探索三角形全等的条件教案设计
- 格式:doc
- 大小:49.00 KB
- 文档页数:12
探究三角形全等的条件【教课目的】使学生掌握并初步学会应用三角形全等的判断——边角边公义【教课要点】1.指导学生剖析问题,找寻判断三角形全等的条件。
2.三角形全等证明的书写格式【教课难点】1.指导学生剖析问题,找寻判断三角形全等的条件。
2.三角形全等证明的书写格式【教课方法】多媒体教课法及实践操作法【教课器具】折纸三角形【教课过程】一、复习发问1.如何的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明经过如何的变换能使它们完整重合:图( 1)中:△ ABD≌△ ACE,AB与 AC是对应边;图( 2)中:△ ABC≌△ AED,AD与 AC是对应边。
二、新课三角形全等的判断1.全等三角形拥有“对应边相等、对应角相等”的性质。
那么,如何才能判断两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?能否需要已知“三条边相等和三个角对应相等”?此刻我们用图形变换的方法研究下边的问题:如图 2, AC.BD订交于 O,AO、BO、 CO、DO的长度如图所标,△ ABO和△ CDO能否能完整重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO假如把△ OAB绕着 O点顺时针方向旋转,由于OA=OC,所以能够使 OA与 OC重合;又由于∠AOB=∠ COD, OB =OD,所以点 B 与点 D重合。
这样△ ABO与△ CDO就完整重合。
(附注:别的,还能够图 1(1)中的△ ACE绕着点 A 逆时针方向旋转∠ CAB的度数,也将与△ ABD重合。
图 1( 2 )中的△ ABC绕着点 A 旋转,使 AB与 AE重合,再把△ ADE沿着 AE( AB)翻折 180°。
两个三角形也可重合)由此,我们获得启迪:判断两个三角形全等,不需要三条边对应相等和三个角对应相等。
并且,从上边的例子能够惹起我们猜想:假如两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等。
探索三角形全等的条件教案一、教学目标1.了解三角形全等的定义和性质;2.掌握三角形全等的判定方法;3.能够应用三角形全等的条件解决实际问题。
二、教学重点1.三角形全等的定义和性质;2.三角形全等的判定方法。
三、教学难点1.三角形全等的判定方法;2.应用三角形全等的条件解决实际问题。
四、教学过程1. 导入新知识教师可以通过提问的方式引导学生回忆三角形的定义和性质,然后引出三角形全等的概念。
2. 学习三角形全等的定义和性质教师可以通过讲解和演示的方式,让学生了解三角形全等的定义和性质。
例如:•定义:如果两个三角形的三条边分别相等,则这两个三角形全等。
•性质:全等的三角形的对应角度相等,对应边也相等。
3. 学习三角形全等的判定方法教师可以通过讲解和演示的方式,让学生掌握三角形全等的判定方法。
例如:•SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
•SAS判定法:如果两个三角形的两条边和夹角分别相等,则这两个三角形全等。
•ASA判定法:如果两个三角形的两个角和夹边分别相等,则这两个三角形全等。
•RHS判定法:如果两个三角形的一条直角边和另外一条边分别相等,则这两个三角形全等。
4. 应用三角形全等的条件解决实际问题教师可以通过实例的方式,让学生应用三角形全等的条件解决实际问题。
例如:•已知两个三角形的两个角和夹边分别相等,求这两个三角形的其他角和边是否相等。
•已知两个三角形的一条边和两个角分别相等,求这两个三角形的其他角和边是否相等。
5. 总结归纳教师可以通过提问的方式,让学生总结归纳三角形全等的定义、性质和判定方法。
五、教学评价教师可以通过课堂练习、小组讨论、个人作业等方式,对学生的掌握情况进行评价。
六、教学反思教师可以对本节课的教学过程进行反思,总结教学经验,为今后的教学提供参考。
探索三角形全等的条件一、教学内容《探索三角形全等的条件》是北师大版初中数学七年级下册第四章第三节的内容。
本节共三课时,我所授的第一课时的内容包括(1)经历探索三角形全等的条件归纳总结出“边边边”定理(2)“边边边”定理的运用,(3)三角形的稳定性及应用。
二、教学目标由于学生是初一的孩子,对几何的认识还很限,这是第一次系统的学习三角形,所以根据学生已有的认知基础,以及教学内容的地位和作用,我拟定以下教学目标:(1)知识目标:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
(2)能力目标:在探索三角形全等条件的过程中,让学生体验分类的思想有条理地思考、分析、表达、解决问题的能力,逐步培养学生推理意识和能力。
(3)情感目标:鼓励学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣。
三、教学重点:经历探索三角形全等条件的过程。
掌握三角形全等的“边边边”条件并初步学会运用。
四、教学难点:对三角形全等条件的分析和探索。
五、教学媒体:课件。
六、教具学具:自制三角形和四边形模型、学具纸。
七、教学过程:1.找一找:回顾全等三角形相关的知识。
2.想一想:画三角形与已知三角形全等的条件。
3.做一做(1)只给出一个条件.(教师使用多媒体演示引导,学生观察思考在只给出一个条件下作出的三角形是否全等)a.一条边b.一个角(2)两个条件。
(学生在学具纸上按要求动手做图,组内交流相同条件下作出的图形是否全等,然后汇报得出的结论,教师再使用多媒体演示和总结)a.一个角和一条边(一内角30°和一边长3cm的三角形)b.两个内角(一内角30°和一内角50°的三角形)c.两条边(两条边长分别是4cm,6cm)d.学生探索汇报后教师小结上述的情况得到的几个三角形不一定全等(3)三个条件。
学生先讨论给出三个条件画三角形,有哪几种情况?三个内角相等、三条边相等、两条边和一个角相等、两个内角和一条边相等a.比一比三个内角(学生30°,60°,90°的三角尺,先组内交流同等条件下的三角尺比一比是否全等,后与教师同等条件下的三角尺比一比是否全等。
三角形全等的判定SSS、SAS广东实验中学陈秀君教学内容:探索三角形全等的判定条件SSS、SAS;教学目标:1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、用“边边边SAS”、“边角边SAS”判定两个三角形是否全等,并列举简单理由;3、知道确定三角形的起码条件适合的三个部分;4、培养学生合作学习和探索精神;教学重点:三角形全等条件:“边边边SAS”、“边角边”SAS;教学难点:用三角形全等的条件“边边边”、“边角边”进行有条理地思考,并进行简单的推理;教具准备:实物投影仪、三角板、圆规、三角形纸板等教学过程:一、全等三角形及全等三角形的性质1、什么是全等三角形两个能完全重合的三角形2、全等三角形的性质全等三角形对应边相等;对应角相等3、若两个三角形的边和角分别对应相等,则这两个三角形全等二、探索三角形全等的判定条件SSS、SAS1、拿出两个区别不大的三角形,让学生看是否全等有的同学认为全等,通过重叠在一起,发现不能完全重合;设问:判断两个三角形是否全等,光看行不行,那我们该如何检验两个三角形是否全等呢揭示课题,并板书现有的方法是①摆一摆看看是否重合;②看看它们的六对对应部分是否分别相等;能否有比较简单快捷的方法2、进入探索阶段:1老师手中有一个三角形,现在什么条件也不告诉你,你能否画一个三角形和它全等结果发现:无条件时,所画的三角形与老师的不一定全等;如果他画的与老师的全等,那只能说明他今天的运气好;相应板书2给你一些条件,你能画一个三角形和它全等吗注意:①你画的三角形唯一确定吗②与你同桌画的全等吗 ①cm AB 3= ②︒=∠60A③cm AC cm AB 2,3== ④︒=∠︒=∠30,60B A通过操作、交流,发现:以上的每一种情况都不能唯一确定一个三角形,即同学们所画的三角形不一定能全等;这一环节可以配合事物进行直观演示,较为快速的得出结论,不一定要学生具体的把三角形画出来结论:只知道两个三角形有一对或两对对应相等的部分,这两个三角形不一定全等;相应板书3、探索“SSS”、”SAS”给出一个条件不行,两个条件也不行,那下面我们该怎么继续呢再添一个条件;如果已知三角形的三个部分,我们能画岀怎样的三角形呢根据以下所给的条件,画一个三角形;把你所画的三角形与同伴交流,比一比是否全等你画三角形与老师的全等呢学生操作在学生操作之前,现学生一起探究如何画三角形,即第一步可以画什么,第二步画什么……最后将学生引导到探索“SSS ”与“SAS”上①AB =3cm,BC =4cm,CA =2cm; ②∠A=60°, AB =4cm, AC =3cm;将三角形教具借给先画好的同学,检验他画的与教具是否全等,同桌两人的三角形是否全等;最后交流讨论的结果: 三角形全等的判定条件一:若一个三角形的三条边与另一个三角形的三条边对应相等,则这两个三角形全等;简记:SSS⎪⎩⎪⎨⎧===FD CA EF BC DE AB)(SSS DEF ABC ∆≅∆∴三角形全等的判定条件二:若一个三角形的两条边及夹角与另一个三角形的两条边及夹角对应相等,则这两个三角形全等简记:SAS ⎪⎩⎪⎨⎧=∠=∠=RP CA P A POAB )(SAS PQR ABC ∆≅∆∴相应板书还有其它的方法,留给同学们课后探索、合作、交流,板书中用“”表示三、学会应用:1、指出全等的三角形,并说明全等的理由2、说出图中的两个三角形全等的理由PRQA CBD6886CAB4433ABCD图(2)p (1)D EFC BA (3)ODCBA(4)3、如图,AB=AD,你认为添上什么条件就可以判定△ABC 和△ADC 全等为什么4、如图,1写出一对全等三角形的名称,并说明理由; 2求∠BAD 的大小;5、如图,已知AD=CB,AD//CB,△ADC 和△CBA 全等吗为什么四、课堂小结: 根据板书回顾1、确定三角形的条件: 三个适合的部分2、三角形全等的判定条件: 条件 结论一对相等—— 不一定二对相等—— 不一定三对相等—— SSS SASDCAB40°13cm D9cm 13cm9cm68°CA B12DCAB。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
《探索三角形全等的条件》教案教案:探索三角形全等的条件教学目标:1.了解三角形全等的概念和条件;2.能够运用全等条件判断三角形是否全等;3.发展逻辑思维和推理能力。
教学重点:1.三角形全等的条件;2.运用全等条件进行判断。
教学准备:1.教师准备:白板、马克笔、教材《数学七年级上册》;2.学生准备:课本、笔和纸。
教学过程:Step 1:引入新知识(10分钟)1.教师用白板上画出两个全等的三角形,让学生观察并提出它们之间的特点;2.引导学生思考,询问三角形全等的条件是什么;3.学生提出自己的想法,教师鼓励并给予肯定。
Step 2:探索全等的条件(20分钟)1.将学生分为小组,每个小组由3-4人组成,并给每个小组发放纸和笔;2.学生讨论,尝试构造一些具有共同性质的全等三角形,寻找它们之间的共同特点;3.学生通过讨论和实例的方式,发现三角形全等的条件。
Step 3:归纳总结(15分钟)1.教师引导学生汇总各组的发现,呈现在白板上;2.全班讨论并筛选出最为普遍和具有代表性的三角形全等条件。
Step 4:巩固练习(25分钟)1.教师将教材中的相关练习题呈现在白板上,让学生完成;2.学生在小组中互相讨论,梳理各步推理过程和答案;3.全班共同讨论,解答并纠正错误。
Step 5:拓展延伸(15分钟)1.教师给学生提供一些延伸题目,让学生进一步巩固和拓展所学知识;2.学生可以以小组形式完成,互相检查答案并讨论解题思路;3.学生可以将拓展题目的解题思路和结果汇报给全班,展示和分享自己的思考过程。
Step 6:课堂小结与反思(5分钟)1.教师对本节课的内容进行复盘总结,强调三角形全等的条件和运用;2.教师鼓励学生对这节课的学习进行思考和反思,提出自己的感受和问题。
教学反思:通过本节课的教学,我采用了探索式教学的方式,让学生围绕三角形全等的条件进行自主探索和讨论。
这种方式既可以调动学生的学习积极性,又能够培养学生的逻辑思维和推理能力。
北师大版七下数学4.3探索三角形全等的条件(第1课时)教案一. 教材分析《北师大版七下数学4.3探索三角形全等的条件》这一课时,是在学生已经掌握了三角形的基本概念、性质以及三角形相似的基础上进行教学的。
本节课的主要内容是让学生通过观察、操作、猜想、验证等过程,探索并掌握三角形全等的条件,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
二. 学情分析七年级的学生已经具备了一定的几何图形基础,对三角形有一定的了解。
但是,对于三角形全等的概念和判定条件,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、操作、猜想、验证等方法,自主探索三角形全等的条件,从而提高学生的学习兴趣和积极性。
三. 教学目标1.知识与技能目标:让学生掌握三角形全等的条件,能运用三角形全等的条件判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
3.情感态度与价值观目标:让学生在探索过程中体验到数学的乐趣,培养学生的团队合作精神,增强学生对数学学科的学习兴趣。
四. 教学重难点1.教学重点:三角形全等的条件。
2.教学难点:如何引导学生探索并理解三角形全等的条件。
五. 教学方法1.情境教学法:通过设置具体的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:在教学过程中,教师提出问题,引导学生思考、讨论,从而达到理解三角形全等的目的。
3.合作学习法:学生进行小组合作,培养学生的团队合作精神,提高学生的学习效果。
六. 教学准备1.教师准备:教师需要提前准备好相关的教学材料,如PPT、几何图形等。
2.学生准备:学生需要预习相关的内容,了解三角形的基本概念和性质。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的三角形图片,引导学生回顾三角形的基本概念和性质。
然后,教师提出问题:“你们认为,什么样的两个三角形可以称为全等三角形?”2.呈现(10分钟)教师通过PPT展示三角形全等的定义和判定条件。
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
探索三角形全等的条件教案教案标题:探索三角形全等的条件教案目标:1. 了解三角形全等的定义和性质。
2. 探索和理解三角形全等的条件。
3. 能够应用三角形全等的条件解决相关问题。
教学准备:1. 教学投影仪或黑板。
2. 幻灯片或黑板笔。
3. 直角三角形模型或图片。
4. 一些练习题和解答。
教学步骤:引入(5分钟):1. 通过展示一些直角三角形的图片或模型,引起学生对三角形全等的兴趣。
2. 提问学生,你认为什么样的三角形可以称为全等三角形?探索(15分钟):1. 将学生分成小组,每组3-4人。
2. 给每个小组发放一些三角形模型或图片,并要求他们观察并讨论哪些条件可以使两个三角形全等。
3. 指导学生关注边长、角度和边角关系等方面。
4. 鼓励学生互相讨论和交流,引导他们提出自己的观察和假设。
总结(10分钟):1. 让每个小组分享他们的观察和假设。
2. 引导学生总结出三角形全等的条件,如SSS(边边边)、SAS(边角边)、ASA (角边角)等。
3. 通过幻灯片或黑板笔,总结并记录下这些条件,并强调它们的重要性和应用范围。
应用(20分钟):1. 给学生一些练习题,要求他们根据已知条件判断两个三角形是否全等。
2. 鼓励学生尝试使用不同的全等条件来解决问题,加深对条件的理解和应用。
3. 监督学生的解题过程,及时给予指导和反馈。
巩固(10分钟):1. 随堂测验:给学生几道简单的题目,要求他们应用所学的三角形全等条件解答。
2. 讨论和解答测验题,确认学生对所学内容的掌握情况。
3. 强调学生在解题过程中要注意合理的推理和解释。
拓展(5分钟):1. 提出一些拓展问题,如如何证明两个三角形全等、是否存在无法通过全等条件判断的情况等。
2. 鼓励学生思考并给出自己的答案或解释。
3. 结束本节课,鼓励学生在课后继续探索和应用三角形全等的条件。
评估:1. 学生在小组讨论和分享中的参与度和表现。
2. 学生在练习题和随堂测验中的答题准确性和解题思路。
课题探索三角形全等的条件课时教学目标1.知识与技能三角形全等的条件:边角边.2.过程与方法(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.(2)掌握三角形全等的“边角边”条件.(3)在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.3.情感、态度与价值观通过画图、思考、探索来激发学生学习的积极主动性,并使学生获得一些研究问题的经验和方法,发展实践能力与创新精神.教学重难点重点:三角形全等的条件:边角边.难点:三角形全等的条件的探索.教学活动设计情景目标导学在前两节课的讨论中,我们知道:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能出现的情况,想一想,是哪四种呢?这节课我们继续来探索三角形全等的条件.出示目标:助生自助自学指导小明不慎将一块三角形模具打碎成两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?自主探究1.大家想一想:如果已知一个三角形的两边及一角,那么有几种可能情况呢?那在每种情况下得到的三角形全等吗?我们逐一来研究.先看第一种情况下,两个三角形是否全等.2.做一做(1)如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5 cm,3.5 cm.它们的夹角为40°,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?大家利用直尺、三角尺和量角器来画满足以上条件的三角形,然后与同伴画的来比较一下.小组交流展示小组交流展示:由此得到结论:如果已知三角形的两边及其夹角,那么所得的三角形都全等.我们来改变上述条件中的角度和边长,大家分组讨论,是否能得到以上结论?由此我们得到了三角形全等的条件:两边和它们的夹角对应相等的两个三角形全等.简称“边角边”或“SAS”.如图,在△ABC和△DEF中,{AB=DE,∠B=∠E,BC=EF,则△ABC≌△DEF.(2)接下来我们研究第二种情况:如果“两边及一角”条件中的角是其中一边的对角.如:两条边分别为 2.5 cm,3.5 cm.长度为2.5 cm的边所对的角为40°,所画的三角形与同伴画的全等吗?按上述条件画的三角形不唯一,有两个不同的三角形满足上述条件,如图.由此可得:两边及其中一边的对角对应相等,两个三角形不一定全等.因此可知:“两边及一角”中的两种情况中只有一种是三角形全等的条件.即:两边及其夹角对应相等的两个三角形全等.教师指导1.易错点两边及其中一边的对角对应相等,两个三角形不一定全等.2.归纳小结探索了三角形全等的条件“边角边”.至此我们已有五种说明三角形全等的条件.(1)全等三角形的定义;(2)边边边;(3)角边角;(4)角角边;(5)边角边.训练评价1.分别找出各题中的全等三角形,并说明理由.2.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同伴进行交流.第1题图第2题图板书设计“SAS”1.三角形全等的条件“SAS”2.当堂训练教学反思探索三角形全等的条件郭新强宁阳二十五中。
《探索三角形全等的条件》——精品教案省市县名称黑龙江省大庆市肇源县网络班级数学53班任职学校头台中学姓名范明双作业内容《探索三角形全等的条件》教学设计教学内容:北师大版数学七年级下册第五章《三角形》第四节《探索三角形全等的条件》第一课时。
教学目标:1、经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
2、在探索三角形全等条件的过程中,体验分类讨论的数学思想,体会利用操作、归纳获得数学知识;让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力,发展学生的空间观念。
3、培养学生敢于实践、勇于发现、大胆探索、合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。
教学重点、难点:重点:三角形全等条件的探索和应用。
难点:探究全等三角形条件的过程及其准确的分类。
教法学法:教法:启发、组织、引导、演示作业内容学法:自主探究、合作交流教学准备:教具:相关多媒体课件;学具:剪刀、纸片、直尺、一副三角板、木条、钉子等。
教学过程:(一)创设情境,引入新课首先,出示一个实际问题:小明不小心打破了一块三角形玻璃,碎片如图所示(课件出示):问能不能带图中某一块到商店做一块与原来三角形玻璃一样的玻璃?【设计意图:新课初始设计生活问题引发学生思考,激发学生的学习兴趣,又把数学与生活紧密相联系,引导学生学有用的数学。
】接着,教师组织学生讨论,分析,引导学生进入主题:探索三角形全等的条件。
(板书课题)(二)引导探究,实验操作,归纳总结。
活动一:让学生通过动手操作,只给一个条件,即一条边或一个角不能判断两个三角形全等并在黑板上展示。
师通过几何画板演示。
活动二:只给两个条件,先让学生展开讨论,分析有几种情况:即边边、边角、角角,再由各小组自行探索。
同样让学生通过动手操作,师进行指导,在黑板上展示,作业内容再观察几何画板动画,最终得到只给两个条件不能判断两个三角形全等。
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
三角形全等的条件教案教案教案名称:三角形全等的条件教案目标:1.了解三角形全等的条件。
2.能够应用三角形全等的条件判断和证明两个三角形是否全等。
3.培养学生的逻辑思维和证明能力。
教学内容:1.三角形全等的条件的概念和定义。
2.判断和证明两个三角形全等的方法和步骤。
3.应用三角形全等的条件解决实际问题。
教学重点:1.三角形全等的条件的掌握。
2.判断和证明两个三角形全等的方法和步骤的理解。
教学难点:1.应用三角形全等的条件解决实际问题。
教学准备:1.教学课件。
2.练习题。
3.示例证明题。
教学过程:一、导入(5分钟)1.教师通过引入几个实例问题,复习和概括之前学过的三角形全等的条件。
二、知识讲解(25分钟)1.教师通过课件展示三角形全等的条件的定义和概念,包括:SSS、SAS、ASA、AAS四种全等条件。
2.教师通过具体的例子说明各种条件的应用和判断方法。
三、训练和实践(45分钟)1.教师通过课件演示几个判断和证明两个三角形全等的实例。
2.学生自主进行练习,进行判断和证明两个三角形全等的题目。
3.教师通过随堂讨论和解答学生的问题,帮助学生理解和掌握方法和步骤。
四、拓展和应用(20分钟)1.教师通过展示一些实际问题,要求学生应用三角形全等的条件解决问题。
2.学生进行小组合作,解决实际问题,并给出解题思路和步骤。
3.学生展示自己的解题过程和结果,并互相交流和讨论。
五、总结(5分钟)1.教师对当堂课进行总结,强调三角形全等的条件的重要性和应用。
2.学生回顾当堂课的学习内容和方法。
教学方案篇二:本课是初中数学三角形全等的条件教学中的一堂数学课,本节课的教学目标是要通过多角度的例子让学生了解SSS,SAS,ASA三种全等的基本条件,理解和学会三个条件推导完全相等的关系。
第一部分:新课导向(Step1)时间:10分通过5~10分钟的时间在课堂上引入新课目标,告诉学生他们将要学习的新知识。
(通过画格子让学生对全等产生初步的认识)Step1:利用格子图判断两三角形的全等形任务1:根据格子图计算出正方形的面积任务2:通过课上要求的思路计算出直角三角形的面积,并和同学讨论矩形和三角形的全等条件是相同的,在这一点上不恰当的思维习。
示范课探索三角形全等的条件杨志成●教学目标(一)教学知识点1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.(二)能力训练要求1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的“边边边”条件.了解三角形的稳定性.3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.(三)情感与价值观要求1.使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.2.让学生体验数学来源于生活,服务于生活的辩证思想.●教学重点三角形全等的条件.●教学难点三角形全等的条件.●教学方法讨论、引导教学法.●教具准备投影片五张第一张:复习练习(记作投影片§3.3.1 A)第二张:做一做(记作投影片§3.4.1 B)第三张:议一议(记作投影片§3.3.1 C)第四张:做一做(记作投影片§3.3.1 D)第五张:实验(记作投影片§3.3.1 E)木条或细硬纸条数根.●教学过程Ⅰ.巧设现实情景,引入新课[师]前面我们研究了全等三角形.现在我们来回忆一下:(出示投影片§3.3.1 A)如图图已知:△ABC≌△DEF.找出其中相等的边与角.[生]图中相等的边是:AB=DE、BC=EF、AC=DF.相等的角是:∠A=∠D、∠B=∠E、∠C=∠F.[师]很好.我这里有一个三角形纸片,你能画一个三角形与它全等吗?如何画?[生]能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于已知三角形纸片的每边长,每个角,这样作出的三角形一定与已知三角形纸片全等.[师]噢,这位同学他利用了两个三角形全等的定义来作图.但是,是否一定需要六个条件呢?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?我们这节课就来探索三角形全等的条件.Ⅱ.讲授新课[师]下面我们来做一做(出示投影片§3.3.1 B).1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30°,一条边为3 cm.(2)三角形的两个内角分别为30°和50°.(3)三角形的两条边分别为4 cm、6 cm.[师]只给一个条件,怎么样呢?想一想.[生]不能.[师]对,只给定一条边时(如图的实线)图由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).图由画图可知:这三个三角形也不全等.因此,只给出一个条件....所画出的三角形一定全等.....时,不能保证接下来我们探索:给出两个条件时,所画的三角形一定全等吗?大家动手画:三角形的一个内角为30°,一条边为3厘米.[生甲]我们画出的三角形几乎都不一样,如图.图这三个三角形不全等.[师]好,那如果三角形的两个内角分别是30°和50°时,所画的三角形又如何呢?[生乙]我画的三角形和他们画的形状一样,但大小不一样.如图.图这两个三角形不能重合,即不全等.[师]很好.如果给定三角形的两边分别为4 cm、6 cm,那么所画出的三角形全等吗?[生丙]也不全等.如图5-103.图[师]很好,我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那给出三个条件时,又怎样呢?大家来议一议(出示投影片§3.3.1 C).如果给出三个条件画三角形,你能说出有哪几种可能的情况?[生丁]有四种可能.即:三条边,三个角,两边一角和两角一边.[师]对,下面我们来逐一探索(出示投影片§3.3.1 D)做一做:(1)已知一个三角形的三个内角分别为40°,60°,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4 cm、5 cm和7 cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?[生甲]已知一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但与同伴画的进行比较时,有的能完全重合,有的不重合,所以它们不一定重合.如图.图[师]通过比较得知:给出三角形的三个内角,得到的三角形不一定全等. 那给出三角形的三条边又如何呢?[生乙]已知一个三角形的三条边分别是4 cm ,5 cm 和7 cm ,我能画出这个三角形.与同伴们进行比较可知:这样的所有三角形都是全等的.如图.图[生丙]我画的三角形也和别人画的全等.由此可知:已知三角形的三边,则画出的所有三角形都全等.[师]是吗?我们来验证:画一个三角形,使它的三边分别等于8 cm 、6 cm 、10 cm.画出图形后与同伴的进行比较.[生丁]我画出的三角形与其他人的全等. [师]是吗?大家来重叠一下. [生齐声]都能够重合.[师]好,由此我们知道:已知三角形的三条边画三角形,则画出的所有三角形全等(电脑演示重合过程).这样就得到了三角形全等的条件:三边对应相等的两个三角形全等. 简写为:“边边边”或“SSS ” 如图.图⎪⎩⎪⎨⎧=−→−==EF BC DF AC DE AB △ABC ≌△DEF . 注意:三边对应相等是前提条件,三角形全等是结论. 下面我们来做一个实验(出示投影片§3.3.1 E )取三根长度适当的木条,用钉子钉成一个三角形的框架,你所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?[师]做实验时,可用细纸条代替木条.实验后分组讨论.[生]用三根木条钉成的三角形框架是固定的,用四根木条钉成的框架,它的形状是可以改变的.[师]很好,看屏幕(演示图).图图(1)是用三根木条钉成的三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构,它就坚固和稳定.图(2)的形状是可以改变的,它不具有稳定性.大家想一想,如何才能使图(2)的框架不能活动?[生]在相对的顶点上钉一根木条,使它变为两个三角形框架即可.[师]对,在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.同学们能举出一些生活中应用三角形的稳定性的例子吗?[生]能.如:大桥钢架、索道支架、输电线支架等等.[师]很好,下面我们来做一练习以熟悉掌握本节内容.Ⅲ.课堂练习(一)课本习题3.6 1、21.准备几根硬纸条(1)取出三根硬纸条钉成一个三角形,你能拉动其中两边,使这个三角形的形状发生变化吗?(2)取出四根硬纸条钉成一个四边形,拉动其中两边,这个四边形的形状改变了吗?钉成一个五边形,又会怎么样?(3)上面的现象说明了什么?解:(1)三角形的形状不会发生变化.(2)四边形,五边形的形状发生了变化.(3)说明了三角形具有稳定性,而四边形、五边形不具有稳定性. 2.两个锐角对应相等的两个直角三角形全等吗?为什么? 解:不一定全等.如图.图Rt△ABC 与Rt△A ′B ′C ′不全等. (二)看课本然后小结. Ⅳ.课时小结本节课我们重点探索了三角形全等的条件,还了解了三角形的稳定性. 三角形全等的条件:三边对应相等的两个三角形全等. 如图.图−→−⎪⎭⎪⎬⎫===DF AC EF BC DE AB △ABC ≌△DEF . Ⅴ.课后作业(一)课本习题3.6 3 (二)1.预习内容 2.预习提纲三角形全等的条件是什么? Ⅵ.活动与探究图一个六边形钢架ABCDEF.由6条钢管连接而成(如图所示),为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?过程:让学生思考、探索,进一步理解三角形的稳定性在现实生活中的应用.结果:(1)可从这六个顶点中的任意一个作对角线,把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).图●板书设计§3.3.1 探索三角形全等的条件一、三角形全等的条件:三边对应相等的两个三角形全等.“SSS”二、三角形的稳定性.三、课堂练习四、课时小结五、课后作业。
探索三角形全等的条件教案教案:探索三角形全等的条件一、教学目标:1.掌握三角形全等的条件;2.熟练运用三角形全等的条件解决相关问题;3.发展学生的逻辑思维和推理能力。
二、教学重点与难点:1.重点:三角形全等的条件;2.难点:培养学生的逻辑思维和推理能力。
三、教学准备:1.板书:三角形全等的条件;2.教具:直尺、量角器。
四、教学过程:1.复习导入(5分钟)通过提问、举例等方式复习三角形的基本概念、性质以及前几节课所学的内容。
2.引入新知(5分钟)教师引导学生思考:当两个三角形完全相同时,我们可以说这两个三角形是全等的。
那么,如何判断两个三角形是否全等,有哪些条件呢?3.学习新知(20分钟)教师板书三角形全等的条件,包括以下四个条件:a.两边和夹角相等;b.两角和边相等;c.任意两边和夹角相等;d.全等性质的推论。
教师通过示例和图示,逐步解释每个条件,并帮助学生理解和记忆。
4.练习与巩固(30分钟)a.学生个人练习:在作业本上完成练习题,熟练运用三角形全等的条件。
b.学生合作练习:分成小组,相互出题,互相考核,进一步巩固所学内容。
c.教师点评:针对学生的错误或疑惑进行解答和指导。
5.拓展应用(10分钟)教师提供一些拓展应用题,引导学生运用所学知识解决实际问题。
例如:给定两个三角形的一些条件,判断它们是否全等,并说明理由。
6.归纳总结(5分钟)教师与学生一起总结归纳三角形全等的条件,并强调每个条件的应用注意事项。
7.提高拓展(5分钟)对于拓展应用中出现的难题,教师引导学生思考更深层次的推理和解决方法,培养学生的逻辑思维和推理能力。
8.课堂小结(5分钟)教师对本节课所学知识进行简要总结,并提醒学生预习下节课内容。
五、课后作业:1.完成课堂练习不会的题目;2.思考并总结三角形全等的条件以及应用。
六、教学反思:通过设计本节课的教学,希望学生能够理解和掌握三角形全等的条件,并能够熟练运用这些条件解决问题。
在教学过程中,通过不同形式的练习,既可以提高学生的动手操作能力,又能够培养学生的逻辑思维和推理能力。
公开课教案设计:七年级数学下册第四章4.3 探索三角形全等的条件(1)栾海燕永丰一中2015-4-14《探索三角形全等的条件》教学设计一、教学内容分析本节课选自北师大版《七年级数学下册》第四章第三节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想在这之前学生已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。
五、教学重点和难点重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。
难点:三角形全等条件的探索中的分类思想的渗透。
六、教学过程(一)创设情境,提出问题1.出示多媒体:大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?[学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。
[设计意图]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。
联系生活,充分调动学生的积极性(让学生动起来)。
(二)探索发现,合作交流1.一个条件按照三角形“边、角”元素进行分类,师生共同归纳得出:一个条件: 一边,一角;再按以上分类顺序动脑、动手操作验证。
2.验证过程可采取以下方式:画一画:按照下面给出的一个条件各画出一个三角形。
①三角形的一条边长是8cm;②三角形的一个角为 60°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
对只给一个条件画三角形,画出的三角形一定全等吗?同组同学互相比较,观察得出结果。
小组代表说明本小组的结论。
再结合展示幻灯片。
以便强化结论。
教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。
3.两个条件继续探索二个条件的情况,师生共同归纳得出:两个条件: 二边,一边一角,二角;[教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。
重点抓住“边”按“边”由多到少的顺序给出。
[设计意图]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。
从一个,两个到三个条件。
培养学生思维的主动性和广阔性。
很自然的突破难点。
4.画一画:按照下面给出的两个条件各画出一个三角形。
①三角形的两条边分别是:8cm,10cm;②三角形一条边为7cm,一个角为 30°;③三角形的两个角分别是:30°,50°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
[学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。
[教师活动]在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。
5.学生展示本小组的结论[设计意图]培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。
[知识链接]这一知识点既是对后续归纳总结起到实验性证明。
6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。
[设计意图]从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。
参与构建对知识的形成和体验。
7.继续探索三个条件的情况,师生共同归纳得出:三个条件: 三边,两边一角,一边两角,三角再继续探索三个条件中的三条边的情况。
8. 画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。
(对画图有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。
比一比:作出的三角形与其他同学作的比一比,是否全等。
[设计意图]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。
深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。
很自然的突出重点。
(三)、归纳结论,解决问题1.从上面的活动中,我们总结出:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”学生由理解上升到口述出原理,以便以后更好的运用到实践中去。
[学情预设]学生口述,从口头表达上升到书面表达。
对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。
2.成功的解决了上面提出的玻璃问题。
我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。
(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。
(对于两边一角,一边两角和三个角,我们将下一节课研究)[设计意图]学以致用,发现问题解决问题。
(四)、运用知识,巩固新知1.已知:在△ABC和△ DCB中,AB=DC,AC=DB,这两个三角形全等吗?为什么?解:∵在△ABC和△ DCB中AB=DC=AC=DB∴△ABC ≌△ DCB()鼓励学生上台讲演(将想法说出来)。
[设计意图]让学生用已获得的知识去解决新问题,这样做可以培养学生“学以致用”的思想。
初步体验SSS在三角形全等中的应用,让学生主动填空的方式参与其中,调动积极性也让学生感受到数学学习的逻辑严密性。
同时也是对SSS的更深刻的理解。
变式训练 2.已知:在△ABC和△ DEF中,AB=DE,AC=DF,BF=EC,这两个三角形全等吗?为什么?解:∵ BF=EC∴ BF+ =EC+∴=∵在△ABC和△ DEF中AB=DE=AC=DF∴△ABC ≌△ DEF()[学情预设]分组竞争,增强合作交流意识,让学生在合作交流中体验快乐。
[设计意图]变式训练,巩固提高,拓展,使学生知识技能螺旋式的上升,也是一种思维的训练。
及时反馈,同时也再次强调了全等条件的具备情况。
(五)、再创情境,联系实际1、由三根木条钉成的一个三角形框架,它的大小与形状是固定不变的吗?四根呢?五根呢?这现像说明了什么?[设计意图]让学生感受实例,直观,生动,便于理解。
[知识链接]只要三边的长度确定了,三角形的形状和大小就完全确定了。
三角形的稳定性正是SSS的一个很好的拓展延伸。
2、三角形的这个性质叫做三角形的稳定性。
3.接着幻灯片展示大量三角形稳定性的实例。
4.再鼓励学生自己举出实例,体验数学在生活中的应用。
[设计意图]从理论上升到实践,将知识延伸开去,应用到生活实践,才真正作到学有所用。
大量的多媒体图片让学生体会数学无处不在。
(六)反思小结,提炼规律1、通过本节课的学习,你学会什么知识?教师引导学生回顾本节课探索三角形全等的条件的过程,让他们自主归纳整理出:①三角形全等的“边边边”条件。
②三角形的稳定性。
2、通过本节课的学习,你有什么体验?3、通过本节课的学习,你掌握了什么方法?[设计意图]小结归纳不应该仅仅是知识的罗列,而应该是优化知识结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用从学习的知识,体验,方法三个方面归纳。
七、布置作业,提高升华以作业的巩固性和发展性为出发点,我设计A、B、C三组作业,分层次提高。
[设计意图]分层次作业使不同层次的学生得到了不同的发展,又为后续的学习打下了良好的基础。
巩固所学,分层要求。
体现“人人学有价值的数学,不同的人在数学上有不同的发展”。
八、板书设计九、教学小结与反思1.本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。
数学学习不仅是知识的学习,更重要的是方法的学习。
在教学中,教师摒弃了直接给出“SSS”条件的教学方法,以学生的数学探索活动为主线,采用了“引导―自主探索”的教学模式,以探索三角形全等的条件为中心,遵循学生的认识规律,注重学生在独立思考基础上的合作交流,将教师的“引”与学生的“探”融为一个和谐的整体,让学生亲身经历操作、观察、归纳、交流等确定三角形全等的条件的过程。
教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
2. 在课堂上要给予学生充分的时间去思考、动手实践,而不是使合作流于形式。
要把合作交流的空间真正的还给学生。
教师在课堂中还要照顾到每一名学生,让全体的学生都动起来。
在把他们的结论互相比较之前,应该留给学生足够的时间,使大部分的学生都能完成画图的活动,不能以一些思维活跃的学生的完成时间作为标准,剥夺了其他学生的操作时间。
教师还应对画图有困难的学生给予适当的指导。