别看一个示波器探头很简单
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
示波器探头基础系列之一《示波器探头浅谈之无源探头》作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。
与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。
每种探头各有其优缺点,因而各有其适用的场合。
其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。
最常见的500Mhz 的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。
本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。
一、10 倍无源探头的模型以及输入负载设定图1.探头原理图图1 是工程师常用的10 倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp 位于探头尖端内,Rp 为探头输入阻抗, Cp 为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1 表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。
为了精确地测量,两个RC 时间常量(RpCp 和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。
因此,在测量前需要校准示波器的探头的工作以保证测量结果的准确性。
从探头的信号模型我们可以分析,对于信号的DC 量测,输入容性Cp 和C1 等效为开路。
信号通过Rp 和R1 进行分压,最终示波器的输入为:Vout=[R1/Rp+R1]*Vin=1/10* Vin 示波器输入信号衰减为待测输入信号的1/10。
对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。
例如,一个。
YPIONEER®xx先锋电子有限公司各种示波器最重要的指标是频率带宽,这通常是指示波器面板输入端在与输入阻抗匹配的情况下测得的性能.被测电路与示波器输入端之间需要通过探头连接,因此探头的频率特性对整体性能有着决定性的影响.如果把示波器比喻为人的躯干,则探头就是四肢。
四肢不灵,做事不成。
探头分有源探头和无源探头两类,有源的输入阻抗高,但带宽达不到1GHz;无源的阻抗低,但带宽可超过1GHz.无源探头最通用,约占总数的90%,通常提供10:1衰减和10MΩ输入电阻,以便与示波器的1MΩ输入电阻匹配从图1中可见,性能良好的探头有多个RC元件,其衰减比用下面公式计算:Vout/Vin=R2/(R1+R2)正确的补偿条件为:R1C1= R2(C2+C3).在此条件下频率特性最佳,校正用输入方波显示没有失真。
带探头的电缆有一根高电阻芯线,用以在高频段衰减瞬时振荡.芯线与电缆屏蔽层以及绝缘层构成分布的RC网络,需要微调电容C1调谐。
还要有一个电位器调整衰减比例,把探头校正好可以减小测量误差。
在测量快速脉冲时,应按供应商给的说明调整微调电容以改善探头性能。
要记住,用户不能补偿1:1探头的大电容(100pF左右),它是被测电路的负载,限制探头带宽。
因此,没有1:1的有源探头。
10:1、50Ω探头比使用10:1、1MΩ探头有更大的带宽,前者可达9GHz,而后者只能到500MHz。
探头之前必须知道被测电路能否驱动足够的电流给探头,也必须知道高压无源探头能否耐受很大的dV/dt变化率。
图2中表示出三种信号,它们的dV/dt 变化率都是1000V/μs,尽管波形和幅度不同。
如果使用衰减为1:1、带宽是10 MHz的探头,会把1μs上升沿的谐波滤掉,也限制了变化率。
若要避免限制信号的变化率,被测电路在上升时间内要能供给10mA的电流对探头的100pF输入电容充电。
若把探头衰减放在10:1位置上,能把电流减小到2mA,若用100:1探头,其输入电容可小到1.5pF。
示波器探头简介学生实验室通过一套实验室练习向您介绍示波器探头的操作方法,包括获得良好信号保真度的重要注意事项。
版权声明和复制权©2011 Tektronix, Inc.本文整体或部分内容的重印、修改及分发只能用于对 Tektronix 示波器和仪器的用户或潜在用户进行培训。
任何复制品必须含有包括此声明的本页副本。
目录实验室实验简介 (4)目标 (4)设备清单 (4)示波器探头概述 (5)简介 (5)性能术语和注意事项 (8)探头负载 (10)输入电阻的影响 (11)输入电容的影响 (11)探头电感的影响 (12)抗噪性 (13)探头的类型 (14)无源探头 (14)有源探头 (16)差分探头 (18)电流探头 (19)使用无源探头 (21)探头补偿调节 (21)探测方法的种类 (24)最终练习 (25)图 2:超小型探头头部。
图 3:钳式电流探头。
图 5:在超过 3 dB 点的频率上,信号幅度会极度衰减,并且造成不可预知的测量结果。
图 12:Tektronix TPP0201 无源探头。
TPP0101/TPP0201 无源电压探头▪10X 衰减▪200 MHz 带宽▪ 1.5 米长TPP0101 TPP0201带宽直流至 100 MHz 直流至 200 MHz输入电容 <12 pF(典型值)<12 pF(典型值)输入电阻 10 MΩ±1.5%10 MΩ±1.5%图 16:Tektronix TDP0500 和 TDP1000图 17:Tektronix P5205 高压差分探头。
差分探头。
图 18:Tektronix TCP0030 电流探头。
图 19:Tektronix TCP0150 电流探头。
Tektronix 产品受美国和外国专利权(包括已取得和正在申请的专利权)的保护。
本文中的信息将取代所有以前出版的资料中的信息。
保留更改产品规格和价格的权利。
ScopeArt先生”团队成员示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。
很多工程师很看重示波器的选择,却容易忽略对示波器探头的甄别。
试想如果信号经过前端探头就已经失真,那再完美的示波器所测得的数据也会有误。
所以正确了解探头性能,有效规避探头使用误区对我们日常使用示波器来说至关重要!1对于DCL,寄图1探头等。
?图2 无源探头示意图无源探头一般使用通用型BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减。
图3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗Rprobe、寄生电容Cprobe、传输导线(一般1至1.5米左右)、可调补偿电容Ccomp组成。
此类无源探头一般输入阻抗为10M?,衰减比因子为10:1。
?图3Vscope衰减因子?图4 R&S RT-ZH10高压探头还有一类无源探头,其衰减比为1:1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。
由于不像10:1 衰减比探头那样信号需要示波器再放大10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。
图5 R&S HZ-154 1:1/10:1可调衰减比无源探头无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持带图650??图需要注意的是,由于传输线探头的低阻抗,它的负载效应会比较明显。
因此,此类探头仅适用于与低输出阻抗(几十至100欧姆)的电路测试。
对于更高输出阻抗的电路,我们可以选择使用高阻有源探头的方案,将在后续详述。
示波器常用的探头有哪些(电压、电流、逻辑、差分详解)示波器探头种类比较多,那么常用示波器探头种类有哪些?示波器探头的种类大体上可以分为电压、电流、逻辑等几大类,如下图所示:1 无源电压探头1.1 无源探头无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。
探头中没有有源器件(晶体管或放大器),因此不需为探头供电。
无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。
1.2 高阻无源电压探头从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。
无源电压探头为不同电压范围提供了各种衰减系数1,10和100。
在这些无源探头中,10无源电压探头是最常用的探头。
对信号幅度是1V峰峰值或更低的应用,1探头可能要比较适合,甚至是必不可少的。
在低幅度和中等幅度信号混合(几十毫伏到几十伏)的应用中,可切换1/10探头要方便得多。
但是,可切换1/10探头在本质上是一个产品中的两个不同探头,不仅其衰减系数不同,而且其带宽、上升时间和阻抗(R和C)特点也不同。
因此,这些探头不能与示波器的输入完全匹配,不能提供标准10探头实现的最优性能。
1.3 低阻无源电压探头大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。
而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,采用匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。
这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。
1.4 无源高压探头高压是相对的概念。
从探头角度看,我们可以把高压定义为超过典型的通用10无源探头可以安全处理的电压的任何电压。
高压探头要求具有良好的绝缘强度,保证使用者和示波。
示波器探头的使用注意事项别看一个示波器探头很简单,其实还是很有讲究的。
以下是圈圈使用示波器探头的一点小经验,供大家使用时参考一下。
首先是带宽,这个通常会在探头上写明,多少MHz。
如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。
另外就是探头的阻抗匹配。
探头在使用之前应该先对其阻抗匹配部分进行调节。
通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。
它们是用来调节示波器探头的阻抗匹配的。
如果阻抗不匹配的话,测量到的波形将会变形。
调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。
检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。
数字示波器不用调节)。
然后,再将示波器的输入选择打到直流耦合上,并将示波器探头接在示波器的测试信号输出端上(一般示波器都带有这输出端子,通常是1KHz的方波信号),然后调节扫描时间旋钮,使波形能够显示2个周期左右。
调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。
然后观察方波的上、下两边,看是否水平。
如果出现过冲、倾斜等现象,则说明需要调节探头上的匹配电容。
用小螺丝刀调节之,直到上下两边的波形都水平,没有过冲为止。
当然,可能由于示波器探头质量的问题,可能调不到完全无失真的效果,这时只能调到最佳效果了。
另外就是示波器上还有一个选择量程的小开关:X10和X1。
当选择X1档时,信号是没经衰减进入示波器的。
而选择X10档时,信号是经过衰减到1/10再到示波器的。
因此,当使用示波器的X10档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器端可选择X10档,以配合探头使用,这样在示波器端也设置为X10档后,直接读数即可)。
当我们要测量较高电压时,就可以利用探头的X10档功能,将较高电压衰减后进入示波器。
数字示波器探头原理、种类及作用方法任何使用过示波器的人都会接触过探头,通常我们说的示波器是用来测电压信号的(也有测光或电流的,都是先通过相应的传感器转成电压量测量),探头的主要作用是把被测的电压信号从测量点引到示波器进行测量。
大部分人会比较关注示波器本身的使用,却忽略了探头的选择。
实际上探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器做的再好也没有用。
实际上探头的设计要比示波器难得多,因为示波器内部可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以外,还要保证至少和示波器一样的带宽,难度要大得多。
因此最早高带宽的实时示波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。
一、探头原理示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。
探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。
这种探头通常对输入信号进行衰减。
二、探头种类2.1 无源电压探头2.1.1 无源探头无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。
探头中没有有源器件(晶体管或放大器),因此不需为探头供电。
无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。
2.1.2 高阻无源电压探头从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。
2.1.3 低阻无源电压探头大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。
而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,采用匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。
这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。
示波器被誉为“电子工程师的眼睛”,作为示波器不可缺少的组成部分,示波器探头的参数直接影响到测试结果的准确性及正确性,因此,能否正确选取合适的示波器探头直接关系到测试工作的成败,作为一名电子工程师,我们必须知道各种示波器探头的特点、原理及适用场合。
示波器探头的种类有很多,大体上可以分为电压、电流、逻辑等几大类,如下图所示:♦电压探头理想中的电压探头没有负载效应,不会对测量造成任何影响,同时对信号没有任何失真。
理想探头具备如下特征:1).输入电阻无限大;2).输入电容为0;3).带宽无限大;4).动态范围无线大;5).1:1衰减;6).无延迟;7).无相位偏移;8).机械结构适合测量应用。
在实际中,这种理想探头是不存在的。
为了说明探头对测量的影响,我们可以把探头模型简单等效为一个R、L、C电路,把这个模型与被测电路放在一起,如下图所示:如上图所示,Rprobe是探头的输入电阻,为了尽可能减少探头对被测电路的影响,要求探头本身的输入电阻Rprobe越大越好,但是Rprobe是不可能做到无穷大的,所以就会和被测电路产生分压,使得实测电压比实际电压小。
为了避免探头电阻负载造成的影响,一般要求Rprobe要大于Rsource和Rload的10倍以上。
大部分探头的输入阻抗在几十K欧姆到几十兆欧姆之间。
Cprobe是探头本身的输入电容。
这个电容不是刻意做进去的,而是探头的寄生电容。
这个寄生电容也是影响探头带宽的最重要因素,因为这个电容会衰减高频成分,把信号的上升沿变缓。
通常高带宽的探头寄生电容都比较小。
理想情况下Cprobe 应该为0,但是实际做不到。
一般无源探头的输入电容在10pf 至几百pf 间,带宽高些的有源探头输入电容一般在0.2pf 至几pf 间。
Lprobe是探头导线的寄生电感,通常1mm 探头的地线会有大约1nH 的电感,信号和地线越长,电感值越大。
探头的寄生电感和寄生电容组成了谐振回路,当电感值太大时,在输入信号的激励下就有可能产生高频谐振,造成信号的失真。
开关电源纹波噪声测试方法我折腾了好久开关电源纹波噪声测试这事儿,总算找到点门道。
最开始的时候啊,我真是瞎摸索。
我就知道得找个示波器来测,心想这能有多难呢。
就随便拿了个示波器,把探头往电源输出那一端一接,我以为就能看到准确的纹波噪声了,结果大错特错。
那显示出来的数值啊,看起来就很不靠谱。
后来才明白,探头的接地方式太重要了。
如果接地没接好,那测出来的结果就全乱套了。
就好比你要量一个东西的长度,但是尺子没放正一样。
后来我又试了一次,这次我特别注意探头的接地。
我把探头的接地弹簧尽量靠近测试点接地。
这就像是你去钓鱼,要把鱼钩尽可能靠近鱼多的地方一样。
但是又碰到新问题了,测试环境干扰太大了。
周围有其他设备开着的时候,示波器上的波形看起来就有很多毛刺,根本分不清哪些是真正的纹波噪声,哪些是干扰。
又失败了几次后,我就想啊,得把测试环境弄得干净点。
我专门挑了个周围没有什么大型电气设备运行的时间去测试。
还把开关电源单独放在一个绝缘的台子上,减少和其他物体的耦合。
这就像是你要安静地做一件事,就找个没人打扰的小角落一样。
同时呢,示波器的带宽限制也很重要。
我最开始没管这个,后来设置了合适的带宽限制后,发现波形看起来就清晰多了。
我不确定每个型号的示波器这个操作是不是都一样,反正我这个示波器得仔细看说明书才能搞定这个带宽设置呢。
再一个就是测试点的选取。
我最开始就在电源输出线随便找个地方接探头,其实最好是在电容后面,也就是电源滤波之后的地方测。
这地方更能反映纹波经过滤波后的真实情况,就好比你要检测经过净化器后的空气,肯定是要在净化器出风口处检测最准确。
还有采样率,这个设置不好也会影响结果。
要是采样率太低,波形细节就显示不出来,就好像你用低像素的相机拍照,很多细节都看不到了。
我还在不断摸索,但是现在按照这些法子来测试,结果已经靠谱多了。
这就是我在开关电源纹波噪声测试里的一些尝试和经验啦。
示波器探头原理---示波器探头工作原理2009-06-20 19:40示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。
探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。
这种探头通常对输入信号进行衰减。
我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。
屏蔽示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一面导线来代替探头,那到它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,其些这类噪声甚至还能抽向注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过们于探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。
示波器探头带宽和示波器一们,示波器探头也具有其允许的有限带宽。
如果我们使用一台100MHz的示波器和一个100MHz的探头,那么它们组合起来的响应就小于100MHz,探头的电容和示波器的输入电容相加,这就减小了系统的带宽,加大了显示的上升时间tr见第一章1.3节上升时间。
使用1.3节的公式tr(ns)=350/BW(MHz)如果示波器和探头各自均为100MHz带宽,其上升时间均为tr=3.5ns 。
则有效系统上升时间就由下式给出:trsystem=sqr(t2rscope+t2rprobe)=sqr(3.52+3.52)ns=sqr(24.5)2ns=4.95ns根据4.95ns的系统上升时间求得,系统带宽为350/4.95MHz=70.7MHz。
Fluke公司给所有示波器配备的探头都能使示波器保证在探头尖端获得规定的示波器带宽,从上述的计算可以看出,视觉要求探头本射的带宽要比示波器的带宽宽得多。
示波器探头浅谈示波器技术指标一个理想的探头应当易于连接,具有可靠而安全的触点、不会降低其传输信号的质量或者造成失真、具有线性的相位行为、无衰减、具有无限的带宽、高的抗噪性能以及不会成为信号源的负载。
然而,实际上所有这些属性均不可能绝对实现,而且某些情况下离所要求的测量情况还会有很大的差距。
实际应用中,需要测量的信号往往难以获取,其阻抗变化可能非常大,整体设置对噪声非常敏感而且依赖于频率,带宽有限,而且信号传播的差异会在多个测量通道之间引起轻微的时间偏差(相位和时间偏差)。
幸运的是,示波器制造商竭尽全力将与探头相关的影响降至最低,使其能够更容易连接到电路,而且性能更可靠。
比如,一只手拿着探头而另一只手操作示波器的方式是很难做到的。
因此,R选择通道2时,示波器仅显示通道2的信号;选择双通道时,示波器同时显示通道1和通道2的信号。
维修中以选择通道1或通道2为多。
(2)输入耦合方式输入耦合方式-交流(AC)、地(GND)、直流(DC)。
5、触发(1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;(2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;(3)电视场(TV):用于显示电视场信号;(4)峰值自动(P-PAUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。
6、扫描方式(SweepMode)扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。
举例:幅度和频率的测量方法(以测试示波器的校准信号为例)(1)将示波器探头插入通道1插孔,并将探头上的衰减置于“1”档;(2)将通道选择置于CH1,耦合方式置于DC档;(3)将探头探针插入校准信号源小孔内,此时示波器屏幕出现光迹;(4)调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定,并将垂直微调和水平微调置于校准位置;(5)读出波形图在垂直方向所占格数,乘以垂直衰减旋钮的指示数值,得到校准信号的幅度;(6)读出波形每个周期在水平方向所占格数,乘以水平扫描旋钮的指示数值,得到校准信号的周期(周期的倒数为频率);(7)一般校准信号的频率为1kHz,幅度为0.5V,用以校准示波器内部扫描振荡器频率,如果不正常,应调节示波器(内部)相应电位器,直至相符为止。
50HZ 干扰示波器接地问题详解别看一个示波器探头很简单,其实还是很有讲究的。
1、首先是带宽,这个通常会在探头上写明,多少MHz。
如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。
2、另外就是探头的阻抗匹配。
探头在使用之前应该先对其阻抗匹配部分进行调节。
通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。
它们是用来调节示波器探头的阻抗匹配的。
如果阻抗不匹配的话,测量到的波形将会变形。
调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND 上,然后调节Y 轴位移旋钮使扫描线出现在示波器的中间。
检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。
数字示波器不用调节)。
然后,再将示波器的输入选择打到直流耦合上,并将示波器探头接在示波器的测试信号输出端上(一般示波器都带有这输出端子,通常是1KHz 的方波信号),然后调节扫描时间旋钮,使波形能够显示2 个周期左右。
调节Y 轴增益旋钮,使波形的峰-峰值在1/2 屏幕宽度左右。
然后观察方波的上、下两边,看是否水平。
如果出现过冲、倾斜等现象,则说明需要调节探头上的匹配电容。
用小螺丝刀调节之,直到上下两边的波形都水平,没有过冲为止。
当然,可能由于示波器探头质量的问题,可能调不到完全无失真的效果,这时只能调到最佳效果了。
示波器探头电路图及其原理图详解一、示波器探头电路图我们可以把探头模型简单等效为一个R、L、C电路,把这个模型与被测电路放在一起,如下图所示:如上图所示,Rprobe是探头的输入电阻,为了尽可能减少探头对被测电路的影响,要求探头本身的输入电阻Rprobe越大越好,但是Rprobe是不可能做到无穷大的,所以就会和被测电路产生分压,使得实测电压比实际电压小。
为了避免探头电阻负载造成的影响,一般要求Rprobe要大于Rsource和Rload的10倍以上。
大部分探头的输入阻抗在几十K欧姆到几十兆欧姆之间。
Cprobe是探头本身的输入电容。
这个电容不是刻意做进去的,而是探头的寄生电容。
这个寄生电容也是影响探头带宽的最重要因素,因为这个电容会衰减高频成分,把信号的上升沿变缓。
通常高带宽的探头寄生电容都比较小。
理想情况下Cprobe 应该为0,但是实际做不到。
一般无源探头的输入电容在10pf 至几百pf 间,带宽高些的有源探头输入电容一般在0.2pf 至几pf 间。
Lprobe是探头导线的寄生电感,通常1mm 探头的地线会有大约1nH 的电感,信号和地线越长,电感值越大。
探头的寄生电感和寄生电容组成了谐振回路,当电感值太大时,在输入信号的激励下就有可能产生高频谐振,造成信号的失真。
所以高频测试时需要严格控制信号和地线的长度,否则很容易产生振铃。
在使用示波器时,需要对示波器测量通道的耦合方式和输入阻抗进行设置,耦合方式有AC和DC两种,输入阻抗有1M和50两种。
示波器的探头种类很多,但是示波器的的匹配永远只有1M 欧姆或50欧姆两种选择,不同种类的探头需要不同的电阻与之匹配。
示波器输入接口的电路示意图如下图所示:测量普通信号时一般用DC耦合方式,测试电源的纹波/噪声时需要使用AC耦合方式,示波器接有源探头时,输入阻抗会自动切换到50档位,接无源探头时需要手动切换到1M。
示波器探头工作原理
示波器探头是一种测量电信号的工具,通过将探头连接到示波器上,可以观察并测量信号的波形和特征。
探头的工作原理基于电磁感应和电阻分压原理。
它通常由两部分组成:信号引线和插头。
信号引线是连接探头和被测信号源的部分,一端连接探头插头,另一端连接被测信号的接入点。
引线通常由绝缘材料包裹的导体组成,以防止信号波形受到外界干扰。
插头是探头的连接接口,用于将探头与示波器相连。
插头一般由金属制成,确保良好的电气接触和传输质量。
当信号通过探头时,信号引线会感应到电磁场,并在引线上产生感应电动势。
这个电动势可以通过回路中的电阻进行分压,从而减小信号的幅度,以防止损坏示波器。
在测量过程中,示波器会根据该分压信号计算出原始信号的幅度值,并将其显示在屏幕上。
探头还需要考虑相位延迟。
由于探头本身的电容性质,信号在传输过程中可能会有微小的时间延迟。
示波器会根据探头的特性进行校准,以消除这种延迟并确保准确测量信号的时间特性。
总之,示波器探头通过电磁感应和电阻分压原理来感知和测量被测信号,并将其转换成示波器可读取的波形数据,以实现信号的观测和分析。
别看一个示波器探头很简单,其实还是很有讲究的。
以下是使用示波器探头的一点小经验,供大家使用时参考一下。
首先是带宽,这个通常会在探头上写明,多少MHz。
如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。
另外就是探头的阻抗匹配。
探头在使用之前应该先对其阻抗匹配部分进行调节。
通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。
它们是用来调节示波器探头的阻抗匹配的。
如果阻抗不匹配的话,测量到的波形将会变形。
调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。
检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。
数字示波器不用调节)。
然后,再将示波器的输入选择打到直流耦合上,并将示波器探头接在示波器的测试信号输出端上(一般示波器都带有这输出端子,通常是1KHz的方波信号),然后调节扫描时间旋钮,使波形能够显示2个周期左右。
调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。
然后观察方波的上、下两边,是否水平。
如果出现过冲、倾斜等现象,则说明需要调节探头上的匹配电容。
用小螺丝刀调节之,直到上下两边的波形都水平,没有过冲为止。
当然,可能由于示波器探头质量的问题,可能调不到完全无失真的效果,这时只能调到最佳效果了。
另外就是示波器上还有一个选择量程的小开关:X10和X1。
当选择X1档时,信号是没经衰减进入示波器的。
而选择X10档时,信号是经过衰减到1/10再到示波器的。
因此,当使用示波器的X10档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器端可选择X10档,以配合探头使用,这样在示波器端也设置为X10档后,直接读数即可)。
当我们要测量较高电压时,就可以利用探头的X10档功能,将较高电压衰减后进入示波器。
【很全】示波器探头知识全解析作为一名专业的电源设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。
与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。
每种探头各有其优缺点,因而各有其适用的场合。
其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。
最常见的500Mhz的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。
本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。
10倍无源探头的模型以及输入负载设定图1. 探头原理图图1是工程师常用的10倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp位于探头尖端内,Rp为探头输入阻抗, Cp为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。
为了精确地测量,两个RC时间常量(RpCp和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。
因此,在测量前需要校准示波器的探头的工作以保证测量结果的准确性。
从探头的信号模型我们可以分析,对于信号的DC 量测,输入容性Cp和C1等效为开路。
信号通过Rp和R1进行分压,最终示波器的输入为:Vout=[R1/Rp+R1]*Vin=1/10* Vin示波器输入信号衰减为待测输入信号的1/10。
对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。
例如,一个标准的1MΩ~10pF的无源电压探头,输入信号的频率为100MHz,此时,探头输入容抗为Xc(Cp)=1/(2×π×f×C)=159Ω,容抗远远小于9MΩ的探头阻抗,信号电流更多的会通过输入电容提供的低阻回路,9MΩ阻抗的高阻回路等效为旁路。
别看一个示波器探头很简单,其实还是很有讲究的。
以下是使用示波器探头的一点小经验,供大家使用时参考一下。
首先是带宽,这个通常会在探头上写明,多少MHz。
如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。
另外就是探头的阻抗匹配。
探头在使用之前应该先对其阻抗匹配部分进行调节。
通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。
它们是用来调节示波器探头的阻抗匹配的。
如果阻抗不匹配的话,测量到的波形将会变形。
调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。
检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。
数字示波器不用调节)。
然后,再将示波器的输入选择打到直流耦合上,并将示波器探头接在示波器的测试信号输出端上(一般示波器都带有这输出端子,通常是1KHz的方波信号),然后调节扫描时间旋钮,使波形能够显示2个周期左右。
调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。
然后观察方波的上、下两边,看是否水平。
如果出现过冲、倾斜等现象,则说明需要调节探头上的匹配电容。
用小螺丝刀调节之,直到上下两边的波形都水平,没有过冲为止。
当然,可能由于示波器探头质量的问题,可能调不到完全无失真的效果,这时只能调到最佳效果了。
另外就是示波器上还有一个选择量程的小开关:X10和X1。
当选择X1档时,信号是没经衰减进入示波器的。
而选择X10档时,信号是经过衰减到1/10再到示波器的。
因此,当使用示波器的X10档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器端可选择X10档,以配合探头使用,这样在示波器端也设置为X10档后,直接读数即可)。
当我们要测量较高电压时,就可以利用探头的X10档功能,将较高电压衰减后进入示波器。
另外,X10档的输入阻抗比X1档要高得多,所以在测试驱动能力较弱的信号波形时,把探头打到X10档可更好的测量。
但要注意,在不确信号电压高低时,也应当先用X10档测一下,确认电压不是过高后再选用正确有量程档测量,养成这样的习惯是很有必要的,不然,哪天万一因为这样损坏了示波器,要后悔就来不及了。
经常有人提问,为什么用示波器看不到晶振引脚上的波形?一个可能的原因就是因为使用的是探头的X1档,这时相当于一个很重的负载(一个示波器探头使用×1档具有上百pF的电容)并联在晶振电路中,导致电路停振了。
正确的方法应该是使用探头的X10档。
这是使用中应当注意的,即或不停振,也有可能因过度改变振荡条件而看不到真实的波形了。
示波器探头在使用时,要保证地线夹子可靠的接了地(被测系统的地,非真正的大地),不然测量时,就会看到一个很大的50Hz的信号,这是因为示波器的地线没连好,而感应到空间中的50Hz工频市电而产生的。
如果你发现示波器上出现了一个幅度很强的50Hz信号(我国市电频率为50Hz,国外有60Hz的),这时你就要注意下看是否是探头的地线没连好。
由于示波器探头经常使用,可能会导致地线断路。
检测方法是:将示波器调节到合适的扫描频率和Y轴增益,然后用手触摸探头中间的探针,这时应该能看到波形,通常是一个50Hz的信号。
如果这时没有波形,可以检查是否是探头中间的信号线是否已经损坏。
然后,将示波器探头的地线夹子夹到探头的探针(或者是钩子)上,再去用手触摸探头的探针,这时应该看不到刚刚的信号(或者幅度很微弱),这就说明探头的地线是好的,否则地线已经损坏。
通常是连接夹子那条线断路,通常重新焊上即可,必要时可更换,注意连接夹子的地线不要太长,否则容易引入干扰,尤其是在高频小信号环境下。
示波器探头的地线夹子应该要靠近测量点,尤其是测量频率较高、幅度较小的信号时。
因为长长的地线,会形成一个环,它就像一个线圈,会感应到空间的电磁场。
另外系统中的地线中电流较大时,也会在地线上产生压降,所以示波器探头的地线应该连接到靠近被测试点附近的地上。