电力系统保护与控制-AVR
- 格式:pptx
- 大小:2.79 MB
- 文档页数:48
电力系统保护与控制随着社会的发展和科技的进步,电力系统作为现代社会的基础设施之一,其保护与控制显得尤为重要。
电力系统保护与控制,简单来说,就是对电力系统进行监控、保护和控制,确保电力系统的安全、可靠运行。
本文将从多个方面来探讨电力系统保护与控制的相关内容。
首先,保护是电力系统运行的重要组成部分。
电力系统中存在着各种潜在的故障和异常情况,如短路故障、过电流等,这些问题一旦发生,可能导致电力系统的瘫痪甚至是火灾等严重后果。
因此,保护设备的合理选择和配置对于保护电力系统的安全运行至关重要。
常见的保护设备包括断路器、继电器等,它们能够根据故障类型和程度判断并采取相应的保护措施,如及时切断故障电路,保护关键设备的安全。
另外,电力系统的控制也是非常重要的。
控制系统能够实时监控电力系统的运行状态,根据需要自动或手动调整电力系统的运行参数。
例如,根据负荷情况和供电要求,控制系统可以调整发电机的输出功率、变压器的容量等,以便电力系统能够满足不同用户的需求。
控制系统还能够预测电力系统的负荷变化,根据负荷预测结果进行相应的调整,保证电力系统的平稳运行。
在电力系统保护与控制中,通信技术也起着非常重要的作用。
通信技术能够实现各个保护终端之间的互联互通,及时传递保护信息。
传统的电力系统保护与控制主要依靠硬件设备进行,但随着数字化技术的迅速发展,智能终端的出现使得电力系统的保护与控制更加灵活和可靠。
通过通信技术,各个保护终端之间可以实现信息交换和协同工作,大大提高了电力系统的保护能力。
此外,电力系统保护与控制还需要考虑到可靠性和经济性的平衡。
保护系统需要具备高可靠性,即在各种异常情况下能够正常工作并进行正确的保护操作。
同时,保护系统的设计和运行也需要考虑经济性,即在确保安全的前提下,尽量减少成本和资源的消耗。
这需要在保护系统的设计和配置过程中进行权衡和折中,以达到最优的结果。
综上所述,电力系统保护与控制是电力系统运行的重要组成部分,直接关系到电力系统的安全性和可靠性。
电力系统保护与控制审稿与复审一、电力系统保护与控制概述在现代社会中,电力系统是支撑工业、商业和居民生活的重要基础设施。
为了确保电力系统的安全稳定运行,需要进行有效的保护与控制。
电力系统保护与控制是指利用各种保护装置和控制设备,对电力系统进行实时监测、故障检测与隔离、以及稳定控制和调度,以确保电力系统在各种异常情况下能够快速、准确地做出响应,保障电网的安全稳定运行。
二、电力系统保护与控制的重要性1. 保障电网安全稳定运行电力系统保护与控制是保障电网安全稳定运行的重要手段。
通过多种保护装置和控制设备的监测和控制,能够有效地预防和隔离各种故障,避免故障扩大影响整个电力系统的正常运行。
2. 提高电网运行效率良好的电力系统保护与控制能够提高电网的运行效率。
在保障电力系统安全的前提下,通过合理的控制和调度,能够实现电能的高效利用,提高供电质量,降低能源消耗。
3. 保障电力设备和人员安全电力系统保护与控制也是为了保障电力设备和人员的安全。
及时、准确地对电力系统进行保护和控制,能够最大程度地减少事故的发生,降低电力设备的损坏和人员的伤害。
三、电力系统保护与控制的审稿与复审1. 审稿:审稿是对电力系统保护与控制方案、装置和设备进行评审和审核。
审稿的主要目的是确保保护与控制方案的合理性和有效性,以及保护装置和控制设备的可靠性和稳定性。
审稿工作需要对电力系统的整体结构和运行特点有全面的理解,同时也需要对各种保护装置和控制设备的原理和技术进行深入分析。
2. 复审:复审是对电力系统保护与控制方案、装置和设备进行再次评审和确认。
复审的主要目的是在审稿的基础上,对方案、装置和设备进行进一步的验证和确认,确保其能够满足电力系统运行的要求,以及各种潜在故障和异常情况下的应对能力。
复审工作需要对电力系统的实际运行情况有全面的了解,同时也需要对各种保护装置和控制设备的性能和可靠性进行深入测试和验证。
四、个人观点与理解作为电力系统保护与控制的写手,我深切理解其在电力系统运行中的重要性。
AVR是Automatic voltage regulator自动电压调节, AVC是Automatic Voltage Control自动电压控制。
自动电压调节是用在发电机自动调节励磁以保证定子电压输出的稳定性,自动电压控制是省调统一管理网上无功的。
机组投AVC 后就会根据电网的无功情况自动调节发电机的无功出力,我们这里投了AVC后机组好多时候都是在进相运行,机端电压也跟着系统电压下降。
系统电压的全局控制分为三个层次,一级电压控制、二级电压控制、和三级电压控制,一级电压控制为单元控制,控制器为励磁调节器,控制时间常数一般为豪秒级。
二级电压控制为本地控制,控制器为发电厂侧电压无功自动调控装置,时间常数为秒-分钟级,控制的主要目的是协调本地的一级控制器,保证母线电压或全厂总无功等于设定值,如果控制目标产生偏差,二级电压控制器则按照预定的控制规律改变一级电压控制器的设定值。
三级电压控制为全局控制,时间常数为分钟-小时级,它以全系统的安全、经济运行为优化目标,给出各厂站的优化结果,并下达给二级控制器,作为二级控制器的跟踪目标。
电力系统保护与控制电力系统是现代社会运转的关键基础设施之一,保护与控制是确保电力系统安全、稳定运行的重要环节。
本文将从电力系统保护和控制的概念、作用、常见技术等方面进行论述。
一、概述电力系统保护与控制是指在电力系统发生故障或异常情况时,采取一系列保护方案和控制策略,确保设备和用户的安全。
保护与控制系统通过监测电力系统的运行状态、判断系统的故障类型和位置,并通过各种控制手段保护系统的正常运行。
二、保护的作用1. 人员安全:电力系统中存在着高电压、大电流等危险因素,保护系统能够及时切断带电设备,保证人员的安全。
2. 资产保护:电力设备通常具有较高的价值,保护系统能够将故障影响范围最小化,减少设备的损坏。
3. 系统可靠性:保护系统能够及时检测和隔离故障,减少因故障引起的停电,提高电力系统的可靠性。
三、常见保护技术1. 过电流保护:通过检测电流的大小,当电流超过额定值时,采取措施切断电路,避免设备受到过载损害。
2. 差动保护:通过比较电流的差值,判断电流是否存在异常,一旦发现异常,及时切断受保护设备。
3. 距离保护:通过测量电路的阻抗,判断故障位置,并将故障范围内的设备切除。
4. 电压保护:检测电压的大小和波形,一旦电压异常,及时采取控制措施,保护设备。
5. 频率保护:通过检测电网频率的变化,判断是否存在电力系统的异常工况,及时采取控制措施。
四、控制的作用电力系统控制是指对电力系统进行运行状态的监测和控制,以提高电力系统的效率和稳定性。
通过控制系统能够实现对负荷的调节、故障的恢复以及电力系统的优化调度。
五、常见控制技术1. 自动调压控制:根据电力系统的实际负荷需求,自动调节电力系统的电压,确保电压稳定在适当的范围内。
2. 频率调控:根据负荷的变化情况,对电力系统的发电机进行调节,保持电力系统的频率稳定。
3. 智能供电网控制:通过对电力系统中各个节点进行监测和控制,实现对电力系统的网络化运行和优化调度。
4. 电力系统状态估计:通过测量电力系统中各个节点的参数,利用数学模型推算电力系统的运行状态,为控制系统提供依据。
自动电压调整zidong dianya tiaozheng automaticvoltage regulation,AVR同步发电机的励磁控制系统对机端电压实施自动调节的功能。
由于同步发电机具有电枢反应,其端电压随负载变化而波动。
最早期的透平发电机运行时,电压是人工调节的,由运行人员监视并调节励磁机磁场回路中的变阻器来维持发电机的端电压。
后来研制成机电型自动电压调节器,同步发电机端电压的调整才实现了自动化。
励磁控制系统自动电压调节器、励磁机和同步发电机形成的反馈控制系统,见图1。
自动电压调节器以发电机的运行参数(电压、电流、功率因数等)作为反馈控制信号,调节励磁电流以维持机端电压为给定值,实现并联运行机组间的无功功率自动分配和提高发电机组运行的稳定性等。
自动电压调节器(AVR)是励磁控制系统的核心部件,它所选用元件的性能和所采用的调节准则对调节系统的品质起主导作用。
自动电压调节器是通过调节励磁电流来实现电压调整的,同时它还兼有强行励磁、强行灭磁等控制功能,所以也称为自动励磁调节器。
图1 励磁控制系统图发展简况50年代以前只有机电型自动电压调节器,它的执行部件直接作用于变阻器,改变励磁机的磁场电阻,从而改变发电机励磁,达到调节机端电压的目的。
由于它需要克服摩擦力,具有呆滞区,所以发电机组不能在人工稳定区域运行。
它的任务只是调整电压和无功分配。
50年代磁放大器出现后,电磁型自动电压调节器开始问世,这种自动电压调节器的综合放大和功率放大部件都采用磁放大器,用改变励磁机磁场绕组合成安匝的办法来调节发电机的端电压,它没有机械运动部件,因而无呆滞区,发电机组可以在人工稳定区域运行。
这种调节器可靠性高、寿命长。
它的主要缺点是时间常数较大。
60年代由于半导体器件的发展,又出现了半导体型自动电压调节器。
半导体器件几乎没有时延,使用寿命长,70年代初半导体型的自动电压调节器就得到了广泛的应用。
当前大规模集成电路和计算机技术已日益成熟,应用计算机技术的数字型自动电压调节器(digital automatic voltage reg-ulator,DAVR) 已研制成功并投入工业运行。
自动电压调节器avr原理
自动电压调节器AVR原理
自动电压调节器,即AVR(Automatic Voltage Regulator),是一
种用于稳定发电机输出电压的电路,它可以监控并调整发电机输出电压,确保它始终保持在一个安全范围内。
AVR的工作原理是基于反馈控制的概念。
发电机输出电压通过电压感
测器输入到一台比较器中。
比较器将检测到的电压与设定值进行比较,然后输出一个误差信号。
误差信号经过操作放大电路后反馈给发电机
励磁系统,控制其的电场大小,从而调整输出电压。
每台发电机都有一个额定输出电压范围,如果它的输出电压偏高或偏低,都会导致问题的出现。
输出电压过高可能会导致负载电气元件的
损坏或烧毁,过低则会导致无法正常供电。
因此,AVR对于发电机的
稳定性和运行效率至关重要。
AVR的另一个重要特性是响应速度。
它可以在毫秒级别内检测到发电
机输出电压的变化,并及时适应调整以确保发电机稳定工作。
除此之外,AVR还拥有过载保护和短路保护等安全功能。
总的来说,AVR是一种重要而又不可或缺的电路,它可以确保发电机的稳定性和安全性。
在负载需求不断增加和电压波动频繁的情况下,AVR的应用已经被广泛采用,成为了发电机控制系统中不可或缺的一部分。
某厂发变组保护与AVR系统限制配合关系的研究陈宁摘要:大型发电机组保护设备配置失磁失步保护、转子过负荷保护、定子过电流保护、过激磁保护及过电压保护功能,而按励磁标准规定励磁系统中配置无功低励限制、转子过电流限制、过激磁限制及过电压限制等功能,为提高机组运行可靠性,保障电网运行安全,必须保证发电机在限制区运行过程中,励磁系统限制功能总是先于发变组保护功能动作,防止发变组保护功能在励磁系统限制未动作之前解列发电机,当前多数电厂的发变组保护在进行整定计算时,容易忽略与励磁调节器的配合,导致一旦励磁系统出现异常,发变组保护即动作于停机。
本文针对误强励及误失磁两方面导致的结果,研究发电机励磁限制功能与发变组保护功能配合的关系,期望能给励磁及保护的同行从业者提供参考。
关键词:失磁;反时特性;保护;励磁;过激磁;误强励;配合关系;一、引言现代大型发电机组保护设备均采用微机保护方式,发电机运行过程中,励磁系统故障中断电流或发出强励电流的原因综合起来,不外乎两种,一般发电机低励磁均是由于励磁系统故障后中断励磁电流引起,发电机过励磁的原因大致分为两种,一种由区外故障引起励磁系统输出强励电流,不能在保护动作之前降低励磁电流引发;一种由于励磁系统本身输出误强励磁电流引发。
发电机励磁调节器误调节引起发电机误失磁和误强励,其保护功能基本为失磁失步保护、转子过负荷保护、定子过电流保护、过激磁保护及过电压保护几大类保护功能,要确保这些保护功能动作解列前发电机能够回到正常运行工况,则必须针对这些保护功能配置相应的励磁限制功能,保证发电机在限制区运行过程中,励磁系统限制功能总是先于发变组保护功能动作,防止发变组保护功能在励磁系统限制未动作之前解列发电机。
根据当前大型发电机变压器组保护设备的典型功能配置,大型发电机组励磁调节器务必具备如下限制功能:发电机低励失磁限制、发电机转子过负荷限制、发电机定子过电流限制、发电机过激磁限制等。
本文中从五个方面分析发变组保护定值整定与励磁调节器的限制、保护之间的配合,包括:(1)发电机失磁保护与AVR低励限制的配合;(2)发电机转子绕组过负荷保护与AVR励磁过电流(过励)限制的配合;(3)发电机过励磁保护与AVR过励限制的配合;(4)发电机过电压保护与AVR过电压限制的配合;(5)发电机定子过负荷保护与AVR定子过流限制的配合。
船舶发电机AVR的作用[复制链接]捷发机电1141主题1177帖子1451积分管理员积分1451•发消息电梯直达楼主发表于 2015-6-15 13:11:51 |只看该作者|只看大图船舶发电机AVR有以下几方面的作用:(1)在船舶电力系统的正常工况下,维持发电机的端电压不变。
(2)为了保持发电机组并联运行的稳定,合理分配各并联发电机间的无功功率。
(3)在船舶电力系统发生短路故障时,为了提高发电机组并联运行的稳定性以及其它继电保护动统强行励磁。
浅谈船舶发电机自动调压系统樊夏军摘要:从当前的发展的形势看,调压系统已经成为交流同步发电机中最重要,最核心的组成部分的性能有着至关重要的作用。
本文主要论述同步发电机系统调压系统作用和工作原理及采用相复励变置的励磁调压系统。
同时分析了几个典型调压系统。
关键词:调差电压整定 AVR 相复励装置带AVR的相复励装置0 引言:船舶电网是一个有限量电网,一般只有一个或者两个电站组成,故电站的容量就是电网的容量。
3~4台发电机组成,所以每台发电机就是能量的源泉。
当船舶电力系统负荷发生变化而引起电网电压发电机励磁以维持电压在一定的精度内。
完成这一步骤的就是发电机的自动调压系统。
当然,发电机迅速达到额定电压。
因此,调压系统对于船舶电网有着重大作用及意义。
1 交流发电机需要电压调节器必要性交流发电机为什么需要电压调节器呢?①从外部原因来说:交流发电机需要自动电压调节器的理由有两点。
首先,当大容量的电动机启动时,会产生强大的启动电流,由于船舶电网是一个有限量电网,从并且电动机的启动电流基本上都是无功电流,当这个无功电流流过发电机时,加强了发电机交轴去磁幅度的下降。
其次,当外部电路发生短路时,为了使得短路点迅速脱离电网,保护系统需立即动作,速工作,发电机必须进行强励磁以维持一定幅值的端电压使保护系统投入工作。
显而易见靠手动调节因此必须要有自动电压调节器进行电压控制。
②从发电机内部而言:当发电机在原动机的驱动下运转后,转子绕组流过电流,产生气隙磁场,上,见图1-1。