单片机输入输出扩展及应用
- 格式:ppt
- 大小:1.27 MB
- 文档页数:54
单片机数字输入输出接口扩展设计方法单片机作为一种常见的微控制器,其数字输入输出接口的扩展设计方法是我们在电子工程领域中经常遇到的任务之一。
在本文中,我们将讨论单片机数字输入输出接口的扩展设计方法,并探讨其中的原理和应用。
在单片机系统中,数字输入输出(I/O)接口在连接外围设备时起着至关重要的作用。
通过扩展数字 I/O 接口可以为单片机系统提供更多的输入输出通道,从而提高系统的功能和性能。
下面将介绍几种常见的单片机数字 I/O 接口扩展设计方法。
1. 并行输入输出接口扩展并行输入输出接口扩展是最常见和直接的扩展方法之一。
通常,单片机的内部I/O口数量有限,无法满足一些复杂的应用需求。
通过使用外部并行输入输出扩展芯片,可以将单片机的I/O口扩展到更多的通道,同时保持高速数据传输。
这种方法可以使用注册器和开关阵列来实现数据的输入和输出。
2. 串行输入输出接口扩展串行输入输出接口扩展是一种节省外部引脚数量的方法。
使用串行输入输出扩展器,可以通过仅使用几个引脚实现多个输入输出通道。
这种方法适用于具有较多外设设备且外围设备数量有限的应用场景。
通过串行接口(如SPI或I2C)与扩展器通信,可以实现高效的数据传输和控制。
3. 矩阵键盘扩展矩阵键盘扩展是一种常见的数字输入接口扩展方法。
很多应用中,需要通过键盘输入数据或控制系统。
通过矩阵键盘的使用,可以大大减少所需的引脚数量。
通过编程方法可以实现键盘按键的扫描和解码,从而获取用户输入的数据或控制信号。
4. 脉冲编码调制(PCM)接口扩展脉冲编码调制是一种常见的数字输出接口扩展方法。
它通过对数字信号进行脉冲编码,将数字信号转换为脉冲信号输出。
这种方法适用于需要输出多个连续的数字信号的应用,如驱动器或步进电机控制。
通过适当的电路设计和编程,可以实现高效的数字信号输出。
5. PWM(脉冲宽度调制)接口扩展PWM接口扩展是一种常用的数字输出接口扩展方法。
PWM技术通过改变信号的脉冲宽度来实现模拟信号输出。
单片机原理接口及应用单片机是一种集成电路芯片,包含了中央处理器、存储器和各种输入输出接口等基本组成部分。
单片机通过其接口与外部设备进行通信,实现各种应用。
1. 数字输入输出接口(Digital I/O Interface):单片机通过数字输入输出接口连接外部设备。
通过设置相应的寄存器和引脚配置,单片机可以读取外部器件的状态,并且能够控制外部器件的输出信号。
数字输入输出接口常用于连接开关、LED、蜂鸣器等设备。
2. 模拟输入输出接口(Analog I/O Interface):单片机的模拟输入输出接口可以将模拟信号转换为数字信号,或将数字信号转换为模拟信号。
通过模拟输入输出接口,单片机可以实现模拟信号的采集和输出,例如连接温度传感器、光电传感器等。
3. 串口接口(Serial Interface):串口接口是单片机与外部设备进行数据传输的重要接口。
单片机通过串口接口可以与计算机或其他单片机进行通信。
串口的通信速度和传输协议可以根据具体需求进行设置。
4. I2C总线接口(I2C bus Interface):I2C总线接口是一种常用的串行通信协议,具有多主机、多从机的特点。
单片机通过I2C总线接口可以与各种器件进行通信,如传感器、实时时钟等。
5. SPI接口(Serial Peripheral Interface):SPI接口是一种高速同步串行通信接口,常用于单片机与外部存储器、显示器和其他外设的连接。
SPI接口可以实现全双工通信,具有高速传输的优势。
6. 中断接口(Interrupt Interface):中断是单片机处理外部事件的一种方式。
通过中断接口,单片机可以响应来自外部设备的信号,并及时处理相应的事件,提高系统的实时性。
以上是单片机的一些常用接口及其应用。
不同的单片机具有不同的接口类型和功能,可以根据具体的应用需求选择合适的单片机型号。
单片机中的IO口扩展技术原理及应用案例一、引言单片机是现代电子技术中常用的核心控制器件之一,其功能强大、使用广泛。
然而,单片机的IO口数量通常有限,难以满足复杂系统的扩展需求。
为了解决这一问题,IO口扩展技术应运而生。
本文将介绍单片机中的IO口扩展技术的原理及应用案例,旨在帮助读者更好地理解和应用该技术。
二、原理介绍单片机中的IO口是用于输入和输出数字信号的接口,通常包括输入输出引脚和控制电路。
然而,随着系统需求的增多,单片机的IO口数量往往无法满足实际应用的需求。
为了扩展IO口数量,可采用以下两种原理:1. 级联扩展级联扩展是通过将多个IO口连接在一起,共享控制信号来实现扩展。
其中,一个IO口作为主控制信号输出,控制其他IO口的输入输出。
通过这种方式,可以将多个IO口级联,实现IO口数量的扩展。
2. IO口扩展芯片IO口扩展芯片是一种专门设计的集成电路,用于扩展单片机的IO口数量。
通过与单片机进行通信,扩展芯片可以提供额外的IO口,大大增加了系统的可扩展性。
常用的IO口扩展芯片有74HC595、MCP23017等,它们具有多个IO口、控制电路和通信接口,可方便地与单片机进行连接。
三、应用案例为了更好地理解IO口扩展技术的应用,下面将介绍两个具体的案例。
1. LED灯控制系统假设我们需要控制大量LED灯,而单片机的IO口数量有限。
这时,我们可以使用74HC595芯片进行IO口扩展。
首先,将单片机与74HC595芯片进行连接,通过SPI或者I2C协议进行通信。
然后,通过写入数据到74HC595的寄存器,实现对每个IO口的控制。
通过级联多个74HC595芯片,可以将LED灯的数量扩展到数十甚至上百个。
应用案例中,我们可以设置不同的数据来控制不同的LED灯状态,实现灯光的闪烁、流水等效果。
通过IO口扩展技术,实现了对大量LED灯的控制,提升了系统的可扩展性和灵活性。
2. 外部设备接口扩展在一些工业自动化系统中,需要与多个外部设备进行通信,如传感器、执行器等。
单片机数字输入输出单片机(Microcontroller)是一种集成了中央处理器(CPU)、存储器(RAM和ROM)、输入输出接口(I/O)和定时器/计数器等功能于一体的集成电路。
它通常被广泛应用于各种电子设备中,如家电、汽车电子、通讯设备等。
其中,数字输入输出(Digital Input/Output)是单片机的基本功能之一。
本文将介绍单片机数字输入输出的原理和实际应用。
一、单片机数字输入输出原理单片机的数字输入输出是通过引脚(Pin)来实现的。
单片机的引脚既可用作输入,也可用作输出。
当引脚用作输入时,它可以接收外部信号,如开关的状态、传感器的测量数据等。
当引脚用作输出时,它可以输出高电平(通常为5V)或低电平(通常为0V),从而控制外部器件的工作状态。
单片机的数字输入输出通常通过寄存器来进行配置和操作。
寄存器是单片机内部的一块存储空间,用于存储各种配置和控制信息。
通过向相应的寄存器写入特定的值,可以配置引脚为输入或输出,并设置引脚的工作模式、电平状态等。
二、单片机数字输入输出的应用1. 按键输入在很多电子设备中,都需要通过按键来进行操作。
单片机的数字输入功能可以用于检测按键的状态。
通过读取引脚的电平状态,可以判断按键是否被按下。
根据不同的按键组合或按下时间,可以实现不同的功能,如调节音量、切换频道等。
2. 传感器接口很多电子设备需要与传感器进行数据交互,以获取环境信息或测量参数。
单片机的数字输入功能可以用于接收传感器的输出信号。
传感器通常将测量值转换为电压信号,并与单片机的引脚相连。
单片机读取引脚的电平状态,可以获取传感器测量的数值,并进行相应的处理和判断。
3. 继电器控制继电器是一种常用的电器开关,常用于控制高电压或高电流的设备。
单片机的数字输出功能可以用于驱动继电器的控制。
通过向输出引脚写入高电平或低电平信号,可以实现开关继电器的动作,从而控制外部设备的通断。
4. LED显示LED是一种常见的输出设备,可用于显示各种信息,如数字、字母、图标等。
单片机扩展电路(二)引言概述:在单片机应用中,扩展电路是必不可少的,它能够有效地提升单片机的功能和性能。
本文将介绍单片机扩展电路的设计原则和一些常用的扩展电路,旨在帮助读者更好地理解和应用单片机的扩展电路。
正文内容:一、IO扩展电路1. 使用74HC595芯片进行8位输出扩展2. 使用PCF8574芯片进行8位输入扩展3. 使用双向移位寄存器实现输入输出模式切换4. 使用IO扩展板实现大量IO口的扩展5. 使用IO扩展芯片实现I2C总线扩展二、ADC和DAC扩展电路1. 使用ADC0804芯片进行模拟量采集2. 使用MAX11615芯片进行多通道模拟量采集3. 使用DAC0832芯片进行模拟量输出4. 使用R-2R网络实现更高精度的模拟量输出5. 使用PWM信号和低通滤波器实现模拟量输出三、串口扩展电路1. 使用MAX232芯片进行RS232电平转换2. 使用USB转串口模块实现USB接口扩展3. 使用蓝牙模块实现无线串口扩展4. 使用WiFi模块实现无线串口扩展5. 使用以太网模块实现网络串口扩展四、定时器和计数器扩展电路1. 使用74HC161芯片进行多位计数2. 使用74HC4040芯片进行二进制计数3. 使用CD4541B芯片进行定时器功能扩展4. 使用定时器模块实现精确的时间测量5. 使用定时器和中断实现实时时钟功能五、存储器扩展电路1. 使用24CXX系列芯片进行I2C存储器扩展2. 使用AT24C256芯片进行大容量存储器扩展3. 使用SD卡进行存储器扩展4. 使用EEPROM芯片进行非易失性存储器扩展5. 使用Flash芯片进行可擦写存储器扩展总结:单片机扩展电路的设计具有很大的灵活性,可以根据具体应用需求选择不同的扩展电路。
本文对IO扩展电路、ADC和DAC扩展电路、串口扩展电路、定时器和计数器扩展电路以及存储器扩展电路进行了详细介绍,希望读者能够通过学习掌握单片机扩展电路的设计方法和应用技巧,为自己的项目开发提供更多的选择和可能性。
单片机中常见的接口类型及其功能介绍单片机(microcontroller)是一种集成了中央处理器、内存和各种外围接口的微型计算机系统。
它通常用于嵌入式系统中,用于控制和监控各种设备。
接口是单片机与外部设备之间进行数据和信号传输的通道。
本文就单片机中常见的接口类型及其功能进行介绍。
一、串行接口1. 串行通信口(USART):USART是单片机与外部设备之间进行串行数据通信的接口。
它可以实现异步或同步传输,常用于与计算机、模块、传感器等设备进行数据交换。
2. SPI(串行外围接口):SPI接口是一种全双工、同步的串行数据接口,通常用于连接单片机与存储器、传感器以及其他外围设备。
SPI接口具有较高的传输速度和灵活性,可以实现多主多从的数据通信。
3. I2C(Inter-Integrated Circuit):I2C接口是一种面向外部设备的串行通信总线,用于连接不同的芯片或模块。
I2C接口通过两条双向线路进行数据传输,可以实现多主多从的通信方式,并且占用的引脚较少。
二、并行接口1. GPIO(通用输入/输出):GPIO接口是单片机中最常见的接口之一,用于连接与单片机进行输入输出的外围设备。
通过设置相应的寄存器和引脚状态,可以实现单片机对外部设备进行控制和监测。
2. ADC(模数转换器):ADC接口用于将模拟信号转换为数字信号,常用于单片机中对模拟信号的采集和处理。
通过ADC接口,单片机可以将外部传感器等模拟信号转化为数字信号,便于处理和分析。
3. DAC(数模转换器):DAC接口用于将数字信号转换为模拟信号。
通过DAC接口,单片机可以控制外部设备的模拟量输出,如音频输出、电压控制等。
三、特殊接口1. PWM(脉冲宽度调制):PWM接口用于产生特定占空比的脉冲信号。
通过调节脉冲的宽度和周期,可以控制外部设备的电平、亮度、速度等。
PWM接口常用于控制电机、LED灯、舵机等设备。
2. I2S(串行音频接口):I2S接口用于在单片机和音频设备之间进行数字音频数据传输。
单片机的输入输出方式及应用案例单片机(Microcontroller,简称MCU)是一种集成了中央处理器(CPU)、存储器和各种输入输出设备接口的微型计算机系统。
它被广泛应用于电子设备、自动化控制、嵌入式系统等领域。
本文将介绍单片机的输入输出方式及应用案例。
一、单片机的输入方式单片机通过输入方式接受外部信号,常见的输入方式有以下几种:1. 按键输入:通过连接按键开关与单片机的IO口实现输入。
按键可以是矩阵键盘、触摸按键等。
单片机可以通过读取IO口的电平状态来判断按键是否按下,从而触发相应的事件或功能。
2. ADC输入:ADC(Analog-to-Digital Converter)用于将模拟信号转换为数字信号供单片机处理。
通过ADC接口,单片机可以读取各种类型的模拟信号,如温度、光强、电压等。
常见的应用包括温度测量、光强检测等。
3. 串口输入:单片机可以通过串口接收器(UART)实现串行数据的输入。
串口输入广泛应用于与其他设备通信的场景中,如与电脑、传感器、无线模块等进行数据交互。
二、单片机的输出方式单片机通过输出方式控制外部设备,常见的输出方式有以下几种:1. 数字IO口输出:单片机的数字IO口可以输出高或低电平来控制外部设备。
例如,通过控制IO口输出高电平,可以点亮LED灯,驱动蜂鸣器等。
2. PWM输出:PWM(Pulse Width Modulation)脉宽调制是一种周期性变化占空比的信号。
单片机可以通过PWM输出口生成特定频率、特定占空比的PWM信号,广泛应用于电机控制、LED亮度调节等场景中。
3. DAC输出:DAC(Digital-to-Analog Converter)将数字信号转换为模拟信号输出。
通过DAC接口,单片机可以输出模拟信号,如音频信号、电压信号等。
三、单片机输入输出应用案例1. 温度监测系统:利用单片机的ADC输入功能,连接温度传感器,实时监测环境温度并将结果显示在LCD屏幕上。
单片机IO口扩展技术] 0 引言在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术、高可靠性和高性价比,占领了工业测控和自动化工程应用的主要市场,并成为国内单片机应用领域中的主流机型。
MCS-51单片机的并行口有P0、P1、P2和P3,由于P0口是地址/数据总线口,P2口是高8位地址线,P3口具有第二功能,这样,真正可以作为双向I/O口应用的就只有P1口了。
这在大多数应用中是不够的,因此,大部分MCS-51单片机应用系统设计都不可避免的需要对P0口进行扩展。
由于MCS-51单片机的外部RAM和I/O口是统一编址的,因此,可以把单片机外部64K字节RAM空间的一部分作为扩展外围I/O口的地址空间。
这样,单片机就可以像访问外部RAM存储器单元那样访问外部的P0口接口芯片,以对P0口进行读/写操作。
用于P0口扩展的专用芯片很多。
如8255可编程并行P0口扩展芯片、8155可编程并行P0口扩展芯片等。
本文重点介绍采用具有三态缓冲的74HC244芯片和输出带锁存的74HC377芯片对P0口进行的并行扩展的具体方法。
1 输入接口的扩展MCS-51单片机的数据总线是一种公用总线,不能被独占使用,这就要求接在上面的芯片必须具备“三态”功能,因此扩展输入接口实际上就是要找一个能够用于控制且具备三态输出的芯片。
以便在输入设备被选通时,它能使输入设备的数据线和单片机的数据总线直接接通;而当输入设备没有被选通时,它又能隔离数据源和数据总线(即三态缓冲器为高阻抗状态)。
1.1 74HC2244芯片的功能如果输入的数据可以保持比较长的时间(比如键盘),简单输入接口扩展通常使用的典型芯片为74HC244,由该芯片可构成三态数据缓冲器。
74HC244芯片的引脚排列如图1所示。
74HC244芯片内部共有两个四位三态缓冲器,使用时可分别以1C和2G作为它们的选通工作信号。
当1 C和2G都为低电平时,输出端Y和输入端A状态相同;当1G和2G都为高电平时,输出呈高阻态。
单片机与键盘输入的接口设计与应用解析引言:单片机是一种集成电路芯片,具有处理器核、存储器和输入输出引脚等组成部分,可以控制各种外部设备。
键盘是计算机和其他电子设备的常用输入设备,通过按下不同的按键来输入信息。
在许多应用中,需要将键盘与单片机相连接,以实现键盘输入的功能。
本文将深入探讨单片机与键盘输入的接口设计与应用,包括接口电路的设计原理、接口方式的选择以及相关应用案例的分析。
一、接口电路设计原理1. 键盘扫描原理键盘通常是由一系列按键按排成矩阵状的结构,每个按键都有两个触点,当按键按下时,两个触点短接,形成闭合电路。
为了检测到具体按下的按键,需要通过扫描的方式来逐个检测。
2. 电路连接方式通常,键盘与单片机之间可以通过行列式和矩阵式两种方式实现连接。
行列式连接方式即将键盘的行和列通过引脚分别连接到单片机的IO口,通过单片机的输入输出控制来检测按键信号。
矩阵式连接方式则是采用矩阵键盘的形式,将所有的按键都连接到行和列的交叉点上,通过扫描的方式来检测按键信号。
二、接口方式的选择1. 行列式连接方式的优势和劣势行列式连接方式相对简单,常用于按键较少的情况下。
它的优势在于节省IO 口的使用,通过编写简单的行列扫描程序即可实现对按键的检测。
然而,它的劣势在于不能同时检测多个按键,当同时有多个按键按下时,只能检测到其中一个。
2. 矩阵式连接方式的优势和劣势矩阵式连接方式可以同时检测多个按键,因为所有的按键都连接到行和列的交叉点上。
它的优势在于可以通过编写复杂的扫描程序,实现同时检测多个按键,并且可以检测到按键的精确位置。
然而,它的劣势在于需要占用较多的IO口,且对于按键较多的情况下,编写扫描程序较为复杂。
三、相关应用案例的分析1. 数字密码锁数字密码锁是常见的应用之一,通过将键盘与单片机连接,可以实现输入密码的功能,比如开启或关闭某个装置。
在设计中,可以选择行列式连接方式,通过扫描程序来检测按键,进而判断输入的密码是否匹配。
CD4052 单片机串行口扩展技术应用CD4052 是一种数字控制的模拟数据选择/ 分配器,本文将它用于UART串口扩展,解决了普通单片机UART串口太少的问题。
文中给出该器件的主要特性、引脚说明及电气特性,并以A T89C51 单片机为例给出多串口扩展应用电路。
1 概述当前,以单片机为核心构成的智能化测控系统及电子产品不断涌现,为了满足数字化及智能化要求,许多外围电路功能模块、部件、器件及传感器也具备了UART 串口通信功能,而现阶段的8 位、16 位、32位单片机却大部分仅提供一个UART 串口,这样就很难满足系统中一方面要与具有UART 功能的串口部件通信,另一方面又要与上位机通信的要求。
利用CD4052 做多串口扩展器,可很好地解决此问题。
2 封装及引脚功能该器件具有SOP、SOIC、TSSOP和PDIP四种封装形式,皆是16 个引脚。
图1 所示为其PDIP封装引脚分布图,图2 是CD4052 的逻辑图,数字控制真值表见表1。
图1 CD4052PDIP引脚分布图3 工作特性CD4052 模拟数据选择/ 分配器是数字控制的模拟开关,具有低导通阻抗和非常低的关断泄漏电流。
315V 的数字信号可以控制15VP- P 的模拟信号。
例如,若VDD = 5V , VSS = 0V , VEE = - 5V ,则的数字信号可以控制- 5V + 5V 的模拟信号输入输出。
数据选择器在整个VDDVSS 和VDDVEE 范围具有非常低的静态功耗,而且与控制信号的逻辑状态无关。
图2 CD4052 的逻辑图表1 真值表CD4052 是一个独立的4 通道数据选择器,具有二进制控制输入端A、B 和一个禁止输入INH。
A、B的四种二进制组合状态用来在四对通道中选择其中的一对,当逻辑“1”加到INH 输入端时,所有的通道都关闭。
CD4052 的器件特性为:1) 宽范围的数字和模拟信号电平:数字315V ,模拟可达15VP- P。
单片机中的IO口扩展原理及应用单片机是一种在微处理器中集成了中央处理器、内存、输入/输出控制和时钟等功能的微型计算机。
在实际应用中,单片机的使用每況愈下,并逐渐被更高级的处理器所取代。
然而,在一些特殊应用领域,如嵌入式系统和物联网设备中,单片机仍然扮演着重要的角色。
在单片机中,IO口的扩展是一项关键的技术,用来增加单片机的输入和输出接口数量。
本文将探讨单片机中的IO口扩展原理及其应用。
一、单片机IO口扩展原理在单片机中,IO口(Input/Output Port)用于连接外部电路和其他设备,扮演着数据输入和输出的桥梁角色。
然而,通常单片机内部只有有限的IO口数量。
为了满足复杂的应用需求,需要通过扩展技术来增加IO口的数量。
1. 并行IO口扩展其中一种常见的IO口扩展技术是通过并行IO口扩展芯片来增加IO口数量。
该芯片通常由一个并行输入/输出移位寄存器和控制逻辑组成。
通过串行通信协议,单片机可以控制并行IO口扩展芯片,以实现扩展IO口的输入和输出功能。
这种方式适用于需要大量IO口的应用,如工业控制和自动化设备。
不过需要注意的是,并行IO口扩展芯片策略相对复杂,需要额外的引脚和电路设计,并且使用的软件协议需要单片机和外部芯片之间的高速通信支持。
2. 串行IO口扩展另一种常见的IO口扩展技术是通过串行IO口扩展芯片来增加IO口数量。
串行IO口扩展芯片通常采用常用的串行通信协议,如I2C(Inter-Integrated Circuit)或SPI(Serial Peripheral Interface),通过少量的引脚连接到单片机。
通过控制寄存器和数据寄存器,单片机可以发送指令和数据来控制扩展IO口的输入和输出。
这种方式相对于并行IO口扩展芯片来说,引脚数量较少,实现简单,适用于需要较少IO口数量的应用。
同时,由于使用串行通信协议,可以通过级联多个串行IO口扩展芯片,进一步增加IO口数量。
二、单片机IO口扩展应用单片机IO口扩展技术在各种嵌入式系统和物联网设备中都有广泛的应用。
74HC595对单片机IO口的扩展及应用作者:曹少科杨晴陈海宇王硕来源:《科技风》2019年第13期摘要:74HC595是美国国家半导体公司生产的通用位移寄存器芯片,它可以实现8位串行输入输出或者并行输出,操作方便简单,可以很容易的完成对单片机IO口的扩展。
[1]本文主要是介绍用74HC595芯片来扩展IO口详细原理,并利用此方法进行实验,实现流水灯效果。
关键词:单片机;74HC595;扩展IO口;流水灯上世纪70年代到80年代期间,单片机凭借着它体积小,低功耗,性价比高的优势,被越来越多的人所使用,并被广泛运用于各个领域。
但随着科技不断地进步与发展,我們对于单片机的应用更加广泛,我们也慢慢发现了51单片机的一些缺点,即IO端口有限,很多人在运用单片机时总会出现IO口不够用的现象,而74HC595芯片刚好能弥补此缺陷,大量扩展单片机的IO口。
174HC595芯片的选择74HC595是硅结构的CMOS器件,能实现串入转并入,数据通过一个IO串口输入后经过74HC595后将数据8位并行输出。
[2]74HC595与74HC164芯片功能基本相同,但前者价格更低廉,驱动能力更强,操作简单,但因为74HC595有存储寄存器,所以在移位的过程中,并排输出端口的数据保持不变。
所以选用74HC595芯片来扩展51单片机IO口比较合适。
2扩展方案2.1硬件连接与实现原理若要以74HC595芯片实现对IO口的扩展,首先需要定义一个单片机I0口与74HC595芯片DS相连,以此来控制串行数据的输入。
而移位寄存器和存储寄存器是不同的时钟,当SH_CP处于上升沿时,数据会输入到移位寄存器中,当ST_CP处于上升沿时会传入的存储寄存器中。
因此两个时钟需要分别进行连接,移位寄存器有串行输入DS引脚、串行输出引脚Q7’和低电平复位引脚MR。
存储寄存器有并行数据输出引脚Q0~Q7和低电平输出有效OE引脚。
所以用MR进行复位时,只是将位移寄存器中的数据清除,而不必担心存储寄存器中的数据有所变化。
单片机扩展芯片是一类用于增强单片机功能与资源的外围集成电路。
单片机(Microcontroller Unit, MCU)通常内置有有限的资源,包括输入输出端口(I/O)、内存、计时器等。
当应用需求超过单片机自身资源时,可以通过外围扩展芯片来实现所需的额外功能。
以下是一些常见的单片机扩展芯片及其用途:1. I/O端口扩展器:如74HC595(串转并输出扩展器)和MCP23017(I2C接口的16位I/O扩展器),用于增加单片机的输入输出端口数量。
2. 存储器扩展:包括EEPROM、Flash或者SRAM扩展芯片,用来增加程序存储空间或数据存储空间。
3. 串行通讯扩展:如SPI或I2C接口的扩展芯片,用于增加额外的串行通讯接口。
4. 模拟数字/数字模拟转换器(ADC/DAC):如果单片机内部的ADC/DAC通道不够或分辨率不足,可以通过外部ADC/DAC芯片进行扩展。
5. 显示控制扩展:如LED显示驱动器,或者液晶显示控制器,用于驱动各种显示设备。
6. 键盘/触摸屏控制器:用于实现复杂的用户输入接口。
7. PWM扩展:增加更多的PWM输出,用于控制电机速度、LED亮度等。
8.时钟/定时器扩展:提供更精准的定时功能或者更多的定时器资源。
9. 网络通讯接口扩展:如Ethernet、CAN、RS-232、RS-485等通讯接口扩展。
使用这些外围扩展芯片时,通常需要通过单片机的通用I/O端口或者专用的通信接口(如SPI、I2C、UART)与它们进行通信。
通过编写相应的驱动程序,可以在软件层面控制这些扩展芯片,实现各种功能。
在设计单片机系统时,根据应用需求和单片机的性能来决定是否需要扩展芯片,以及选择何种扩展芯片。
通过合理的系统设计,可以确保单片机系统在满足功能需求的同时,保持成本和复杂度的合理性。