设计一个PLC控制系统以下七个步骤
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
PLC设计内容及步骤PLC(可编程逻辑控制器)是一种在工业自动化中广泛使用的数字计算机,其主要功能是对运动、位置、速度和力等工艺参数进行控制。
PLC的设计是整个自动化系统的核心,正确的PLC设计可确保自动化系统的高效运行和稳定性。
步骤一:需求分析在PLC设计的起始阶段,需要了解系统的需求和功能。
这包括确定PLC系统需要控制的输入和输出设备、工艺要求、运行模式和策略等。
步骤二:硬件选型根据需求分析的结果,选择合适的PLC硬件设备。
硬件选型包括确定PLC的输入/输出数量、通信接口、处理能力等。
这通常与系统的规模和复杂性有关。
步骤三:软件设计根据系统的需求和功能,进行PLC软件设计。
软件设计主要包括两个方面:逻辑控制程序设计和人机界面设计。
逻辑控制程序设计是根据系统的功能需求,将系统的逻辑控制过程转化为PLC的程序代码。
这包括确定输入和输出的连接关系、定义逻辑控制的算法和顺序、设置定时器和计数器等。
人机界面设计是为了方便操作员对PLC系统进行监控和控制,设计一个直观、易用的界面。
界面通常包括显示PLC的输入输出状态、报警信息、参数设置等。
设计的界面应当符合人机工程学的原则,使操作员能够轻松地理解和操作PLC系统。
步骤四:程序编写在软件设计完成后,需要将软件设计转化为PLC可执行的程序代码。
程序编写可以使用类似于Ladder Diagram(梯形图)、Function Block Diagram(功能块图)或Structured Text(结构化文本)等编程语言。
编写程序时需要注意代码的结构、格式和注释,以便后期调试和维护。
步骤五:PLC系统搭建与调试根据硬件选型确定的PLC设备,进行系统的搭建和调试。
这包括安装和连接PLC、输入输出模块、传感器、执行器等设备,并进行通信配置和参数设置。
在调试过程中,需要验证PLC系统的功能和性能是否符合设计要求,并进行必要的调整和修改。
步骤六:系统测试和优化在PLC系统搭建和调试完成后,需要进行系统级的测试和优化。
设计一个PLC控制系统以下七个步骤第一步:需求分析需求分析是PLC控制系统设计的第一步。
在这一步中,需求分析师与客户一起讨论并确定要控制的设备的功能要求、性能要求和安全要求等。
通过与客户的沟通,需求分析师能够充分了解客户的需求和期望,为后续的设计和实施提供指导。
第二步:系统设计系统设计是PLC控制系统设计的核心环节。
在这一步中,设计师将根据需求分析的结果确定PLC的类型、输入输出模块的数量和类型,以及其他必要的硬件设备和软件组件。
同时,设计师还需要设计PLC的控制逻辑、控制算法和界面设计等。
设计师需要综合考虑系统的性能、可靠性、灵活性和可维护性等因素,以确保设计的PLC控制系统能够满足客户的需求。
第三步:硬件选型和采购在系统设计完成后,需要进行硬件选型和采购。
根据系统设计的要求,设计师需要选择和采购适合的PLC型号、输入输出模块、传感器、执行器等硬件设备。
在选型和采购的过程中,设计师需要综合考虑硬件设备的性能、价格和可靠性等因素,并确保所选设备与系统设计的要求相匹配。
第四步:编程和调试编程和调试是PLC控制系统设计的关键步骤。
在这一步中,设计师需要编写PLC的控制程序,并进行系统的调试和测试。
在编程的过程中,设计师需要根据系统需求和设计的逻辑进行程序的开发和调试。
通过现场调试和测试,设计师能够确保PLC控制系统的正常运行和稳定性。
第五步:系统集成和安装系统集成和安装是PLC控制系统设计的重要环节。
在这一步中,设计师需要将硬件设备和软件程序进行整合,并进行系统的集成和安装。
在安装过程中,设计师需要按照设计的要求进行正确的接线和布线等工作。
通过系统的集成和安装,设计师能够完成PLC控制系统的组装和调试工作。
第六步:运行和维护运行和维护是PLC控制系统的重要阶段。
在这一步中,设计师需要进行系统的运行和维护。
在运行过程中,设计师需要监控系统的运行状态,并进行故障诊断和维修等工作。
通过系统的运行和维护,设计师能够确保PLC控制系统的正常运行和稳定性。
基于PLC的自动化控制系统设计随着科学技术的不断发展,自动化控制技术已经在各个领域取得了广泛应用。
在工业领域,自动化控制技术的应用可以大大提高生产效率和生产品质,同时降低了生产成本。
本文将以基于PLC的自动化控制系统设计为主题,介绍其基本原理、设计流程和注意事项。
一、基本原理PLC(可编程逻辑控制器)是一种专门用于自动化控制的计算机,采用可编程的存储程序控制,可与多种传感器、执行器等设备进行通信,实现自动化控制。
其基本原理就是通过输入信号触发PLC控制器,控制器再通过输出端口驱动各种执行器完成各种动作。
PLC具有可编程性、可扩展性和可靠性等优点,可以编写程序来实现各种控制任务。
其硬件组成包括中央处理器、输入模块、输出模块、电源模块等,而软件部分则主要是编写PLC程序,以实现各种控制逻辑。
二、设计流程PLC的自动化控制系统设计包括以下步骤:1.需求分析:明确系统的控制任务和控制要求,确定所需的输入信号和输出信号,以及其他相关参数。
2.工程调研:了解现场环境、设备情况和用户需求,设计出合适的控制方案。
3.系统设计:确定PLC的型号和规格,配备相应的输入输出模块,设计PLC程序,测试并优化控制逻辑。
4.安装调试:安装PLC设备和其他外部设备,进行初步调试和测试,确保系统正常运行。
5.维护保养:监测PLC的运行状况,定期检查和维护设备,及时处理故障。
三、注意事项在进行PLC的自动化控制系统设计时,还需要注意以下几个方面:1.合理性和可行性:设计方案应符合实际情况,具有可行性。
2.稳定性和可靠性:PLC设备应选择品质可靠、性能稳定的产品,以确保系统的长期稳定运行。
3.灵活性和扩展性:系统设计应具有一定的灵活性和扩展性,能够满足未来的发展需求。
4.安全性和操作性:PLC的自动化控制系统设计需考虑安全和操作性,以确保设备和人员的安全。
5.节能环保:系统设计应符合节能环保要求,避免过度能耗和环境污染。
四、结论基于PLC的自动化控制系统设计是现代工业生产中的重要技术,它能大大提高生产效率和品质。
plc温度控制系统设计一、引言随着现代工业的快速发展,温度控制系统在各个领域得到了广泛的应用。
可编程逻辑控制器(PLC)作为一种工业控制设备,具有较高的可靠性、稳定性和灵活性。
本文将介绍如何设计一套基于PLC的温度控制系统,以满足现代工业生产中对温度控制的需求。
二、PLC温度控制系统原理PLC温度控制系统主要通过传感器采集温度信号,将信号转换为电信号后,输入到PLC进行处理。
根据预设的温度控制策略,PLC输出相应的控制信号,驱动执行器(如加热器、制冷装置等)进行加热或降温,从而实现对温度的精确控制。
三、设计步骤与方法1.确定控制目标:明确温度控制系统的控制范围、精度要求、响应速度等指标。
2.选择合适的PLC型号:根据控制需求,选择具有足够输入/输出点、运算速度和存储容量的PLC。
3.设计硬件系统:包括传感器、执行器、通信模块等硬件设备的选型和连接。
4.设计软件系统:编写温度控制程序,包括输入数据处理、控制算法、输出控制等功能。
5.系统调试与优化:对系统进行调试,确保温度控制精度和稳定性,并根据实际运行情况进行优化。
四、系统硬件设计1.选择合适的传感器:根据控制范围和精度要求,选择合适的温度传感器,如热电偶、热敏电阻等。
2.选择合适的执行器:根据控制需求,选择合适的执行器,如伺服电机、电磁阀等。
3.通信模块:根据现场通信需求,选择合适的通信模块,如以太网、串口等。
五、系统软件设计1.编写程序:采用相应的编程语言(如梯形图、功能块图等)编写温度控制程序。
2.输入数据处理:对传感器采集的温度信号进行滤波、标定等处理,确保数据准确性。
3.控制算法:根据预设的控制策略,编写控制算法,如PID控制、模糊控制等。
4.输出控制:根据控制算法输出相应的控制信号,驱动执行器进行加热或降温。
六、系统调试与优化1.调试:对系统进行调试,确保各设备正常运行,控制算法有效。
2.优化:根据实际运行情况,对控制参数、控制策略等进行优化,提高系统性能。
plc控制系统设计步骤PLC(可编程逻辑控制器)控制系统设计是现代工业自动化领域中的重要内容之一。
在工业生产过程中,通过PLC控制系统可以对生产设备进行精确的控制和监控,提高生产效率和质量。
下面将介绍PLC控制系统设计的步骤。
一、需求分析在进行PLC控制系统设计之前,首先需要对所控制的生产设备进行需求分析。
了解设备的工作原理、工作流程、输入输出信号等,明确控制系统的功能和要求,确定控制策略和逻辑。
二、制定控制策略根据需求分析的结果,制定控制策略。
确定控制逻辑、传感器和执行器的选择,设计控制流程图,并根据需要编写控制程序。
三、选型和布线根据控制策略确定的需求,选择合适的PLC型号和配套的输入输出模块。
然后进行布线设计,将传感器、执行器和PLC进行连接,确保信号的稳定传输。
四、编程根据制定的控制策略和控制程序,进行PLC的编程。
根据PLC的编程语言,编写程序并进行调试,确保程序的正确性和稳定性。
五、测试和调试完成编程后,需要进行系统的测试和调试。
通过对系统的模拟和实际操作,验证控制逻辑的正确性和系统的稳定性。
同时,还需要进行故障排除和优化,确保系统的可靠性和高效性。
六、系统集成在测试和调试完成后,将PLC控制系统与其他设备进行集成。
将控制系统与上位机、人机界面、数据采集系统等进行连接,实现对整个生产过程的集中控制和监控。
七、运行和维护在系统集成完成后,进行系统的运行和维护。
定期对系统进行检查和维护,保持系统的稳定运行。
同时,对系统进行优化和升级,提高系统的性能和可靠性。
总结:PLC控制系统设计是一个复杂而又关键的工作,需要经过需求分析、制定控制策略、选型和布线、编程、测试和调试、系统集成以及运行和维护等多个步骤。
每个步骤都需要认真对待,确保设计的正确性和稳定性。
通过合理的控制系统设计,可以提高生产效率,降低生产成本,实现工业自动化的目标。
plc控制系统设计的一般步骤丰炜PLC说明资料1-PLC系统设计及选型方法在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,若采用可编程控制器(PLC)可以轻松的解决,PLC已成为解决自动控制问题最有效的工具之一,越来越广泛的应用于工业控制领域中,本文简要叙述了PLC控制系统设计的步骤及PLC 的基本选型方法,供大家参考.一、可编程控制器应用系统设计与调试的主要步骤( 1 )深入了解和分析被控对象的工艺条件和控制要求这是整个系统设计的基础,以后的选型、编程、调试都是以此为目标的.a .被控对象就是所要控制的机械、电气设备、生产线或生产过程。
b .控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和连锁等。
对较复杂的控制系统,还可将控制任务分成几个独立部分,这样可化繁为简,有利于编程和调试。
( 2 )确定 I/O 设备根据被控对象的功能要求,确定系统所需的输入、输出设备。
常用的输入设备有按钮、选择开关、行程开关、传感器、编码器等,常用的输出设备有继电器、接触器、指示灯、电磁阀、变频器、伺服、步进等.( 3 )选择合适的 PLC 类型根据已确定的用户 I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的 PLC 类型,包括机型的选择、 I/O 模块的选择、特殊模块、电源模块的选择等。
( 4 )分配 I/O 点分配 PLC 的输入输出点,编制出输入 / 输出分配表或者画出输入 / 输出端子的接线图。
接着就可以进行 PLC 程序设计,同时可进行控制柜或操作台的设计和现场施工。
( 5 )编写梯形图程序根据工作功能图表或状态流程图等设计出梯形图即编程.这一步是整个应用系统设计的最核心工作,也是比较困难的一步,要设计好梯形图,首先要十分熟悉控制要求,同时还要有一定的电气设计的实践经验。
机械手PLC控制系统设计一、本文概述随着工业自动化程度的不断提高,机械手在生产线上的应用越来越广泛。
作为一种重要的自动化设备,机械手的控制精度和稳定性对于提高生产效率和产品质量具有至关重要的作用。
因此,设计一套高效、稳定、可靠的机械手PLC控制系统显得尤为重要。
本文将详细介绍机械手PLC控制系统的设计过程,包括控制系统的硬件设计、软件设计以及调试与优化等方面,旨在为相关领域的工程师和技术人员提供有益的参考和借鉴。
本文首先将对机械手PLC控制系统的基本构成和工作原理进行概述,包括PLC的基本功能、选型原则以及与机械手的接口方式等。
接着,将详细介绍控制系统的硬件设计,包括PLC的选型、输入输出模块的选择、电源模块的设计等。
在软件设计方面,本文将介绍PLC 编程语言的选择、程序结构的设计、控制算法的实现等关键内容。
本文将介绍控制系统的调试与优化方法,包括PLC程序的调试、机械手的运动调试、控制参数的优化等。
通过本文的介绍,读者可以全面了解机械手PLC控制系统的设计过程,掌握控制系统的硬件和软件设计方法,以及调试与优化的技巧。
本文还将提供一些实用的设计经验和注意事项,帮助工程师和技术人员在实际应用中更好地解决问题,提高控制系统的性能和稳定性。
二、机械手基础知识机械手,也称为工业机器人或自动化手臂,是一种能够模拟人类手臂动作,进行抓取、搬运、操作等作业的自动化装置。
在现代工业生产中,机械手被广泛应用于各种环境和使用场景,以实现生产线的自动化、提高生产效率、降低人力成本以及保障操作安全。
机械手的构成主要包括执行机构、驱动系统、控制系统和位置检测装置等部分。
执行机构是机械手的动作执行部分,通过模拟人类手臂的旋转、屈伸、抓放等动作,实现物体的抓取和搬运。
驱动系统为执行机构提供动力,常见的驱动方式有电动、气动和液压驱动等。
控制系统是机械手的“大脑”,负责接收外部指令,控制驱动系统使执行机构完成预定动作。
位置检测装置则负责检测执行机构的精确位置,为控制系统提供反馈信号,以确保机械手的作业精度。
PLC控制系统设计的内容和步骤1.引言在工业自动化领域中,P LC(可编程逻辑控制器)被广泛应用于各种控制系统中,它可以对工业生产过程进行自动化控制。
设计一个高效且可靠的P LC控制系统是确保生产线正常运行的重要环节。
本文将讨论PL C控制系统设计所涵盖的内容和步骤。
2.设计前准备在进行P LC控制系统设计之前,我们需要进行一系列的准备工作,包括但不限于:-了解所需控制系统的工作原理和功能需求。
-完成相关的系统需求规格说明书(S RS)。
-确定系统的输入和输出设备,如传感器、执行器等。
-确定P LC软件和硬件的选择。
3. PL C硬件设计P L C硬件设计是PL C控制系统设计的重要组成部分,它的主要内容包括:-确定P LC的型号和规格,根据实际需求选择合适的P LC设备。
-确定信号输入和输出的电压等级,并设计相应的电路连接。
-配置和调试PL C的模块,如输入模块、输出模块、通信模块等。
-进行P LC的布线和连接,确保各个模块之间的良好通信。
4. PL C软件设计P L C软件设计是PL C控制系统设计的核心部分,它的主要内容包括:-根据系统需求规格说明书,进行逻辑设计和功能分解。
-使用逻辑编程语言(如LD、S T、FB D等),根据功能需求编写程序。
-进行程序的调试和测试,确保程序的正确性和可靠性。
-配置和调试人机界面(HM I),为操作人员提供友好的界面。
5. PL C控制策略设计P L C控制策略设计是P LC控制系统设计的关键环节,它的主要内容包括:-确定控制策略的类型,如顺序控制、循环控制、比例控制等。
-设计程序的执行流程,包括条件判断、循环控制等。
-根据系统需求规格说明书,设计报警逻辑和异常处理策略。
-结合实际情况进行程序的优化和改进,提升控制系统的性能和稳定性。
6.安全控制设计在P LC控制系统设计中,安全性是必不可少的考虑因素。
安全控制设计的内容包括:-确定安全控制的需求和指标,如紧急停止、安全间距控制等。
设计一个PLC控制系统以下七个步骤1. 系统设计与设备选型a. 分析你所控制的设备或系统。
PLC最主要的目的是控制外部系统。
这个系统可能是单个机器,机群或一个生产过程。
b. 判断一下你所要控制的设备或系统的输入输出点数是否符合可编程控制器的点数要求。
(选型要求)c. 判断一下你所要控制的设备或系统的复杂程度,分析内存容量是否够。
2. I/O赋值(分配输入输出)a. 将你所要控制的设备或系统的输入信号进行赋值,与PLC的输入编号相对应。
(列表)b. 将你所要控制的设备或系统的输出信号进行赋值,与PLC的输出编号相对应。
(列表)3. 设计控制原理图a. 设计出较完整的控制草图。
b. 编写你的控制程序。
c. 在达到你的控制目的的前提下尽量简化程序。
4. 程序写入PLC将你的程序写入可编程控制器。
5. 编辑调试修改你的程序a.程序查错(逻辑及语法检查)b.在局部插入END,分段调试程序。
c.整体运行调试6. 监视运行情况在监视方式下,监视一下你的控制程序的每个动作是否正确。
如不正确返回步骤5,如果正确则作第七步。
7. 运行程序(千万别忘记备份你的程序)首先,DCS和PLC 之间有什么不同?1、从发展的方面来说:DCS从传统的仪表盘监控系统发展而来。
因此,DCS从先天性来说较为侧重仪表的控制,比如我们使用的YOKOGAWA CS3000 DCS系统甚至没有PID数量的限制(PID,比例微分积分算法,是调节阀、变频器闭环控制的标准算法,通常PID的数量决定了可以使用的调节阀数量)。
PLC从传统的继电器回路发展而来,最初的PLC甚至没有模拟量的处理能力,因此,PLC从开始就强调的是逻辑运算能力。
2、从系统的可扩展性和兼容性的方面来说:市场上控制类产品繁多,无论DCS还是PLC,均有很多厂商在生产和销售。
对于PLC系统来说,一般没有或很少有扩展的需求,因为PLC系统一般针对于设备来使用。
一般来讲,PLC也很少有兼容性的要求,比如两个或以上的系统要求资源共享,对PLC来讲也是很困难的事。
而且PLC一般都采用专用的网络结构,比如西门子的MPI总线性网络,甚至增加一台操作员站都不容易或成本很高。
DCS在发展的过程中也是各厂家自成体系,但大部分的DCS系统,比如横河YOKOGAWA、霍尼维尔、ABB等等,虽说系统内部(过程级)的通讯协议不尽相同,但操作级的网络平台不约而同的选择了以太网络,采用标准或变形的TCP/IP协议。
这样就提供了很方便的可扩展能力。
在这种网络中,控制器、计算机均作为一个节点存在,只要网络到达的地方,就可以随意增减节点数量和布置节点位置。
另外,基于windows 系统的OPC、DDE等开放协议,各系统也可很方便的通讯,以实现资源共享。
3、从数据库来说:DCS一般都提供统一的数据库。
换句话说,在DCS系统中一旦一个数据存在于数据库中,就可在任何情况下引用,比如在组态软件中,在监控软件中,在趋势图中,在报表中……而PLC系统的数据库通常都不是统一的,组态软件和监控软件甚至归档软件都有自己的数据库。
为什么常说西门子的S7 400要到了414以上才称为DCS?因为西门子的PCS7系统才使用统一的数据库,而PCS7要求控制器起码到S7 414-3以上的型号。
4、从时间调度上来说:PLC的程序一般不能按事先设定的循环周期运行。
PLC程序是从头到尾执行一次后又从头开始执行。
(现在一些新型PLC有所改进,不过对任务周期的数量还是有限制)而DCS可以设定任务周期。
比如,快速任务等。
同样是传感器的采样,压力传感器的变化时间很短,我们可以用200ms的任务周期采样,而温度传感器的滞后时间很大,我们可以用2s的任务周期采样。
这样,DCS可以合理的调度控制器的资源。
5、从网络结构发面来说:一般来讲,DCS惯常使用两层网络结构,一层为过程级网络,大部分DCS使用自己的总线协议,比如横河的Modbus、西门子和ABB的Profibus、ABB的CAN bus等,这些协议均建立在标准串口传输协议RS232或RS485协议的基础上。
现场IO模块,特别是模拟量的采样数据(机器代码,213/扫描周期)十分庞大,同时现场干扰因素较多,因此应该采用数据吞吐量大、抗干扰能力强的网络标准。
基于RS485串口异步通讯方式的总线结构,符合现场通讯的要求。
IO的采样数据经CPU转换后变为整形数据或实形数据,在操作级网络(第二层网络)上传输。
因此操作级网络可以采用数据吞吐量适中、传输速度快、连接方便的网络标准,同时因操作级网络一般布置在控制室内,对抗干扰的要求相对较低。
因此采用标准以太网是最佳选择。
TCP/IP协议是一种标准以太网协议,一般我们采用1 00Mbit/s的通讯速度。
PLC系统的工作任务相对简单,因此需要传输的数据量一般不会太大,所以常见的PLC系统为一层网络结构。
过程级网络和操作级网络要么合并在一起,要不过程级网络简化成模件之间的内部连接。
PLC不会或很少使用以太网。
6、从应用对象的规模上来说:PLC一般应用在小型自控场所,比如设备的控制或少量的模拟量的控制及联锁,而大型的应用一般都是DC S。
当然,这个概念不太准确,但很直观,习惯上我们把大于600点的系统称为DCS,小于这个规模叫做PLC。
我们的热泵及QCS、横向产品配套的控制系统一般就是称为PLC。
说了这么多PLC与DCS的区别,但我们应该认识到,PLC与DCS发展到今天,事实上都在向彼此靠拢,严格的说,现在的PLC与DCS已经不能一刀切开,很多时候之间的概念已经模糊了。
现在,我们来讨论一下彼此的相同(似)之处。
1、从功能来说:PLC已经具备了模拟量的控制功能,有的PLC系统模拟量处理能力甚至还相当强大,比如横河FA-MA3、西门子的S7 400、ABB 的Control Logix 和施耐德的Quantum系统。
而DCS也具备相当强劲的逻辑处理能力,比如我们在CS3000上实现了一切我们可能使用的工艺联锁和设备的联动启停。
2、从系统结构来说:PLC与DCS的基本结构是一样的。
PLC发展到今天,已经全面移植到计算机系统控制上了,传统的编程器早就被淘汰。
小型应用的PLC一般使用触摸屏,大规模应用的PLC全面使用计算机系统。
和DCS一样,控制器与IO站使用现场总线(一般都是基于RS485或RS232异步串口通讯协议的总线方式),控制器与计算机之间如果没有扩展的要求,也就是说只使用一台计算机的情况下,也会使用这个总线通讯。
但如果有不止一台的计算机使用,系统结构就会和DCS一样,上位机平台使用以太网结构。
这是PLC大型化后和DCS概念模糊的原因之一。
3、PLC和DCS的发展方向:小型化的PLC将向更专业化的使用角度发展,比如功能更加有针对性、对应用的环境更有针对性等等。
大型的PLC与DCS的界线逐步淡化,直至完全融和。
DCS将向FCS的方向继续发展。
FCS的核心除了控制系统更加分散化以外,特别重要的是仪表。
FCS在国外的应用已经发展到仪表级。
控制系统需要处理的只是信号采集和提供人机界面以及逻辑控制,整个模拟量的控制分散到现场仪表,仪表与控制系统之间无需传统电缆连接,使用现场总线连接整个仪表系统。
(目前国内有横河在中海壳牌石化项目中用到了FCS,仪表级采用的是智能化仪表例如:EJX等,具备世界最先进的控制水准)。
○如何正确对待PLC和DCS?我个人从不强调PLC和DCS之间孰优孰劣,我把它们使用了一个新名词"控制类产品"。
我们提供给用户的是最适合用户的控制系统。
绝大多数用户不会因为想使用一套DCS而去使用DCS,控制类产品必须定位在满足用户的工艺要求的基础之上。
其实提出使用DCS还是PLC的用户大抵是从没接触过自控产品或有某种特殊需求的。
过分强调这个东东只会陷入口舌之争。
从PLC与DCS之间的区别和共同之处我们了解了控制类产品的大抵情况。
注意,作为专业人士,我们自己不要为产品下PLC还是DCS的定义,自己的心理上更不能把产品这样来区别对待。
从概念上讲,PLC、DCS本来就不是一个逻辑层次上的概念,从名称上就能看出:PLC是以功能命名,DC S是以体系结构命名。
PLC就可以组成DCS嘛!当然性能差异还是现实的存在,但要具体看产品和需要。
从应用角度来说,简单地以PLC、DCS来区分,往往走入误区。
DCS控制系统与PLC控制区别1. DCS是一种"分散式控制系统",而PLC只是一种(可编程控制器)控制"装置",两者是"系统"与"装置"的区别。
系统可以实现任何装置的功能与协调,PLC装置只实现本单元所具备的功能.2. 在网络方面,DCS网络是整个系统的中枢神经,和利时公司的MACS系统中的系统网采用的是双冗余的1 00Mbps的工业以太网,采用的国际标准协议TCP/IP。
它是安全可靠双冗余的高速通讯网络,系统的拓展性与开放性更好.而PLC因为基本上都为个体工作,其在与别的PLC或上位机进行通讯时,所采用的网络形式基本都是单网结构,网络协议也经常与国际标准不符。
在网络安全上,PLC没有很好的保护措施。
我们采用电源,CPU,网络双冗余.3. DCS整体考虑方案,操作员站都具备工程师站功能,站与站之间在运行方案程序下装后是一种紧密联合的关系,任何站、任何功能、任何被控装置间都是相互连锁控制, 协调控制;而单用PLC互相连接构成的系统,其站与站(PLC与PLC)之间的联系则是一种松散连接方式,是做不出协调控制的功能。
4. DCS在整个设计上就留有大量的可扩展性接口,外接系统或扩展系统都十分方便,PLC所搭接的整个系统完成后,想随意的增加或减少操作员站都是很难实现的。
5. DCS安全性:为保证DCS控制的设备的安全可靠,DCS采用了双冗余的控制单元,当重要控制单元出现故障时,都会有相关的冗余单元实时无扰的切换为工作单元,保证整个系统的安全可靠。
PLC所搭接的系统基本没有冗余的概念,就更谈不上冗余控制策略。
特别是当其某个PLC单元发生故障时,不得不将整个系统停下来,才能进行更换维护并需重新编程。
所以DCS系统要比其安全可靠性上高一个等级。
6. 系统软件,对各种工艺控制方案更新是DCS的一项最基本的功能,当某个方案发生变化后,工程师只需要在工程师站上将更改过的方案编译后,执行下装命令就可以了,下装过程是由系统自动完成的,不影响原控制方案运行。
系统各种控制软件与算法可以将工艺要求控制对象控制精度提高。
而对于PLC构成的系统来说,工作量极其庞大,首先需要确定所要编辑更新的是哪个PLC,然后要用与之对应的编译器进行程序编译,最后再用专用的机器(读写器)专门一对一的将程序传送给这个PLC,在系统调试期间,大量增加调试时间和调试成本,而且极其不利于日后的维护。