基于MATLAB的控制系统稳定性分析报告
- 格式:doc
- 大小:182.50 KB
- 文档页数:29
MATLAB 实现控制系统稳定性分析稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法.但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨.1 系统稳定性分析的Matlab 实现1.1 直接判定法根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为()245035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序:G=tf([1,7,24,24],[1,10,35,50,24]);roots(G.den{1})运行结果: ans =-4.0000-3.0000-2.0000-1.0000由此可以判定该系统是稳定系统.1.2 用根轨迹法判断系统的稳定性根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值.已知一控制系统,H(s)=1,其开环传递函数为:()()()21++=s s s K s G (2) 绘制系统的轨迹图.程序为: G=tf(1,[1 3 2 0]);rlocus(G);[k,p]=rlocfind(G)根轨迹图如图1所示,光标选定虚轴临界点,程序结果为:图1 系统的根轨迹图selected_point =0 - 0.0124ik =0.0248p =-2.0122-0.9751-0.0127光标选定分离点,程序结果为:selected_point =-1.9905 - 0.0124ik =0.0308p =-2.0151-0.9692-0.0158上述数据显示了增益及对应的闭环极点位置.由此可得出如下结论:(1)0<k<0.4时,闭环系统具有不同的实数极点,表明系统处于过阻尼状态;(2)k=0.4时,对应为分离点,系统处于临界阻尼状态;(3)0.4<k<6时,系统主导极点为共轭复数极,系统为欠阻尼状态;(4)k=6时,系统有一对虚根,系统处于临界稳定状态;(5)k>6时,系统的一对复根的实部为正,系统处于不稳定状态.1.3 用Nyquist曲线判断系统的稳定性Matlab提供了函数Nyquist来绘制系统的Nyquist曲线,若式(2)系统分别取k= 4和k= 10(图2为阶跃响应曲线),通过Nyquist曲线判断系统的稳定性,程序如下:num1=[4];num2=[10];den1=[1,3,2,0];gs1=tf(num1,den1);gs2=tf(num2,den1);hs=1;gsys1=feedback(gs1,hs);gsys2=feedback(gs2,hs);t=[0:0.1:25];figure(1);subplot(2,2,1);step(gsys1,t)subplot(2,2,3);step(gsys2,t)subplot(2,2,2);nyquist(gs1)subplot(2,2,4);nyquist(gs2)奈氏稳定判据的内容是:若开环传递函数在s平半平面上有P个极点,则当系统角频率X 由-∞变到+∞时,如果开环频率特性的轨迹在复平面上时针围绕(-1,j0)点转P圈,则闭环系统稳定,否则,是不稳定的.图2阶跃响应曲线当k=4时,从图3中k=4可以看出,Nyquist曲不包围(-1,j0)点,同时开环系统所有极点都位于平面左半平面,因此,根据奈氏判据判定以此构成闭环系统是稳定的,这一点也可以从图2中k=4系统单位阶跃响应得到证实,从图2中k=4可以看出系统约23 s后就渐渐趋于稳定.当k=10时,从图3中k=10可以看图3 Nyquist曲线出,Nyquist曲线按逆时针包围(-1,j0)点2圈,但此时P=0,所以据奈氏判据判定以此构成的闭环系统是不稳定的,图2中k=10的系统阶跃响应曲线也证实了这一点,系统振荡不定。
实验二 系统的能控性能观测性稳定性分析及实现一、实验目的1、加深理解能观测性、能控性、稳定性、最小实现等观念;2、掌握如何使用MATLAB 进行以下分析和实现。
二、实验内容1、系统的能观测性、能控性分析;2、系统的稳定性分析;3、系统的最小实现。
〔a 已知连续系统的传递函数模型 G<s>=182710a s 23++++s s s 当a 分别取-1、0、1时,判别系统的能控性与能观测性;〔b 已知系统矩阵为:判别系统的能控性与能观测性;〔c 已知单位反馈系统的开环传递函数为:试对系统闭环判别其稳定性。
三、实验原理1、线性定常连续系统的能控性若存在一分段连续控制向量u<t>,能在有限时间区间[,]内,将系统从初始状态x<>转移到任意终端状态x<>,那么就称此状态是能控的。
若系统任意时刻的所有状态x<>都是能控的,就称此系统的状态完全能控。
定常连续系统能控性的判据:设线性定常系统的状态空间表达式为 :M线性定常系统状态完全能控的充分必要条件是能控性矩阵M的秩为n。
2、线性定常连续系统的能观性能观性所表示的是输出有反应状态矢量的能力,与控制作用没有直接关系,所以分析能观性问题时,只需要从齐次状态方程和输出方程出发,如果对于任意给定的输入,在有此案观测时间,使得根据期间的输出能唯一地确定系统在初始时刻的状态,则称状态时能观测的,若系统的每一个状态都是能观测的,测称系统时状态完全能观测的,或简称时能观的。
线性定常连续系统完全能观测的充分必要条件是能观性矩阵N的秩为n。
3、线性定常系统稳定的充分必要条件是:特征方程式的所有根均为负实根或其实部为负的复根,即特征方程的根均在复平面的左半平面。
四、实验方法及步骤<a>传递函数的标准型为:a=[-1 0 1];for i=1:3G=ss<tf<[1 a<i>],[1 10 27 18]>>;Uc=ctrb<G.A,G.B>;Vo=obsv<G.A,G.C>;disp<'When a='>;disp<a<i>>;if n==rank<Uc>disp<'System is Controlled'>if n==rank<Vo>disp<'System is Observable'> elseif n~=rank<Vo>disp<'System is Unobservable'> endelseif n~=rank<Uc>disp<'System is Uncontrolled'> if n==rank<Vo>disp<'System is Observable'> elseif n~=rank<Vo>disp<'System is Unobservable'> endendendWhen a=-1System is ControlledSystem is ObservableWhen a=System is ControlledSystem is ObservableWhen a=1System is ControlledSystem is Unobservable<b>>> A=[6.666 -10.6667 -0.3333;1 0 1;0 1 2];>> B=[0;1;1];>> C=[1 0 2];>> G=ss<A,B,C,D>;>> Uc=ctrb<G.A,G.B>;Vo=obsv<G.A,G.C>;>> if n==rank<Uc>disp<'System is Controlled'>elsedisp<'System is Uncontrolled'>end>> if n==rank<Vo>disp<'System is Observable'>elsedisp<'System is Unobservable'>endSystem is ControlledSystem is Observable〔c>> G=tf<[100 200],[1 21 20 0]>;>> GB=feedback<G,1>;>> pole<GB>ans =-12.8990-5.0000-3.1010>> rlocus<GB>五、实验结果分析实验〔a,当a=-1时,能控性判据和能观测性判据的秩均为3,故系统完全能控且完全能观测;当a=0时,能控性判据和能观测性判据的秩均为3,故系统完全能控且完全能观测;当a=1时,能控性判据的秩为3,系统完全能控,能观测性判据的秩为2,系统不完全能观测。
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
Jiang x i N onferrous M etals收稿日期:2001-11-29作者简介:任金霞(1970-),女,山西孝义人,讲师,主要从事自动控制的教学与研究。
0前言一般说来,对于自动控制系统的基本要求是:首先,系统必须是稳定的;其次是系统的暂态性能应满足生产工艺所要求的暂态性能指标;其三是系统的稳态误差要满足生产的工艺要求[1]。
其中,稳定性是控制系统的首要条件,一个不稳定的系统是无法完成预期控制任务的。
因此,如何判别一个系统是否稳定以及怎样改善其稳定性乃是系统分析与设计的一个首要问题。
在经典控制理论中,对于单输入单输出线形定常系统,应用劳斯判据和胡维茨判据等代数方法间接判定系统的稳定性,而用根轨迹法及频域中的奈奎斯特判据和波德图则是更为有效的方法,它不仅用于判定系统是否稳定,还能指明改善系统稳定性的方向。
但这些方法在绘图和计算时需要花费大量的时间和精力。
M AT LA B 是1980年推出的用于工程计算和数值分析的交互式语言。
经过多年的完善,它已成为当前最受流行的软件,集数值分析、矩阵运算、信号处理和图形显示于一体[2]。
M AT LA B 有很强的绘图功能,只要写两三句代码就能得到所需要的图形,如绘制正弦波形只要写如下两句代码:t =0:p i/100:2*p i ;y =sin (t );p lot (t ,y ),就可以得到所需要的波形。
为此,笔者利用M AT LA B 提供的丰富的控制系统分析和绘图资源,编写简明的程序,分别从时域响应、根轨迹、频域响应方面加以仿真,分析系统的稳定性。
1基于时域响应的稳定性分析假设讨论的系统模型为W K (S )=50/((S +5)(S -2)),单位负反馈。
利用M AT LA B 工具箱提供的时域响应函数,给该系统施加单位冲激,观察它的响应。
程序如下:%Exam p le1num =[50];den =[13-10];[num1,den1]=cloo p (num ,den );im p ulse (num1,den1)title (‘im p ulse res p onse’)程序中num 为开环传递函数分子系数矩阵,den为分母系数矩阵。
MATLAB 实现控制系统稳定性分析稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法.但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨.1 系统稳定性分析的Matlab 实现1.1 直接判定法根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为()245035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序:G=tf([1,7,24,24],[1,10,35,50,24]);roots(G.den{1})运行结果: ans =-4.0000-3.0000-2.0000-1.0000由此可以判定该系统是稳定系统.1.2 用根轨迹法判断系统的稳定性根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值.已知一控制系统,H(s)=1,其开环传递函数为:()()()21++=s s s K s G (2) 绘制系统的轨迹图.程序为: G=tf(1,[1 3 2 0]);rlocus(G);[k,p]=rlocfind(G)根轨迹图如图1所示,光标选定虚轴临界点,程序结果为:图1 系统的根轨迹图selected_point =0 - 0.0124ik =0.0248p =-2.0122-0.9751-0.0127光标选定分离点,程序结果为:selected_point =-1.9905 - 0.0124ik =0.0308p =-2.0151-0.9692-0.0158上述数据显示了增益及对应的闭环极点位置.由此可得出如下结论:(1)0<k<0.4时,闭环系统具有不同的实数极点,表明系统处于过阻尼状态;(2)k=0.4时,对应为分离点,系统处于临界阻尼状态;(3)0.4<k<6时,系统主导极点为共轭复数极,系统为欠阻尼状态;(4)k=6时,系统有一对虚根,系统处于临界稳定状态;(5)k>6时,系统的一对复根的实部为正,系统处于不稳定状态.1.3 用Nyquist曲线判断系统的稳定性Matlab提供了函数Nyquist来绘制系统的Nyquist曲线,若式(2)系统分别取k= 4和k= 10(图2为阶跃响应曲线),通过Nyquist曲线判断系统的稳定性,程序如下:num1=[4];num2=[10];den1=[1,3,2,0];gs1=tf(num1,den1);gs2=tf(num2,den1);hs=1;gsys1=feedback(gs1,hs);gsys2=feedback(gs2,hs);t=[0:0.1:25];figure(1);subplot(2,2,1);step(gsys1,t)subplot(2,2,3);step(gsys2,t)subplot(2,2,2);nyquist(gs1)subplot(2,2,4);nyquist(gs2)奈氏稳定判据的内容是:若开环传递函数在s平半平面上有P个极点,则当系统角频率X 由-∞变到+∞时,如果开环频率特性的轨迹在复平面上时针围绕(-1,j0)点转P圈,则闭环系统稳定,否则,是不稳定的.图2阶跃响应曲线当k=4时,从图3中k=4可以看出,Nyquist曲不包围(-1,j0)点,同时开环系统所有极点都位于平面左半平面,因此,根据奈氏判据判定以此构成闭环系统是稳定的,这一点也可以从图2中k=4系统单位阶跃响应得到证实,从图2中k=4可以看出系统约23 s后就渐渐趋于稳定.当k=10时,从图3中k=10可以看图3 Nyquist曲线出,Nyquist曲线按逆时针包围(-1,j0)点2圈,但此时P=0,所以据奈氏判据判定以此构成的闭环系统是不稳定的,图2中k=10的系统阶跃响应曲线也证实了这一点,系统振荡不定。
四川师范大学本科毕业设计基于MATLAB的控制系统稳定性分析学生姓名宋宇院系名称工学院专业名称电气工程及其自动化班级 2010 级 1 班学号**********指导教师杨楠完成时间2014年 5月 12日基于MATLAB的控制系统稳定性分析电气工程及其自动化本科生宋宇指导老师杨楠摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。
一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。
如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。
因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。
为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。
关键词:系统稳定性 MATLAB MATLAB稳定性分析ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability.Keywords: system stability MATLAB MATLAB stability analysis目录摘要 (I)ABSTRACT .......................................................... I I 目录1.绪论 (1)1.1自动控制理论发展概述 (1)1.1.1经典控制理论的发展及其基本内容 (1)1.1.2现代控制理论的发展及其基本内容 (1)1.1.3智能控制理论的发展及其主要内容 (2)1.2本文的章节安排 (2)2控制系统的理论基础 (3)2.1控制系统的基本形式 (3)2.1.1闭环控制系统 (3)2.1.2开环控制系统 (4)2.1.3小结 (4)2.2控制系统的分类 (4)2.3控制系统的稳定性 (5)3 MATLAB基础介绍 (6)3.1MALTAB概述 (6)3.2MATLAB的特点 (6)4稳定性分析的方法介绍 (7)4.1时域分析法 (7)4.1.1时域分析法的概念 (7)4.1.2控制系统的性能指标 (7)4.1.3典型的输入信号 (7)4.1.4系统时域分析函数-Step函数 (8)4.1.5控制系统的时域分析-impulse函数 (10)5根轨迹分析法 (12)5.1根轨迹分析法的概念 (12)5.1.1一般控制系统 (12)5.2绘制控制系统的根轨迹图的一般规则 (12)5.3pzmap函数 (13)5.4rlocus函数 (14)6频域法分析 (16)6.2奈氏图(Nyquist) (16)6.3波德图(Bode) (18)7总结 (22)参考文献 (23)致谢 (24)基于MATLAB的控制系统稳定性分析1.绪论这章讲述了自动控制理论与控制技术概述,主要介绍了几种自动控制理论的发展概况以及基本的内容。
基于MATLAB的控制系统稳定性分析.doc控制系统稳定性分析在控制工程中具有极其重要的地位。
对于一个控制系统,其稳定性的定义是指系统在受到扰动后能够回到平衡状态的能力。
如果一个系统失去了稳定性,那么无论这个系统最初的状态如何,它最终都会无限期地偏离其原始状态。
因此,对控制系统进行稳定性分析是十分必要的。
MATLAB是一种流行的科学计算软件,它广泛应用于许多科学和工程领域,包括控制系统分析。
使用MATLAB进行控制系统稳定性分析,主要可以通过以下步骤实现:1.建立控制系统的数学模型:首先需要建立一个描述控制系统行为的数学模型。
这个模型通常包括系统的输入、输出以及它们之间的动态关系。
对于线性时不变系统(LTI系统),常用的数学模型包括传递函数和状态空间模型。
2.判断系统的稳定性:通过使用MATLAB的控制系统工具箱,可以方便地对控制系统进行稳定性分析。
例如,可以使用roots命令来计算系统的极点,使用频域方法(例如Nyquist曲线)或时域方法(例如Lyapunov第一或第二方法)来判断系统的稳定性。
3.系统性能分析:在确认系统稳定性后,可以使用MATLAB进行更深入的性能分析。
例如,可以使用控制系统工具箱中的命令来计算系统的频率响应、根轨迹、时域响应等,以评估系统的性能。
4.控制系统设计和优化:基于稳定性分析的结果,可以使用MATLAB对控制系统进行设计和优化。
例如,可以通过调整控制器的参数或改变系统的结构来改善系统的性能。
在进行控制系统稳定性分析时,需要注意以下几点:1.正确建立系统的数学模型:数学模型是进行稳定性分析的基础,因此必须正确地建立系统的数学模型。
在实际应用中,可能需要仔细研究系统的物理本质,并进行适当的简化以得到实用的数学模型。
2.选择合适的稳定性判据:稳定性判据是判断系统稳定性的依据。
不同的判据可能会得到不同的结果,因此需要根据实际情况选择合适的判据。
3.考虑非线性因素:在实际的系统中,非线性因素往往是无法避免的。
实验一_系统响应及系统稳定性实验报告一、实验目的本实验旨在通过研究系统响应及系统稳定性的实验,掌握系统的动态特性及如何评价系统的稳定性。
二、实验仪器和器材1.计算机2.MATLAB软件3.稳态平台三、实验原理系统的响应是指系统对输入信号的反应。
在控制系统中,动态性能是系统的重要指标之一,它描述了系统响应的速度和稳定性。
首先通过给定的输入信号,将其输入到待测系统中,并记录系统的输出信号。
然后,通过分析输入信号和输出信号的关系,得到系统的动态性能参数,如过渡过程的时间、超调量等。
系统的稳定性是指系统在受到外界扰动时,能够保持稳定状态、不产生过大的波动。
一般通过稳定度来衡量系统的稳定性,而稳定度又可分为绝对稳定和相对稳定两种情况。
在稳定度分析中,通常使用稳定图的方式进行。
四、实验步骤1.运行MATLAB软件,打开控制系统实验模块。
2.设计一个给定的输入信号。
3.将输入信号输入待测系统中,记录系统的输出信号。
4.分析输入信号和输出信号的关系,得到系统的动态性能参数,如过渡过程的时间、超调量等。
5.通过稳态平台绘制系统的稳定图,评价系统的稳定性。
五、实验结果与分析通过实验我们得到了系统的动态性能参数,并绘制了系统的稳定图。
根据动态性能参数和稳定图来评价系统的动态特性和稳定性。
六、实验总结通过本次实验,我们学习了如何评价系统的动态性能和稳定性。
同时,我们也发现系统的动态特性和稳定性对于控制系统的性能起到了重要的影响。
在实际的控制系统设计中,需要充分考虑系统的动态特性和稳定性,以保证系统的性能和可靠性。
通过本次实验,我们进一步加深了对系统的理解,为日后的控制系统设计与优化提供了参考。
四川师范大学本科毕业设计基于MATLAB的控制系统稳定性分析学生姓名宋宇院系名称工学院专业名称电气工程及其自动化班级 2010 级 1 班学号**********指导教师杨楠完成时间2014年 5月 12日基于MATLAB的控制系统稳定性分析电气工程及其自动化本科生宋宇指导老师杨楠摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。
一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。
如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。
因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。
为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。
关键词:系统稳定性 MATLAB MATLAB稳定性分析ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability.Keywords: system stability MATLAB MATLAB stability analysis目录摘要 (I)ABSTRACT .......................................................... I I 目录1.绪论 (1)1.1自动控制理论发展概述 (1)1.1.1经典控制理论的发展及其基本内容 (1)1.1.2现代控制理论的发展及其基本内容 (1)1.1.3智能控制理论的发展及其主要内容 (2)1.2本文的章节安排 (2)2控制系统的理论基础 (3)2.1控制系统的基本形式 (3)2.1.1闭环控制系统 (3)2.1.2开环控制系统 (4)2.1.3小结 (4)2.2控制系统的分类 (4)2.3控制系统的稳定性 (5)3 MATLAB基础介绍 (6)3.1MALTAB概述 (6)3.2MATLAB的特点 (6)4稳定性分析的方法介绍 (7)4.1时域分析法 (7)4.1.1时域分析法的概念 (7)4.1.2控制系统的性能指标 (7)4.1.3典型的输入信号 (7)4.1.4系统时域分析函数-Step函数 (8)4.1.5控制系统的时域分析-impulse函数 (10)5根轨迹分析法 (12)5.1根轨迹分析法的概念 (12)5.1.1一般控制系统 (12)5.2绘制控制系统的根轨迹图的一般规则 (12)5.3pzmap函数 (13)5.4rlocus函数 (14)6频域法分析 (16)6.2奈氏图(Nyquist) (16)6.3波德图(Bode) (18)7总结 (22)参考文献 (23)致谢 (24)基于MATLAB的控制系统稳定性分析1.绪论这章讲述了自动控制理论与控制技术概述,主要介绍了几种自动控制理论的发展概况以及基本的内容。
最后介绍了本文的主要工作1.1自动控制理论发展概述自动控制是指在一些工业过程可以是一个很好的人来代替生产设备的自动控制,能够达到理想的状态或性能指标。
在发展历程中,自动控制理论从创立到现在已经经历了三代的发展。
第一代为20世纪初开始形成并于20世纪50年代趋于经典反馈控制理论;第二代为20世纪50年代在线性代数的数学基础上发展起来的现代控制理论;第三代为20世纪60年代中期,在科技的高速发展过程中形成了智能控制系统。
下面我将逐步对三个时代的发展进行简要的介绍。
1.1.1经典控制理论的发展及其基本内容在产业革命时期,英国人Jamera Watt发明蒸汽机离心式调速器,很好的解决了蒸汽机在超强负载的变化下保持基本恒速的问题。
因此,自动控制才引起了人们的重视。
在20世纪30年代Nyquist于1932年提出了稳定性的频域判据,Bode于1940年在“频域法”中引入对数坐标系并写了《网络分析和反馈放大器》一书。
直到20世纪50年代,经典控制理论已趋于成熟。
经典控制理论主要研究线性定常系统。
虽然经典控制理论仅仅适用于单输入,单输出的系统,但是至今仍然在各种工业控制领域。
从面前发展情况来看,经典控制理论也有一定的局限性:一方面在传递函数和频率特性的基础上,不能很好的反映系统在内部中的地位:另一方面对于多输入,多输出的系统时,经典控制理论无能为力。
1.1.2现代控制理论的发展及其基本内容现代控制理论是为了客服经典控制理论的局限性逐步发展起来的。
为了很好的解决经典控制理论的一些问题,现代控制理论引入了“状态”的概念,用“状态变量”及“状态方程”描述系统。
采用状态方程后,能够用向量、矩阵等形式来表示系统的运动方程,因此这种方法运算比较简单、对概念的理解也能够很好的分析透彻。
1.1.3智能控制理论的发展及其主要内容“智能控制”这一概念是由美国普金大学(Purdue University)电气工程系的美籍华人傅京孙教授于20世纪70年代初提出的。
智能控制是指驱动智能机器自主地实现其目标的过程。
随着社会的发展迅速,现在已经出现了各种不同的复合控制理论,如模糊PID复合控制、专家模糊控制等等。
1.2本文的章节安排本文主要对以下几个方面进行研究和分析:第一章绪论部分首先论述了本课题基础的自动控制理论的一些背景及发展状况,主要介绍了经典控制理论、现代控制理论以及智能控制理论。
第二章从本文的整体方向出发,认真分析了控制系统的理论基础、基本形式以及特点。
第三章论述了本设计使用的MATLAB的一些发展状况,以及在自动控制系统中一些简单的应用。
第四章详细论述了时域分析法,主要运用了step函数以及impulse函数对控制系统方程利用MATLAB绘制图像曲线,并对图像曲线进行分析。
第五章详述了利用根轨迹法对控制系统的稳定进行分析,主要pzmap函数rlocus函数对控制系统方程利用MATLAB绘制图像曲线,并对此进行简要的分析。
第六章论述了运用频率法分析系统控制的稳定性,在开环系统控制中运用奈氏图(Nyquist)、波德图(Bode)分析系统的性能。
第七章对本文进行了总结。
2控制系统的理论基础控制系统一般有输入系统、输出系统、以及调节系统。
适用于电子、化工、机械等等许多社会生活领域中。
可见,自动控制已经成为现代社会生活中不可缺少的重要组成部分。
2.1控制系统的基本形式控制系统有两种最基本的形式,即开环控制和闭环控制。
其中闭环控制系统是工业生产用得最为广泛的系统。
2.1.1闭环控制系统闭环控制的特点是控制器与被控对象之间,有一个积极的影响不仅存在,但相反的效果,使系统具有对控制量的输出直接影响。
其简要的结构示意图可以用图1表示:输入量图1 闭环控制系统示意图由图2.1可以看出,闭环控制系统的自动控制或者自动调节作用是基于输出信号的负反馈作用而产生的,所以经典控制理论的主要研究对象是负反馈的闭环控制系统,研究目的是得到它的一般规律,因此可以设计出符合要求,各种性能达标的控制系统。
2.1.2开环控制系统开环控制系统的一个特点是,由于没有反馈而使系统稳定性不如闭环系统。
图1表示了其简要的结构示意图:图2 开环控制系统示意图在开环控制系统的结构示意图中可以看出,只有输入量对输出量产生控制作用;从控制结构上来看,只有从输入端到输出端、从左到右的信号传递通道(改通道称为正向通道)。
2.1.3小结从上述两种控制系统的结构示意图可以很明显的知道:①.在工作原理方面:开环控制系统不能检测误差,也不能校正误差。
因此开环控制系统一般只适用于一些精度要求不高的一些场合。
闭环控制系统则可以自动反馈干扰所带来的误差。
②.结构组成:虽然开环控制系统的应用有限,但是它是组成闭环控制系统所不可缺少的部分。
③.稳定性:开环控制系统的结构简单,稳定性比较容易解决。
而闭环控制系统引入的反馈回路增加了系统的复杂性。
2.2控制系统的分类①.按控制系统是否形成闭合回路分类:开环控制系统和闭环控制系统。
②.按信号的结构特点分类:反馈控制系统和反馈控制系统以及前馈-反馈复合控制系统。
③.按给定值信号的特点分类:恒值控制系统、随动控制系统和程序控制系统。
④.按控制系统元件的特性分类:线性控制系统和非线性控制系统。
⑤.按控制系统信号的形式分类:连续控制系统和离散控制控制。
2.3控制系统的稳定性稳定性是控制系统最重要的特性之一。
它表示了控制系统承受各种扰动,保持其预定工作的能力。
不稳定的系统就是无用的系统,只有系统稳定才能获得实际应用。
因此,结合系统数学各方面的知识,总结了以下几种方法来对系统稳定性的分析。
① .罗斯-霍尔维兹准则② .梅森公式③ .劳斯判据④ .波德图上的稳定性判据⑤ .根据系统阶跃响应判断稳定性等等。
本设计将在时域中、频域中以及根轨迹下利用MATAB软件来分析与判定系统的稳定性。
3 MATLAB基础介绍MATLAB软件广泛的应用于系统建模与仿真、自动控制、图形图像处理等工程领域。
因此,本章将简要的介绍一些有关MATLAB的发展背景以及特点。
3.1MALTAB概述MATLAB是由MathWorks公司开发的一套功能强大的数学软件,也是当今科技界应用最广泛的计算机语言之一。
它集数值计算、符号运算、计算机可视为一体,是其他许多语言不能比拟的。
MATLAB 发展至今,现已集成了许多工具箱,如控制系统工具箱、信号处理工具箱、模糊推理系统工具箱、Simulink 工具箱等。