数字逻辑第六版白中英课后习题答案
- 格式:docx
- 大小:28.11 KB
- 文档页数:3
习题一1.1 把下列不同进制数写成按权xx:⑴ (4517.239)10=4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶ (325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷ (785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴ (1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶ (10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴ (29)10=(1D)16=(11101)2=(35)8⑵ (0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶ (33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴ 0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵ 0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶ -10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴ 0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
习 题 五1. 简述时序逻辑电路与组合逻辑电路的主要区别。
解答组合逻辑电路:若逻辑电路在任何时刻产生的稳定输出值仅仅取决于该时刻各输入值的组合,而与过去的输入值无关,则称为组合逻辑电路。
组合电路具有如下特征:②信号是单向传输的,不存在任何反馈回路。
时序逻辑电路:若逻辑电路在任何时刻产生的稳定输出信号不仅与电路该时刻的输入信号有关,还与电路过去的输入信号有关,则称为时序逻辑电路。
时序逻辑○1○2 电路中包含反馈回路,通过反馈使电路功能与“时序”○3 电路的输出由电路当时的输入和状态(过去的输入)共同决定。
2. 作出与表1所示状态表对应的状态图。
表 1解答根据表1所示状态表可作出对应的状态图如图1所示。
图13.已知状态图如图2所示,输入序列为x=11010010,设初始状态为A,求状态和输出响应序列。
图 2解答状态响应序列:A A B C B B C B输出响应序列:0 0 0 0 1 0 0 14. 分析图3所示逻辑电路。
假定电路初始状态为“00”,说明该电路逻辑功能。
图 3 解答○1根据电路图可写出输出函数和激励函数表达式为 xK x,J ,x K ,xy J y xy Z 1111212=====○2 根据输出函数、激励函数表达式和JK 触发器功能表可作出状态表如表2所示,状态图如图4所示。
表2图4○3由状态图可知,该电路为“111…”序列检测器。
5. 分析图5所示同步时序逻辑电路,说明该电路功能。
图5解答○1根据电路图可写出输出函数和激励函数表达式为 )(D ,x y x D y y x Z 21112121212y x y y y y y x ⊕=+=+=○2 根据输出函数、激励函数表达式和D 触发器功能表可作出状态表如表3所示,状态图如图6所示。
表3图6○3由状态图可知,该电路是一个三进制可逆计数器(又称模3可逆计数器),当x=0时实现加1计数,当x=1时实现减1计数。
6.分析图7所示逻辑电路,说明该电路功能。
《数字逻辑》(白中英)(第六版)习题解答《数字逻辑》(白中英)(第六版)习题解答第1章开关理论基础1、将下列十进制数化为二进制数和八进制数:十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.011111100 7.37479.43 1001111.0110110 117.332、将下列二进制数转换成十进制数和八进制数:二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153、将下列十进制数转换成8421BCD码:1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014、一个电路有三个输入端A 、B 、C ,当其中有两个输入端为高电平时,输出X 为高电平,试列出真值表,并写出X 的逻辑表达式。
[解]: 先列出真值表,然后写出X 的逻辑表达式C AB C B A BC A X ++=5、求下列函数的值:当A,B,C 为0,1,0时: BC B A +=1 ))((C B A C B A ++++=1 B C A B A )(+=1当A,B,C 为1,1,0时: BC B A +=0 ))((C B A C B A ++++=1 B C A B A )(+=1当A,B,C 为1,0,1时: BC B A +=0 ))((C B A C B A ++++=1 B C A B A )(+=06、用真值表证明恒等式 C B A C B A ⊕⊕=⊕⊕ 成立。
证明:所以由真值表得证。
7、证明下列等式 (1)B A B A A +=+证明:左边=B A A + =B A B B A ++)(=B A AB B A ++=B A AB AB B A +++ =B A A B B A )()(+++ =B A + =右边(2)BC AB C AB C B A ABC +=++证明:左边= C AB C B A ABC ++ = ABC C AB C B A ABC +++ =)()(C C AB B B AC +++ =AB AC + =右边(3)E CD A E D C CD A C B A A ++=++++)( 证明:左边=E D C CD A C B A A )(++++ =A+CD+A B C +CD E =A+CD+CD E =A+CD+E =右边(4) C B A C B A B A ++=C B C A B A ++ 证明:左边=C B A C B A B A ++ =C B A C AB C B A B A +++)( =C B C A B A ++=右边8、用布尔代数简化下列逻辑函数(1)B C CB C B A ABC A F ++++= B C CB C B A ABC A ++++=)( B C CB A ++= C B A ⊕+=(2)C B A D A B A D C AB CD B A F ++++= )D A D C AB ()C B A B A CD B A (++++= D A B A +=(3)C B ABCD D BC ABD D ABC F ++++= C B D BC ABD ABC +++= C B D B ABD ABC +++= )(C D AD AC B +++= )(D A C A B +++= D B C B AB ++=(4)C AB C B BC A AC F +++= C AB C B )BC A AC (⋅⋅+= )C B A )(C B )(BC AC (++++= )C B A )(BC ABC (+++= )BC ABC BC A (++= BC =10、用卡诺图化简下列各式 (1)C AB C B BC A AC F +++=C F =说明:卡诺图中标有0的格子代表C B BC A AC F 1++=,1F 则是标有0之外的其余格子。
习题解答1-3:(1)(1110101)2=(117)10=(165)8=(75)16 (2)(0.110101.2=(0.828125)10=(0.65)8=(0.D4)16 (3)(10111.01)2=(23.25)10=(27.2)8=(17.4)16 1-7:[N ]原=1.1010;[N ]反=1.0101;N =-0.1010 1-10:(1)(011010000011)8421BCD =(683)10=(1010101011)2 (2)(01000101.1001)8421BCD =(45.9)10=(101101.1110)2 2-4:(1)()();'()()F A C B C F A C B C =++=++(2)()()();'()()()F A B B C A CD F A B B C A CD =+++=+++ (3)[()()];'[()()]F A B C D E F G F A B C D E F G =++++=++++ 2-6:(1)F =A +B (2)F =1 (3)F =A BD +2-7:(1)F (A ,B ,C )=ABC ABC ABC ABC ABC ++++=∑m(0,4,5,6,7);F (A ,B ,C )=()()()A B C A B C A B C ++++++=∏M(1,2,3)(2)F (A ,B ,C ,D )=∑m(4,5,6,7,12,13,14,15);F (A ,B ,C ,D )=∏M(0,1,2,3,8,9,10,11) (3)F (A ,B ,C ,D )=∑m(0,1,2,3,4);F (A ,B ,C ,D )=∏M(5,6,7,8,9,10,11,12,13,14,15) 2-8:(1) F (A ,B ,C )=()A C BC A B C +=+(2)F (A ,B ,C ,D )=()()AB AC BC A B C A B C ++=++++ (3)F (A ,B ,C ,D )=B D B D +=+2-11:(1)F (A ,B ,C ,D )=A BD +, ∑d(1,3,4,5,6,8,10)=0;(2) 123(,,,)(,,,)(,,,)F A B C D BD ABCD ABCD ABDF A B C D BD ABCD ACD A CD F A B C D ABCD ABCD ABC=+++=+++=++,3-1:(1)F (A ,B ,C )=AC BC AC BC +=⋅F (A ,B ,C )=()()A C B C A C B C ++=+++(2)F (A ,B ,C )=∏M(3,6)=B AC AC B AC AC ++=⋅⋅F (A ,B ,C )=∏M(3,6)=()()A B C A B C A B C A B C ++++=+++++(4)F (A ,B ,C ,D )=AB A C BCD AB ++=F (A ,B ,C ,D )=0AB A C BCD A B A B ++=+=++3-3:F (A ,B ,C )=[()()][()()]A B C B C A C B C B C ABC ABC ABC +++⋅+++=++ 3-7:(2)根据真值表,列出逻辑函数表达式,并化简为“与非”式。
第三章时序逻辑1.写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。
解:1)(1= +++=+cbaQa cbQ nn2. 说明由RS触发器组成的防抖动电路的工作原理,画出对应输入输出波形解:3. 已知JK信号如图,请画出负边沿JK触发器的输出波形(设触发器的初态为0)4. 写出下图所示个触发器次态方程,指出CP 脉冲到来时,触发器置“1”的条件。
解:(1)B A B A D+=,若使触发器置“1”,则A 、B 取值相异。
(2)D C B A K J ⊕⊕⊕==,若使触发器置“1”,则A 、B 、C 、D 取值为奇数个1。
5.写出各触发器的次态方程,并按所给的CP 信号,画出各触发器的输出波形(设初态为0)解:6. 设计实现8位数据的串行→并行转换器。
CP QA QB QC QD QE QF QG QH0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 D0 1 0 0 0 0 0 0 3 D1 D0 1 0 0 0 0 0 4 D2 D1 D0 1 0 0 0 0 5 D3 D2 D1 D0 1 0 0 0 6 D4 D3 D2 D1 D0 1 0 0 7 D5 D4 D3 D2 D1 D0 1 0 8 D6 D5 D4 D3 D2 D1 D0 1 9 D7 D6 D5 D4 D3 D2 D1 D07. 分析下图所示同步计数电路解:先写出激励方程,然后求得状态方程n n n n n nn n n Q Q Q Q Q Q Q Q Q 131211112213+===+++状态图如下:该计数器是循环码五进制计数器,可以自启动。
8. 作出状态转移表和状态图,确定其输出序列。
解:求得状态方程如下n n n n n n n Q Q Q Q Q Q Q 3211112213===+++故输出序列为:000119. 用D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作的六进制同步计数器解:先列出真值表,然后求得激励方程化简得:nn n n n n n n n n nnQ Q Q Q Q Q Q Q Q Q Q Q Z 12102110211202+==+==+++nnn nnn nnnn QQ Q D QQ Q D QQ Q Q D 121211121122+====+==+++逻辑电路图如下:10. 用D 触发器设计3位二进制加法计数器,并画出波形图。
第四章习题答案1.设计4个寄存器堆。
解:2. 设计具有4个寄存器的队列。
解:3.设计具有4个寄存器的堆栈解:可用具有左移、右移的移位寄存器构成堆栈。
4.SRAM、DRAM的区别解:DRAM表示动态随机存取存储器,其基本存储单元是一个晶体管和一个电容器,是一种以电荷形式进行存储的半导体存储器,充满电荷的电容器代表逻辑“1”,“空”的电容器代表逻辑“0”。
数据存储在电容器中,电容存储的电荷一般是会慢慢泄漏的,因此内存需要不时地刷新。
电容需要电流进行充电,而电流充电的过程也是需要一定时间的,一般是0.2-0.18微秒(由于内存工作环境所限制,不可能无限制的提高电流的强度),在这个充电的过程中内存是不能被访问的。
DRAM拥有更高的密度,常常用于PC中的主存储器。
SRAM是静态的,存储单元由4个晶体管和两个电阻器构成,只要供电它就会保持一个值,没有刷新周期,因此SRAM 比DRAM要快。
SRAM常常用于高速缓冲存储器,因为它有更高的速率;5. 为什么DRAM采用行选通和列选通解:DRAM存储器读/写周期时,在行选通信号RAS有效下输入行地址,在列选通信号CAS有效下输入列地址。
如果是读周期,此位组内容被读出;如果是写周期,将总线上数据写入此位组。
由于DRAM需要不断刷新,最常用的是“只有行地址有效”的方法,按照这种方法,刷新时,是在RAS有效下输入刷新地址,存储体的列地址无效,一次选中存储体中的一行进行刷新。
每当一个行地址信号RAS有效选中某一行时,该行的所有存储体单元进行刷新。
6. 用ROM实现二进制码到余3码转换解:真值表如下:8421码余三码B B2B1 B0G G2G 1G00 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 03310 1 1 00 1 1 11 0 0 01 0 0 1 01 0 0 11 0 1 01 0 1 11 1 0 0最小项表达式为:G=∑)9,8,7,6,5(G2=∑)9,4,3,2,1(G1=∑)8,7,4,3,0(G0=∑)8,6,4,2,0(阵列图为:7. 用ROM实现8位二进制码到8421码转换解:输入为8位二进制数,输出为3位BCD码,12位二进制数,所以,所需ROM的容量为:28*12=30728.ROM、EPROM和EEPROM的区别解:ROM 指的是“只读存储器”,即Read-Only Memory。
《数字逻辑》(白中英)(第六版)习题解答第1章开关理论基础1、将下列十进制数化为二进制数和八进制数:十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.011111100 7.37479.43 1001111.0110110 117.332、将下列二进制数转换成十进制数和八进制数:二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153、将下列十进制数转换成8421BCD码:1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014、一个电路有三个输入端A、B、C,当其中有两个输入端为高电平时,输出X为高电平,试列出真值表,并写出X 的逻辑表达式。
[解]: 先列出真值表,然后写出X 的逻辑表达式A B C X 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 10 0 0 1 0 1 1 0C AB C B A BC A X ++=5、求下列函数的值:当A,B,C 为0,1,0时: BC B A +=1))((C B A C B A ++++=1 B C A B A )(+=1当A,B,C 为1,1,0时: BC B A +=0))((C B A C B A ++++=1 B C A B A )(+=1当A,B,C 为1,0,1时: BC B A +=0))((C B A C B A ++++=1 B C A B A )(+=06、用真值表证明恒等式 C B A C B A ⊕⊕=⊕⊕ 成立。
第四章习题答案
1.设计4个寄存器堆。
解:
2. 设计具有4个寄存器的队列。
解:
3.设计具有4个寄存器的堆栈
解:可用具有左移、右移的移位寄存器构成堆栈。
4.SRAM、DRAM的区别
解:DRAM表示动态随机存取存储器,其基本存储单元是一个晶体管和一个电容器,是一种以电荷形式进行存储的半导体存储器,充满电荷的电容器代表逻辑“1”,“空”的电容器代表逻辑“0”。
数据存储在电容器中,电容存储的电荷一般是会慢慢泄漏的,因此内存需要不时地刷新。
电容需要电流进行充电,而电流充电的过程也是需要一定时间的,一般是0.2-0.18微秒(由于内存工作环境所限制,不可能无限制的提高电流的强度),在这个充电的过程中内存是不能被访问的。
DRAM拥有更高的密度,常常用于PC中的主存储器。
SRAM是静态的,存储单元由4个晶体管和两个电阻器构成,只要供电它就会保持一个值,没有刷新周期,因此SRAM 比DRAM要快。
SRAM常常用于高速缓冲存储器,因为它有更高的速率;
5. 为什么DRAM采用行选通和列选通
解:DRAM存储器读/写周期时,在行选通信号RAS有效下输入行地址,在列选通信号CAS有效下输入列地址。
如果是读周期,此位组内容被读出;如果是写周期,将总线上数据写入此位组。
由于DRAM需要不断刷新,最常用的是“只有行地址有效”的方法,按照这种方法,刷新时,是在RAS有效下输入刷新地址,存储体的列地址无效,一次选中存储体中的一行进行刷新。
每当一个行地址信号RAS有效选中某一行时,该行的所有存储体单元进行刷新。
6. 用ROM实现二进制码到余3码转换
解:真值表如下:
8421码余三码
B B2B1B0G G2G1G0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0
0 1 1 1
1 0 0 0 1 0 0 10 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0
0 1 1 1
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0
最小项表达式为:
G=∑)9,8,7,6,5(G2=∑)9,4,3,2,1(G1=∑)8,7,4,3,0(G0=∑)8,6,4,2,0(
33
3
阵列图为:
7. 用ROM实现8位二进制码到8421码转换
解:输入为8位二进制数,输出为3位BCD码,12位二进制数,所以,所需ROM的容量为:28*12=3072
8.ROM、EPROM和EEPROM的区别
解:ROM 指的是“只读存储器”,即Read-Only Memory。
这是一种线路最简单半导体电路,通过掩模工艺,一次性制造,其中的代码与数据将永久保存(除非坏掉),不能进行修改。
EPROM 指的是“可擦写可编程只读存储器”,即Erasable Programmable Read-Only Memory。
是采用浮栅技术生产的可编程存储器,它的存储单元多采用N沟道叠栅MOS管,信息的存储是通过MOS管浮栅上的电荷分布来决定的,编程过程就是一个电荷注入过程。
编程结束后,由于绝缘层的包围,注入到浮栅上的电荷无法泄漏,因此电荷分布维持不变,EPROM也就成为非易失性存储器件了。
当外部能源(如紫外线光源)加到EPROM上时,EPROM内部的电荷分布才会被破坏,此时聚集在MOS管浮栅上的电荷在紫外线照射下形成光电流被泄漏掉,使电路恢复到初始状态,从而擦除了所有写入的信息。
这样EPROM又可以写入新的信息。
EEPROM 指的是“电可擦除可编程只读存储器”,即Electrically Erasable Programmable Read-Only Memory。
也是采用浮栅技术生产的可编程ROM,但是构成其存储单元的是隧道MOS管,隧道MOS管也是利用浮栅是否存有电荷来存储二值数据的,不同的是隧道MOS管是用电擦除的,并且擦除的速度要快的多(一般为毫秒数量级)。
它的最大优点是可直接用电信号擦除,也可用电信号写入。
E2PROM的电擦除过程就是改写过程,它具有ROM的非易失性,又具备类似RAM的功能,可以随时改写(可重复擦写1万次以上)。
目前,大多数E2PROM芯片内部都备有升压电路。
因此,只需提供单电源供电,便可进行读、擦除/写操作,这为数字系统的设计和在线调试提供了极大方便。
9. flash存储器的特点
解: Flash也是一种非易失性的内存,属于EEPROM的改进产品。
FLASH是结合EPROM和EEPROM技术达到的,FLASH使用雪崩热电子注入方式来编
程。
主要特点是,FLASH对芯片提供大块或整块的擦除,而EEPROM则可以一
次只擦除一个字节(Byte)。
这就降低了设计的复杂性,它可以不要EEPROM单元里多余的晶体管,所以可以做到高集成度,大容量,另FLASH的浮栅工艺
上也不同,写入速度更快。
10. 用256K×8芯片实现256K×32的ROM
解:需要4片256K×8的存储器,进行位扩展。
11. 用1M×4芯片实现1M×16的SRAM
解:需要4片1M×4的存储器,进行位扩展。
12 用256K×4芯片实现1M×8的DRAM
解:需8片1M×4的存储器,进行字位同时扩展。
13.用1M×8芯片实现4M×8的DRAM
解:需4片1M×8的存储器,进行字扩展。
14.用64K×4芯片实现64K×16的ROM
解:需4片64K×4的存储器,进行位扩展。
15.用1M×8芯片实现4M×16的ROM
解:需8片1M×8的存储器,进行字位同时扩展。
关闭。