2018初一数学几何图形初步(一)几何图形练习题
- 格式:docx
- 大小:349.93 KB
- 文档页数:17
人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。
1.2 几何图形一、选择题1.下列图形:①正方形;②圆;③球;④棱柱;⑤圆锥;⑥六边形.属于立体图形的有()A、①③④B、②④⑤C、③④⑤D、③④⑤⑥2. 将如图的直角三角形ABC绕直角边AB所在的直线旋转一周得到一个几何体,从上面看这个几何体得到的平面图形是()(第2题图)A B C D3. 下列图形中,不是正方体平面展开图的是()A B C D4. 将如图的几何图形,绕直线l旋转一周得到的立体图形是()(第4题图)5. 正方形的顶点数、面数和棱数分别是()A、8,6,12B、6,8,12C、8,12,6D、6,8,106. 将下列的平面图形绕轴旋转一周,可得到圆锥的是()A B C DA B C D7. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A. 点动成线B. 线动成面C. 面动成体D. 以上答案都不对8.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A、和B、谐C、凉D、山二、填空题9. 几何图形是由_______、_______、_______、_______组成的。
10. 飞机飞行表演时在空中留下漂亮的“彩带”。
用数学知识解释为___________。
11.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是__________。
12.如图,将平面展开图折叠成正方体后,若两个相对面上的值相等,则x+y=________。
(第12题图)13.如图是一正方体的平面展开图,若AB=5,则该正方体上A、B两点间的距离为。
(第13题图)14. 如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可得长方体的体积是________cm3。
(第14题图)三、解答题15. 如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图。
(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形)(第15题图)16. 如图,将一张边长为5 cm的正方形和一张长6 cm、宽4 cm的长方形硬纸片分别旋转一周得到两个圆柱。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
2018年几何图形初步测试题一、选择题1.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么图中x的值是( )A.8 B.3 C.2 D.—32.如图所示的几何体的俯视图是().3.下列左图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()4.下图中共有()条线段.A.4B.6C.8D.105.下列四个图中的线段(或直线、射线)能相交的是()A.(1)B.(2)C.(3)D.(4)6.使分式2+x x 有意义的x 的取值范围为( ) A .2≠x B .2-≠x C .2->x D .2<x7.如图,C 、D 是线段AB 上两点,若CB =5cm ,DB=9cm ,且D 是AC 的中点,则AC 的长等于( )A .6cmB .9cmC .8cmD .13cm8.点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是A 、 AC =BCB 、 AC +BC= AB C 、 AB =2ACD 、 BC =21AB9.已知A 、B 两点之间的距离是10cm,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是() A .3cm B .4cm C .5cm D .不能计算10.将一副三角板如图放置,使点A 落在DE 上,若BC DE ∥,则AFC ∠的度数为( )A 。
45°B 。
50° C.60° D.75°11.如图,直线AB 与CD 相交于点O ,12=∠∠,若140AOE =∠,则AOC ∠的度数为( ).A.40 B.60 C.80 D.10012.如图所示,∠AOB=156°,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线,那么∠DOE 等于( )A .78°B .80°C .88°D .90°13.如图,直线AB 与CD 相交于点O ,∠1=∠2,若∠AOE=140°,则∠AOC 的度数为( )A.40B.60C.80D.10014.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是( )(A)20°(B)25°(C)30°(D)70°评卷人得分一、解答题15.(本题满分7分)线段AB=4cm,延长线段AB到C,使BC = 1cm,再反向延长AB到D,使AD=3 cm,E是AD中点,F是CD的中点,求EF的长度.16.(本题满分5分)已知:如图所示,已知线段a、b、c(a﹥c),求作:线段AB,使AB=a+b—c.17.(10分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.18.(6分)根据下列语句,画出图形.已知四点A、B、C、D。
几何图形初步一、选择题1、从上面看这四个几何体,看到相同图形的几何体是______;从左面看这四个几何体,看到相同图形的几何体是______;从正面看这四个几何体,看到相同图形的几何体是______.a b c dA.abcd,bcd,abcdB.abc,bcd,abcdC.abcd,abcd,abcdD.acd,bcd,abc2、将如图所示的ABCRt 绕直角边AB旋转一周,所得几何体的主视图是()A B C D3、在下面的四个几何体中,左视图与主视图不相同的几何体是()A B C D4、如图,是一个由5个正方体组成的立体图形,从上面看得到的平面图形是()A B C D5、如图所示,将平面图形绕旋转轴旋转一周,得到的几何体是( )A B C D 6、如图,AB OD ⊥于O ,OE OC ⊥,图中与AOC ∠互补的角有( )A.1个B.2个C.3个D.4个7、如图所示,阴影部分的面积是)2(b a >( )A.42a ab π- B.22b ab π- C.22a ab π- D.42b ab π-8、在灯塔O 处观测到轮船A 位于北偏西︒54的方向,同时轮船B 在南偏东︒15的方向,那么AOB ∠的大小为( )A.︒126B.︒105C.︒144D.︒1419、木工师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,这是因为( )A.两点确定一条直线B.两点之间,线段最短C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离10、下列说法正确的是( )A.一条直线可以看成一个平角B.角的大小与两边的长短无关C.若MB AM =,则点M 是AB 的中点D.两点之间的线段叫两点间的距离11、下列说法中,错误的是( )A.射线AB 和射线BA 是同一条射线B.直线AB 和直线BA 是同一条直线C.线段AB 和线段BA 是同一条线段D.连接两点间的线段的长度叫两点间的距离12、下面四个角中,最有可能与︒70角互补的角是( )A B C D13、下列说法中:①相等的两个角的补角相等;②若BC AB =,则点B 为线段AC 的中点;③三条直线两两相交,必定有三个交点;④在同一平面内,经过一点且只有一条直线与已知直线垂直;⑤线段AB 就是点A 到点B 之间的距离,其中正确的有( )A.1个B.2个C.3个D.4个14、平面上有任意四点,经过其中两点画一条直线,共可画直线( )A.1条B.6条C.6条或4条D.1条、4条或6条15、如图,是一副特制的三角板,用它们可以画出一些特殊的角,在︒54,︒60,︒63,︒72,︒99,︒120,︒144,︒150,︒153,︒171的角中,能画出的角有()A.6个B.7个C.8个D.9个16、如图,是一个正方形纸盒的展开图,若在其中三个正方形C B A 、、中分别填入适当的数,使得它们折成正方体后相对的面上两个数字互为相反数,则填入正方形C B A 、、中的三个数依次是( )A.1,3-,0B.0,3-,1C.3-,0,1D.3-,1,017、三棱柱的平面展开图为()A B C D18、如图,一副三角板(直角顶点重合)摆放在桌面上,若︒∠AOD,则BOC∠150=等于()A.︒40 D.︒5020 B.︒30 C.︒19、如图如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知︒BOD,则AOC∠的度数是()=∠40A.︒150140 D.︒40 B.︒120 C.︒20、如图所示几何体的俯视图是()A B C D21、如图,是一个正方体截去一个角后得到的几何体,它的主视图是( )A B C D22、若一个︒60的角绕顶点旋转︒15,则重叠部分的角的大小为( )A.︒15B.︒30C.︒45D.︒7523、如图,是一副三角板叠放的示意图,则α∠的大小为( )A.︒45B.︒60C.︒75D.︒9024、如图,直线CD AB 、相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,若︒=∠35AOM ,则CON ∠的度数为( )A.︒35B.︒45C.︒55D.︒6525、如图:已知21∠<∠,那么1∠与)12(21∠-∠之间的关系是( ) A.互补 B.互余 C.和为︒45 D.和为︒75二、填空题26、若'18521︒=∠,则1∠的余角为______.27、'''__________________56.23︒=︒.28、一个角的余角是这个角的补角的31,则这个角的度数等于______. 29、时钟6点25分,时针与分针所夹的锐角的度数是______.30、如图,将一副三角板的直角顶点重合,若︒=∠50AOD ,则______=∠COB .31、如图,把一块长方形纸片ABCD 沿EG 折叠,若︒=∠35FEG ,则AEF ∠的补角为______.32、如图,直线CD AB 、相交于点O ,︒=∠90DOF ,OF 平分AOE ∠,︒=∠29BOD ,则EOF ∠的度数为______.33、如图,AOB ∠内有三条射线OE OD OC 、、,则图中共有______个角.34、如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的共有______种情况.35、如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则______2=-y x .36、已知线段16=AB ,点C 在直线AB 上,且10=AC ,O 为AB 的中点,则线段OC 的长度是______.37、如图,在数轴上有D C B A 、、、四个整数点(即各点均表示整数),且CD BC AB 32==,若D A 、两点表示的数的分别为−5和6,点E 为BD 的中点,那么该数轴上上述五个点所表示的整数中,离线段BC 的中点最近的整数是______.38、如图,CO AO ⊥,BO DO ⊥若︒=∠30DOC ,则AOB ∠的度数为______.39、一个几何体的表面图如图所示,则这个几何体是______.40、如图,某长方体的表面展开图的面积为430,其中5=BC ,10=EF 则AB 的长度为______.41、如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是______.42、已知线段cm AB 8=,点C 在线段AB 所在的直线上,若cm AC 3=,点D 为直线BC 的中点,则线段cm AD ______=.43、如图,线段cm DE CD BC AB 1====,图中所有线段的长度之和为cm ______.44、一个角的余角比它的补角的32还少︒40,求这个角的余角等于______度. 45、如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形,若图中正方形的边长为a ,则阴影部分的面积为______.46、如图,直线CD AB 、相交于点O ,COE ∠为直角,︒=∠60AOE ,则______=∠BOD .47、已知,︒=∠30ABC ,︒=∠50ABD ,若射线BF BE 、分别是ABD ABC ∠∠、的平分线,则EBF ∠的度数为_____.48、已知本学期某学校下午上课的时间为14时15分,则此时刻钟表上的时针与分针的夹角为______.49、已知OB OA ⊥,直线CD 过点O ,且︒=∠25AOC ,则______=∠BOD . 50、在三角形ABC 中,8=AB ,9=AC ,10=BC ,0P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =,在边AB 上取点2P ,使得12AP AP =,在边BC 上取点3P ,使得23BP BP =,若130=P P ,则0CP 的长度为______.51、如图,在同一平面内︒=∠90AOB ,︒=∠60AOC ,OD 平分AOB ∠,则COD ∠的补角等于______.52、如图,OE 平分BOC ∠OD 平分BOC ∠,OF 平分COD ∠,OG 平分AOD ∠,直接写出BOE COF AOG ∠+∠+∠的度数为______.53、如图,直线1l 与2l 相交于点O ,1l OM ⊥,若︒=∠44α,则______=∠β度.54、如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,如果︒=∠40AOB ,︒=∠60COE ,则______=∠BOD .55、一条射线OA ,从点O 再引两条射线OB 与OC ,使︒=∠40AOB ,︒=∠20BOC ,则______=∠AOC . 三、简答题56、根据下列语句画出图形: (1)连接BD AC 、相交于点O ;(2)延长线段DC AB 、交于点E ; (3)反向延长线段CB DA 、相交于点F .57、如图,直线AB 与CD 相交于点O ,︒=∠90AOM ,且OM 平分NOC ∠,若NOB BOC ∠=∠4,求MON ∠的度数.58、如图,点C 是线段AB 上一点,点D 是线段BC 的中点,7=AD ,3=AC ,求线段AB 的长.59、如图,直线CD AB 、相交于点O ,AB OE ⊥,CD OF ⊥, (1)写出图中AOF ∠的余角______;(2)如果AOD EOF ∠=∠51,求EOF ∠的度数.60、有一个正方体,在它的各个面上分别标上数字6~1,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出该正方体的一种表面展开图.(要求把数字标注在表面展开图中)61、下图是由大小相同的小立方块搭成的几何体,请在下图方格纸中画出该几何体的三视图.62、如图所示,几何体是由小正方体堆积而成的,其中每个正方体的棱长都是2.cm(1)该几何体的三视图中,有两种视图的形状是相同的,指出这两种视图,并在网格中画出剩下的那种(每个网格正方形边长均为cm2);(2)求这个立体图形的表面积(包含底面).∠,用直尺和三角尺画图:63、如图,已知α(1)画出α∠的一个余角;(2)画出α∠的两个补角1∠和2∠;(3)1∠和2∠相等吗?说说你的理由.64、如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为cm2,请直接写出3,宽为cm2,长方形的长为cm修正后所折叠而成的长方形的体积:3______cm.65、如图,O为直线AB上一点,OD平分AOCDOE,∠90∠,︒=图中共有______对互补的角;(1)若︒∠的度数;AOC,求出BOD∠50=(2)判断OE是否平分BOC∠,并说明理由.66、如图,︒∠的内部有一条射线OC,AOB,在AOB=∠90(1)画射线OCOD⊥;(2)写出此时AOD∠的数量关系,并说明理由.∠与BOC67、如图,把一张长cm8的长方形硬纸板的四个角各剪去一个同样大10,宽cm小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)设正方形的边长为xcm,无盖长方体盒子的侧面积是多少;(结果不用化简)(2)如果把长方形硬纸板的四个角分别剪去2个边长为xcm的正方形和两个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,长方体盒子的表面积是多少?(结果不用化简)(3)在(2)的情况下,当2=x时,长方体盒子的表面积有最大值吗?如果有,求出最大值;如果没有,说明理由.68、如图所示,若将类似于d c b a 、、、四个图的图形称做平面图,其顶点数、边数与区域数之间存在某种关系.观察图和表中对应的数值,探究计数的方法并作答;(1)数一数每个图中各有多少个顶点、多少条边,这些边围出多少个区域并填表;(2)根据表中数值,写出平面图的顶点数、边数、区域数之间的一种关系; 如果一个平面图有20个顶点和11个区域,那么利用⑵中得出的关系可知这个平面图有______条边.69、如图,直线AB 与CD 相交于点O ,OD 平分BOE ∠,OD OF ⊥. (1)AOF ∠与EOF ∠相等吗?请说明理由. (2)直接写出图中和DOE ∠互补的角. (3)若︒=∠60BOE ,求AOD ∠和EOF ∠的度数70、如图,已知︒AOB,射线OC绕点O从OA位置开始,以每秒︒4的速度=∠90顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒︒1的速度逆时针方向旋转,当OC与OA成︒180时,OC与OD同时停止旋转.(1)当OC旋转10秒时,______∠COD;=(2)当OC与OD的夹角是︒30时,求旋转的时间;(3)当OB平分COD∠时,求旋转的时间.71、如图所示,两块三角板摆放在一起,射线OM平分BOC∠,ON平分AOC∠. (1)求MON∠的度数;(2)将下方的三角板绕点O旋转一定角度,使得︒AOC,其他条件不变,∠20=求MON∠的度数.72、如图,已知线段AB 和CD 的公共部分CD AB BD 4131==,线段CD AB 、的中点F E 、之间距离是cm 10,求CD AB 、的长.73、如图,线段24=AB 动点P 从A 出发,以每秒2个单位的速度沿射线AB 运 动,M 为AP 的中点.(1)出发多少秒后,AM PB 2=?(2)当P 在线段AB 上运动时,试说明BP BM -2为定值;(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②PN MA +的值不变.选择一个正确的结论,并求出其值.74、如图,已知点A 在射线OX 上,OA 的长度为2,若OA 绕点O 按逆时针方向旋转︒30到'OA ,则点'A 的位置可以用]302[︒,表示;若OA 绕着点O 按顺时针方向旋转︒50到''OA 则点''A 的位置可以表示为]502[︒,. (1)试在图中画出点]501[︒,B 点]302[︒-,C ;(画图工具不限,在图中标明所画点的位置的数据和角度)(2)已知点N M 、的位置分别是]606[︒,,]1207[︒-,,则;______=MN ; (3)猜想:以点]603[︒,P ,]304[︒-,Q ,则线段PQ 的长度______.75、已知OC 是AOB ∠内部的一条射线,N M 、分别为OC OA 、上的点,线段ON OM 、分别以s /30︒,s /10︒的速度绕O 点逆时针旋转;(1)如图1,若︒=∠140AOB ,当ON OM 、逆时针旋转s 2时,分别到''ON OM 、处,求''COM BON ∠+∠的值;(2)如图2,若ON OM 、分别在COB AOC ∠∠、内部旋转时,总有BOM COM ∠=∠3,求BOC ∠的值;(3)知识迁移,如图3,C 是线段AB 上的一点,点M 从点A 出发在线段AC 上向C 点运动,点N 从点C 出发在线段CB 上向B 点运动,点N M 、的速度比为2:1,在运动过程中始终有BN CM 2=,则______=ACBC .(直接写出答案)图1 图2 图376、如图,直线l 上有C B A 、、三点,cm AB 8=,直线l 上有两个动点Q P 、,点P 从点A 出发,以s cm /21的速度沿AB 方向运动,点Q 从点B 同时出发,以s cm /51的速度沿BC 方向运动. (1)点Q P 、出发几秒后,点B 是线段PQ 的中点?(2)运动过程中,点P 和点Q 能否重合?若能重合,几秒后重合?(3)运动过程中,线段PQ 与线段AQ 的长度能否相等?说明你的理由.77、如图,点D C 、是半圆弧上的两个动点,在运动过程中保持︒=∠90COD .(1)如图1,OE 平分AOC ∠,OF 平分BOD ∠,求EOF ∠的度数;(2)如图2,OE 平分AOD ∠,OF 平分BOC ∠,求EOF ∠的度数;(3)在(2)的条件下,试探究COE ∠和DOF ∠有怎样的数量关系,请说明理由.。
人教版数学七年级上册“单元精品卷”(含精析)第四章几何图形初步(培优提高卷)题型选择题填空题解答题总分得分一、选择题。
(本题有10个小题,每小题3分,共30分)1.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.2.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱 D.三棱锥3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4 B.6 C.8 D.124.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离.A.1个 B.2个 C.3个 D.4个5.如图,平面内有公共端点的、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()A.射线OA上 B.射线OB上C.射线OD上 D.射线OE上6.下列说法中,不正确的是()A. 若点C在线段BA的延长线上,则BA=AC-BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A、B、C三点不在一直线上,则AB<AC+BC7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A、15°B、28°C、29°D、34°8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15 °30′,则下列结论中不正确...的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是()【来源:21cnj*y.co*m】10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题。
第1题图会社谐和设建第3题图第四章几何图形初步测试题 (时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。
每小题2分,共24分。
1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥DCB ABADC BAβββααα4.如图,对于直线AB ,线段CD ,射线EF ,其中的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( )A. 3cmB. 4cmC. 5cmD. 6cm1乙甲NM PDC BAB ()D CAD CBA第9题图BA9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( )A. 91°20/24//B. 91°34/C. 91°20/4//D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。
几何初步—角专题题型一:分类讨论思想1.已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON是()A.45°B.90°C.45°或135°D.90°或135°2.若OM是∠AOB的平分线,ON是∠BOC的平分线,若∠AOB=50°,∠COB=80°,则∠MON为多少度的角()A.65°B.15°C.65°或15°D.75°或15°21.已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3.求OC与∠AOB的平分线所成的角的度数.17.已知,OM和ON分别平分∠AOC和∠BOC.(1)如图:若C为∠AOB内一点,探究∠MON与∠AOB的数量关系;(2)若C为∠AOB外一点,且C不在OA、OB的反向延长线上,请你画出图形,并探究∠MON与∠AOB的数量关系.3.如图1,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°,(1)求∠COB的度数;(2)经过点O作射线OD,使得∠AOC=4∠AOD,求∠BOD的度数;(3)如图2,在∠AOB的内部作∠EOF,OM、ON分别为∠AOE和∠BOF的平分线,当∠EOF绕点O在∠AOB的内部转动时,请说明∠AOB+∠EOF=2∠MON.18.从点O发出的三条射线OA、OB、OC,其中∠AOB=80°,OM、ON分别平分∠AOC,∠BOC.(1)如图,射线OC落在∠AOB的内部,求∠MON的度数;(2)当射线OC落在∠AOB的外部时,画出图形,求∠MON的度数.(3)在(2)的条件下,当∠AOB=α,求∠MON的度数(直接写出结果).19.已知∠AOB=α,过点O作∠BOC=90°.(1)若α=30,则∠AOC的度数;(2)已知射线OE平分∠AOC,射线OF平分∠BOC.①若α=50°,求∠EOF的度数;②若90°<α<180°,则∠EOF的度数为α或180°﹣α(直接填写用含α的式子表示的结果).8.乐乐对几何中角平分线等兴趣浓厚,请你和乐乐一起探究下面问题吧,已知∠AOB=100°,射线OE,OF分别是∠AOC和∠COB的角平分线.(1)如图1,若射线OC在∠AOB的内部,且∠AOC=30°,求∠EOF得度数;(2)如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为50°;(3)若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC,∠BOC均指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,请直接写出∠EOF的度数(不写探究过程)题型二:利用几何图形计算角的和与差11.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.13.如图所示,OE,OD分别平分∠AOC和∠BOC,(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.10.如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数.(2)若将题干中的∠AOB=90°改为∠AOB=α,其余条件不变,求∠MON的度数;(3)若将题干中的∠BOC=30°改为∠BOC=β(β为锐角),其余条件不变,求∠MON的度数.(4)从前面的结果中,你能得出什么结论?14.已知直线AB经过点O,∠COD=90°,OE是∠BOC的平分线.(1)如图1,若∠AOC=50°,则∠DOE=25°;(2)如图1,若∠AOC=α,则∠DOE=;(用含α的式子表示)(3)将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD绕顶点O逆时针旋转到图3的位置,其它条件不变,则∠DOE=180°﹣α(用含α的式子表示)题型三:方程的思想1.(1)如图1,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别为∠AOC与∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB度数.(2)已知如图2,∠AOB:∠BOC=3:2,OD是∠BOC的平分线,OE是∠AOC的平分线,且∠BOE =12°,求∠DOE的度数.8.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.4.如图,已知OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOE=140°,∠BOC比∠COD的2倍还多10°,那么∠AOB是多少度?5.已知如图,∠AOB:∠BOC=3:2,OD是∠BOC的平分线,OE是∠AOC的平分线,且∠BOE=12°,求∠DOE的度数.题型四:动态旋转16.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.15.已知:∠AOB和∠COD都是直角.(1)如图①,若∠AOD=160°,则∠BOC=°;∠BOD=°,∠AOC=°.(2)若将∠COD绕顶点O旋转至图②的位置,且∠AOD=160°,则∠BOC=°;∠BOD=°,∠AOC =°.(3)将∠COD绕顶点O继续旋转至图③的位置,且∠AOD=x°,则∠BOC=,∠BOD=,∠AOC=.(4)若将∠COD绕顶点O旋转任意角度,请根据上述观察到的规律,用符号语言写出∠AOD与∠BOC、∠BOD与∠AOC之间的数量关系.20.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB 上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.。
几何图形初步(一)几何图形练习题一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方休中的距离是( )A.0 B.1 C. D.2.要在地球仪上确定深圳市的位置,需要知道的是()A.高度B.经度C.纬度D.经度和纬度3.如图的几何体中,它的俯视图是( )4.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.北 B.京 C.精 D.神5.(3分)如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()A.①⑤ B.②⑤ C.③⑤ D.②④6.如图的立体图形可由哪个平面图形绕轴旋转而成()7.如图是一个三棱柱的展开图.若AD=10,CD=2,则AB的长度可以是()A.2 B.3 C.4 D.58.下面四个几何体中,左视图是矩形的几何体是()9.下列几何体的主视图是三角形的是()10.如图,从左面观察这个立体图形,能得到的平面图形是( )A. B. C. D.11.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )12.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是( )13.用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A.圆柱 B.圆锥 C.三棱柱 D.正方体14.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()15.用4个小立方块搭成如图所示的几何体,该几何体的左视图是( )评卷人得分一、解答题16.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.17.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).18.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.(本题满分8分)一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒.(1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积........说明原因。
初一几何图形初步试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是几何图形?A. 圆B. 三角形C. 正方形D. 直线答案:D2. 一个正方形的边长为4厘米,它的周长是多少厘米?A. 8厘米B. 12厘米C. 16厘米D. 20厘米答案:C3. 一个圆的半径是5厘米,它的直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A4. 下列哪个图形是轴对称图形?A. 正方形B. 圆形C. 长方形D. 所有选项答案:D5. 如果一个三角形的三个内角之和为180度,它是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B二、填空题(每题2分,共10分)6. 平行四边形的对边________。
答案:平行且相等7. 一个圆的周长公式是________。
答案:C = 2πr8. 如果一个多边形的内角和是900度,那么它是________边形。
答案:六9. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长度是________厘米。
答案:510. 一个正六边形的内角是________度。
答案:120三、简答题(每题5分,共15分)11. 描述什么是几何图形的对称性?答案:几何图形的对称性是指图形在某个点、直线或平面上翻转或反射后,能够与原图形完全重合的性质。
12. 解释什么是相似图形?答案:相似图形是指两个图形在形状上完全相同,但大小可以不同,且它们的对应角相等,对应边成比例。
13. 什么是圆周角定理?答案:圆周角定理是指一个圆周角的度数是它所截取的弧所对圆心角的一半。
四、计算题(每题10分,共20分)14. 已知一个三角形的三个顶点坐标分别为A(1,2),B(4,6),C(7,4),请计算这个三角形的面积。
答案:首先计算AB和AC的长度,然后使用海伦公式计算三角形的面积。
15. 一个圆的半径为7厘米,求这个圆的面积。
答案:使用圆的面积公式A = πr²,代入半径r=7厘米,计算得到面积。
几何图形初步(一)几何图形练习题一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方休中的距离是()A.0 B.1 C. D.2.要在地球仪上确定深圳市的位置,需要知道的是()A.高度B.经度C.纬度D.经度和纬度3.如图的几何体中,它的俯视图是()4.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.北 B.京 C.精 D.神5.(3分)如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()A.①⑤ B.②⑤ C.③⑤ D.②④6.如图的立体图形可由哪个平面图形绕轴旋转而成()7.如图是一个三棱柱的展开图.若AD=10,CD=2,则AB的长度可以是()A.2 B.3 C.4 D.58.下面四个几何体中,左视图是矩形的几何体是()9.下列几何体的主视图是三角形的是()10.如图,从左面观察这个立体图形,能得到的平面图形是()A. B. C. D.11.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()12.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()13.用一个平面去截一个几何体,不能截得三角形截面的几何体是()A.圆柱 B.圆锥 C.三棱柱 D.正方体14.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()15.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()评卷人得分一、解答题16.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.17.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).18.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.(本题满分8分)一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒.(1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积........说明原因。
(2)你能设计出利用率更高的长方形硬板纸吗?请在展开图外围画出长方形硬板纸形状。
20.(3分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.主视图(从正面看)左视图(从左面看)俯视图(从上面看)21.(8分)在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.(4分)5个棱长为1的正方体组成如图所示的几何体,画出该几何体从正面和左面看到的图形.23.(6分)分别画下图几何体的三视图.主视图:左视图:俯视图:24.(本题满分10分)(1)画出下图中几何体的三视图._______________ ______________ ______________主视图左视图俯视图(2)小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.①请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;②若图中的正方形边长5cm,长方形的长为8cm,宽为5cm,请直接写出修正后所折叠而成的长方体的表面积为 cm2.25.(4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体的主视图和左视图.评卷人得分二、填空题26.如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是.27.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是.28.(3分)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).29.(3分)底面直径和高都是1的圆柱侧面积为.30.长方体的主视图与俯视图如图所示,则这个长方体的体积是.31.(3分)如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为 cm2.32.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是 .33.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数相等,则x -2y =________.34.要锻造一个直径为8cm ,高为4cm 的圆柱形毛坯,至少截取直径为4cm 的圆钢_________cm.35.如图,它是一个正方体的展开图,若此正方体的相对面上的数互为相反数...,则()a b c --=________.36.如图,把这个平面展开图折叠成立方体,与“祝”字相对的字是 .37.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,你我的中梦国的周长=________.若AB=6,BC=8,则AEF38.如图,四边形ABCD是正方形,延长AB到点E,使,则∠BCE的度数是 .39.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:颜色红黄蓝白紫绿花朵数654321现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如下图所示,那么长方体的下底面共有______朵花.40.某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是.参考答案【答案】C.【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选:C.考点:1.勾股定理;2.展开图折叠成几何体.2.D.【解析】试题分析:要在地球仪上确定深圳市的位置,需要知道它的经纬度.故选D.考点:坐标确定位置.3.C.【解析】试题分析:从上面看易得一排由4个正方形组成.故选C.考点:简单组合体的三视图.4.A.【解析】试题分析:由图1可得,“践”和“神”相对;“北”和“精”相对;“行”和“京”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“精”在下面,则这时小正方体朝上面的字是“北”.故选A.考点:几何体的展开图.5.B.【解析】试题分析:,图案⑥可变为(如下图),观察图形可得,组成图案⑥的基本图形是②⑤,故答案选B.考点:图形的平移.6.D.【解析】试题分析:这个几何体是个半球,它应该是由一个直角扇形旋转360度得到,故答案选D.考点:点、线、面的关系.7.C.【解析】试题分析:由图可知,AD=AB+BC+CD,∵AD=10,CD=2,∴AB+BC=8,设AB=x,则BC=8-x,则828x xx x-⎧⎨--⎩<+2<解这个不等式组得:3<x<5,∴AB的长度可以是4,故选C.考点:1.几何体的展开图;2.三角形三边关系.8.A.【解析】试题分析: A、左视图是矩形,A正确;B、左视图是三角形,B不正确;C、左视图是三角形,C不正确;D、左视图是圆,D不正确.故选A.考点:简单几何体的三视图.9.B.【解析】试题分析: A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选B.考点:简单几何体的三视图.10.A.【解析】试题分析:从左面看下面一个正方形,上面一个正方形,故选A.考点:简单组合体的三视图.11.B.【解析】试题分析:根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选B.考点:展开图折叠成几何体.12.D.【解析】试题分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.试题解析:选项A、B、C都可以折叠成一个正方体;选项D,有“田”字格,所以不能折叠成一个正方体.故选D.考点:展开图折叠成几何体.13.A.【解析】试题分析: A、圆柱的截面可能是圆,长方形,符合题意;B、圆锥的截面可能是圆,三角形,不符合题意;C、三棱柱的截面可能是三角形,长方形,不符合题意;D、正方体的截面可能是三角形,或四边形,或五边形,或六边形,不符合题意;故选A.考点:截一个几何体.14.B.【解析】试题分析:A、左视图与主视图都是正方形,故A不符合题意;B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选B.考点:简单几何体的三视图.15.A.【解析】试题分析:从几何体左面看得到一列正方形的个数为2,故选A.考点:简单组合体的三视图.16.答案不唯一.见解析.【解析】试题分析:动手实践即可得出结果.试题解析:答案不唯一,如图等等.考点:展开图折叠成几何体.17.见解析【解析】试题分析:(1)利用长方形的性质结合基本图形进而拼凑即可;(2)利用平行四边形的性质结合基本图形进而拼凑即可;(3)结合基本图形进而拼凑出符合题意的四边形即可.试题解析:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示:考点:图形的剪拼18.(1)参见解析;(2)5,7.【解析】试题分析:(1),明确俯视图,左视图的意义是画图的关键,俯视图是从物体的上面往下看到的平面图形,左视图是从物体的左面往右看到的平面图形.(2)要保证俯视图和左视图不变,最少第一层有4个立方块,第二层有1个立方块需5个,最多时第二层第一排再填2个,最多需7个.试题解析:(1)从物体的上面往下看到的平面图形第一排3个正方形,第二排1个正方形,从物体的左面往右看到的平面图形左侧竖排有2个正方形,右侧1个正方形.如图所示:(2)要保证俯视图和左视图不变,最少时第一层有4个立方块,第二层有1个立方块,共5个;最多时第一层有4个立方块,第二层第一排有3个立方块,共7个;∴最少5个,最多7个.考点:几何体的三视图.19.(1)甲的硬板纸利用高,原因略;(2)图见解析.【解析】试题分析:(1)利用长方形和圆的面积公式分别求出长方形和圆的面积,然后比较大小即可;(2)根据图形画出长方形硬纸板的形状,关键是使长方形硬纸板的利用率最高(如图). 试题解析:(本题满分8分)(1)解:长方形的长:5a ,长方形的宽:235a , 长方形的面积:5a ·235a=2325a 2≈21.65a 2, 左视图 俯视图圆的半径r:r2=222233⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛aa=7a2,r=7a≈2.6458a圆的面积:π·(2.6458a)2≈21.98a2.∵21.65a2<21.98a2,∴甲的硬板纸利用高.(2)画图考点:1.长方形的面积公式;2.圆的面积公式.20.见解析【解析】试题分析:分别画出三视图即可试题解析:如图:考点:三视图21.见解析【解析】连结AC,∵E 、F 分别是AB 、BC 的中点,(已知)∴EF ∥AC 且EF=21AC (三角形中位线定理), 同理可得HG ∥AC 且HG=21AC (三角形中位线定理), ∴EF ∥HG ,EF=HG ,∴四边形EFGH 是平行四边形(一组对边平行且相等的四边形是平行四边形)22.见解析.【解析】试题分析:根据主视图是从正面观看得出的图形,左视图是从左边看得出的图形,从而将看到的图形画出来即可.试题解析:解:所画图形如下所示:考点:几何体的三视图.23.见解析【解析】试题分析:根据实际物体,主视图有两列,最左边有两个,主视图与左视图相同,俯视图左侧有一个,左侧有两个,直接画出三视图即可,注意三视图摆放的位置.试题解析:如图所示:(每个图形2分)考点:作图-三视图.24.(1)图见解析;(2)①图见解析;②210cm 2.【解析】试题分析:(1)利用三视图的画法分别从不同角度得出即可;(2)①根据长方体的展开图判断出多余一个正方形;②根据长方形和正方形的面积公式分别列式计算即可得解.试题解析:(1)如图所示:①多最下方的正方形;②长方体的表面积=52×2+8×5×4=210(cm2).考点:作图-三视图;几何体的展开图..25.答案见试题解析.【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,4,2,左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.试题解析:考点:1.作图-三视图;2.作图题.26.4.【解析】试题分析:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.考点:正方体相对两个面上的文字.27.球.【解析】试题分析:只有球的三视图都是圆,故这个几何体是球.考点:由三视图判断几何体.28.①③④.【解析】试题分析:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.考点:截一个几何体.29.π.【解析】试题分析:圆柱的底面周长=π×1=π.圆柱的侧面积=底面周长×高=π×1=π.故答案为:π.考点:圆柱的计算.30.36.【解析】试题分析:根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可. 试题解析:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.考点:由三视图判断几何体.31.36-【解析】试题分析:∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的棱柱,∴这个正六边形的底面边长为16,宽为6-的长方形,∴面积为:6(6⨯-=36-36-考点:展开图折叠成几何体.32.梦.【解析】试题分析:由展开图可知,“你”字和“梦”字是相对的两个面,所以这个字是梦. 考点:正方体的表面展开图.33.-6.【解析】试题分析:由题意知:x=2,y=4,所以x-2y=2-8=-6.考点:正方体的平面展开图.34.16【解析】试题分析:设截取直径为4cm 的圆钢xcm ,则根据体积相等可列方程22442x ππ⨯=,解得x=16.考点:一元一次方程的应用.35.-2014.【解析】试题分析:依题意得:a=﹣2013,b=﹣2014,c=﹣2015;∴a﹣(b﹣c)=﹣2013﹣(﹣2014+2015)=﹣2014.故答案为:﹣2014.考点:正方体相对两个面上的文字.36.功【解析】试题分析:因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以根据这一特点可知,与“祝”字相对的字是功.考点:正方体的表面展开图.37.9【解析】试题分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.在Rt△ABC中,AC==10,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9.故答案为:9.考点:1.三角形中位线定理;2.矩形的性质.2238. 5.【解析】试题分析:根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数。