直流全桥的应用及电路的标定。
二、基本原理:数字电子秤实验原理如图5,全桥测量原理。
本实验只做放大器输出UO 实验,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。
图5 数字电子称原理框图
三、需用器件与单元:主机箱、应变式传感器实验模板、砝码。
四、实验步骤:
1、实验模板差动放大器调零:将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连。
用导线将实验模板中的放大器两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
按图3-1直流全桥接线,合上主机箱电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。
2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为
0.200V(2V档测量)或-0.200V。
3、拿去托盘上的所有砝码,调节电位器R W4(零位调节)使数显表显示为0.00V。
4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。
成为一
台原始的电子秤。
5、把砝码依次放在托盘上,并依次记录重量和电压数据填入下表6。
6、根据数据画出实验曲线,计算误差与线性度。
实验完毕,关闭电源。