植树问题两端都栽和两端都不栽
- 格式:pptx
- 大小:1.66 MB
- 文档页数:23
三年级应用题植树问题一、两端都种树的情况(8题)1. 在一条长20米的小路一边植树,每隔5米栽一棵(两端都要栽),一共要栽多少棵树?- 解析:首先计算间隔数,间隔数 = 总长度÷间隔长度,即20÷5 = 4个间隔。
因为两端都要栽树,所以树的棵数比间隔数多1,即4 + 1=5棵树。
2. 同学们在全长100米的小路一边植树,每隔10米栽一棵(两端都要栽)。
一共需要多少棵树苗?- 解析:间隔数为100÷10 = 10个。
两端都栽树,树的棵数 = 间隔数+1,所以共需要10 + 1 = 11棵树苗。
3. 一条路长180米,在路的一侧从头到尾每隔6米栽一棵树,一共要栽多少棵树?- 解析:间隔数是180÷6=30个。
由于两端都栽,树的棵数为30 + 1 = 31棵。
4. 园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。
从第1棵到最后一棵的距离有多远?- 解析:因为两端都种树,间隔数 = 棵数 - 1,即36 - 1 = 35个间隔。
每个间隔6米,所以距离为35×6 = 210米。
5. 在一条长300米的公路两边种树,每隔5米种一棵(两端都种),一共种多少棵树?- 解析:先计算一边的情况,间隔数为300÷5 = 60个,两端都种时树的棵数为60+1 = 61棵。
两边种树,则一共种61×2 = 122棵树。
6. 学校要在长120米的直跑道的一侧插彩旗,每隔6米插一面(两端都插),一共需要多少面彩旗?- 解析:间隔数为120÷6 = 20个,两端都插彩旗,彩旗数 = 间隔数 + 1,所以需要20+1 = 21面彩旗。
7. 有一条长400米的公路,在公路的一侧从头到尾每隔8米栽一棵杨树,一共需要多少棵杨树苗?- 解析:间隔数为400÷8 = 50个,两端都栽树,所以需要50 + 1 = 51棵杨树苗。
8. 要在一条长50米的街道两旁安装路灯,每隔10米安装一盏(两端都要安装),一共需要安装多少盏路灯?- 解析:先算一边,间隔数为50÷10 = 5个,两端都安装时路灯数为5+1 = 6盏。
五年级上册数学植树问题公式一、植树问题公式1. 两端都栽:棵数 = 间隔数 + 1 ,间隔数 = 棵数 1 ,距离= 间隔数×间距2. 两端不栽:棵数 = 间隔数 1 ,间隔数 = 棵数 + 1 ,距离= 间隔数×间距3. 一端栽一端不栽:棵数 = 间隔数,距离 = 间隔数×间距二、30 题解析1. 在一条长 200 米的小路一旁植树,每隔 5 米栽一棵,两端都栽,一共要栽多少棵树?间隔数:200÷5 = 40(个)棵数:40 + 1 = 41(棵)2. 一条公路长 300 米,在路的一侧从头到尾每隔 6 米栽一棵柳树,一共要栽多少棵柳树?间隔数:300÷6 = 50(个)棵数:50 + 1 = 51(棵)3. 在一条 480 米长的公路两侧每隔 8 米栽一棵树(两端都栽),一共要栽多少棵树?一侧间隔数:480÷8 = 60(个)一侧棵数:60 + 1 = 61(棵)两侧棵数:61×2 = 122(棵)4. 从一楼到二楼有 20 个台阶,小明从一楼走到三楼,一共要走多少个台阶?从一楼到三楼有:3 1 = 2(层)一共台阶数:20×2 = 40(个)5. 一条走廊长 36 米,每隔 4 米放一盆花,两端都不放,一共要放多少盆花?间隔数:36÷4 = 9(个)盆数:9 1 = 8(盆)6. 一根木头长 10 米,要把它平均分成 5 段。
每锯下一段需要8 分钟,锯完一共要花多少分钟?锯的次数:5 1 = 4(次)总时间:4×8 = 32(分钟)7. 在周长为 400 米的圆形池塘边每隔 10 米栽一棵柳树,一共能栽多少棵柳树?间隔数 = 棵数= 400÷10 = 40(棵)8. 一条长 80 米的道路两旁,每隔 5 米种一棵树(两端都种),一共种多少棵树?一侧间隔数:80÷5 = 16(个)一侧棵数:16 + 1 = 17(棵)两侧棵数:17×2 = 34(棵)9. 时钟 4 点钟敲 4 下,6 秒钟敲完,那么 12 点钟敲 12 下,多少秒钟敲完?敲 4 下,间隔数:4 1 = 3(个)每个间隔时间:6÷3 = 2(秒)敲 12 下,间隔数:12 1 = 11(个)总时间:11×2 = 22(秒)10. 小明从 1 楼走到 5 楼用了 80 秒,照这样计算,他从 1 楼走到 9 楼需要多少秒?从 1 楼到 5 楼走的层数:5 1 = 4(层)走一层用时:80÷4 = 20(秒)从 1 楼到 9 楼走的层数:9 1 = 8(层)总时间:20×8 = 160(秒)11. 一条公路的一旁连两端在内共植树 91 棵,每两棵之间的距离是 5 米,这条公路长多少米?间隔数:91 1 = 90(个)公路长:90×5 = 450(米)12. 在一条长 50 米的跑道两旁,从头到尾每隔 5 米插一面彩旗,一共插多少面彩旗?一侧间隔数:50÷5 = 10(个)一侧彩旗数:10 + 1 = 11(面)两侧彩旗数:11×2 = 22(面)13. 有一个圆形花坛,周长是 30 米,每隔 3 米摆一盆菊花,一共需要多少盆菊花?间隔数 = 盆数= 30÷3 = 10(盆)14. 一条林荫道长 18 米,在路的一旁从一端到另一端每隔 2 米放一盆花,一共安放多少盆花?间隔数:18÷2 = 9(个)盆数:9 + 1 = 10(盆)15. 两栋楼之间相距 30 米,每隔 2 米种一棵树,一共能种多少棵树?棵数:15 1 = 14(棵)16. 一根木料锯成 4 段要 12 分钟,如果每锯一段所用的时间相同,那么锯成 8 段要多少分钟?锯成 4 段锯的次数:4 1 = 3(次)锯一次用时:12÷3 = 4(分钟)锯成 8 段锯的次数:8 1 = 7(次)总时间:7×4 = 28(分钟)17. 在一条 100 米长的小路一边植树,每隔 4 米栽一棵(两端都栽),一共要栽多少棵树?间隔数:100÷4 = 25(个)棵数:25 + 1 = 26(棵)18. 一条路长 25 米,少先队员在路的两旁栽树,起点和终点都栽,一共栽了 12 棵树,每两棵树之间相隔多少米?一侧棵数:12÷2 = 6(棵)间隔数:6 1 = 5(个)间距:25÷5 = 5(米)19. 学校门口摆一排菊花,一共 9 盆。
第7讲数学广角-植树问题知识点一:两端都栽的植树问题1.植树问题基本解决思路:间隔数=总长÷间隔距离。
2.两端都栽:棵数=间隔数+1。
知识点二:两端都不栽的植树问题两端不栽:棵数=间隔数-1。
知识点三:封闭图形的植树问题在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于线段上一端栽一端不栽的情况。
一端栽一端不栽:棵数=间隔数。
考点一:植树问题【例1】一根绳子长18米,每3米剪成一段,需要剪几次?(1)求这根绳子一共可以剪几段。
(2)画图表示这根绳子被剪成的段数。
从图中可知,需要剪次。
1.在一个正方形的花坛的四周摆放16盆花,怎样摆放可以使每边摆放的花盆数都是5盆?(4分)(1)请画出示意图。
(用O表示花盆)(2)已知花坛的边长是2.4米,平均每盆花之间的距离是多少米?2.史冬鹏是我国著名的男子110米栏运动员,多次代表中国参加奥运会等重要体育赛事。
下面是男子110米栏赛道的示意图。
问:每两栏之间的距离是多少米?3.公路旁每隔2.5米栽一棵树,丽丽从第1棵树跑到第40棵树,妈妈说丽丽跑了100米,丽丽说没有100米。
你认为谁说的对?请说明你的理由。
一.选择题(共5小题)1.小区花园是一个长50米,宽40米的长方形,现在要在花园的四周栽树,四个角都要栽,每相邻两棵间隔5米。
一共要栽()棵树。
A.18B.36C.37D.402.同学们围着圆桌吃午饭。
每张圆桌的周长是3米,如果每隔50厘米坐一人,一张圆桌一共可以坐()人。
A.7B.5C.63.在一条环形跑道上,等距离插着8面红旗,这条跑道被平均分成()段。
A.8B.7C.94.锯一根木头,锯一次需要n分钟,把这根木头锯成7段,需要用()分钟。
A.7n B.6n C.8n5.在300米长的道路一边种树(两端都种),每20米一棵,一共要种()棵。
A.15B.16C.17二.填空题(共5小题)6.把6米长的木料锯成每2米一段的短木料,每锯一段需要15分钟,这根木料全部锯完需要分钟。
1.在一条长280m的公路一侧栽杨树(两端都不栽),每隔5m栽一棵。
一共需要栽多少棵杨树?
2.一根木头,每锯下一段需要8分钟。
现锯完这根木头共用了40分钟,把这根木头平均锯成了几段?如果每段长6m,这根木头共有多少米长?
3.植树节到了,同学们在一条长240m的小路的一侧栽树,每隔8m栽一棵树。
(1)如果两端都各栽一棵,共需多少棵树?
(2)如果只有一端栽树,需要多少棵树?
(3)如果两端都不栽树,需要多少棵树?
参考答案
1.280÷5-1=55(棵)
答:一共需要栽55棵杨树。
2.40÷8+1=6(段) 6×6=36(m)
答:把这段木头平均锯成了6段。
如果每段长6m,这根木头共有36m。
3.(1)240÷8+1=31(棵)
答:如果两端都各栽一棵,共需31棵树。
(2)240÷8=30(棵)
答:如果只有一端栽树,需要30棵树。
(3)240÷8-1=29(棵)
答:如果两端都不栽,需要29棵树。
植树问题两端都栽教学反思1、植树问题两端都栽教学反思存在问题:一、练习设计缺乏趣味性题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位要善于鼓励。
轻松愉悦的'课堂离不开学生的积极投入,更离不开老师由衷的鼓励。
课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!三、对学生估计过高这节课还有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。
其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
2、植树问题教学反思20xxxx年4月15日,我参加了丰都县三坝乡录像课决赛课活动。
我参赛的内容是《植树问题》。
《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。
数学广角作为人教版新增的内容之一,其目的是向学生渗透一些重要的数学思想方法。
教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
我发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法。
从教学目标的设定,教学设计和知识结构分析来看,通过实践,基本上我感觉还算是比较成功的一堂课,有很多收获,感悟如下:这个知识点的原型是一条直线路上用不同的间隔来栽树,得到不同的棵树,通过数字间的归纳,得出规律性结论并应用。
教材将植树问题分为几个层次:两端都种,两端不种,只种一端。
在教学中,侧重于向学生渗透化归的数学思想。
栽树问题的公式
植树公式:(两端都植): 距离一间隔长+1=棵数,(只植一端): 距离一间隔长=棵数。
(两端都不植)距离一间隔长- 1=棵数。
植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。
非封闭线路上的植树问题主要可分为以下,两种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长一株距+1。
全长=株距x (株数- 1) 。
株距=全长(株数- 1)。
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距x株数
株距=全长=株数。
《植树》教学反思《植树》教学反思1“植树问题”是人教版四年级下册第八单元的内容,本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生发现一些规律,抽取出其中的数学模型,然后在用发现的规律来解决生活中的简单实际问题。
本单元的植树问题分为三种类型:两端都栽、两端不栽、在一条首尾相接的封闭曲线上植树。
我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单情境入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
反思整个教学过程,我认为我执教的这节课整体是成功的。
第一、预习安排得比较巧妙。
从学生熟悉的手指切入,理解什么叫间隔,手指数与间隔数的关系,转化为树与间隔数的关系,得出:棵树=间隔数+1。
第二、教学环节设计由浅入深。
在学习完例题后的检测中我先设计了一个和例题基本一样的题型(课本下面的做一做)让学生练习,这道题告诉我们的信息是“2的街道两旁路灯,每个50安一盏”问题是“一共安装多少盏”它一方面检测学生对刚学习的`知识是否掌握,另一方面检测学生是否认真审题。
另外设计了一个求棵树的变式练习,在最后的拓展环节中又设计了一个求间隔数的练习题,整个环节给人一种稳步高升的感觉。
充分体现了数学的由浅入深、由易到难的思想。
再次,学生学习的积极性较高。
本节课学生预习较充分,对新知有了一定的认识,学习起来相对容易些,比如再找棵数与间隔数之间的关系时,一方面有了预习题的基础,再加上充分的预习,学生很快就得出了他们之间的关系,所以很快解决了检测的题,留下的遗憾就是学生审题不认真,只注意到了单位的不统一,没有注意“两旁”一次,方法对了,缺少了一半。
后来的练习在提醒学生认真审题后,学生的积极性更高,争先恐后要求上台展示。
这节课虽不错,但问题也存在着。
一、学生在展示时语言表达不够完整。
在说思路时总说半截话,需要教师的提醒在说完整,导致说的解题思路不够清晰,因此在今后学生手思路时要求学生按顺序;第一步、第二步、第三步......,一步一步来说。
第7讲数学广角——植树问题(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:植树问题(1)两端都栽树的问题在一条线段上植树(两端都栽树)的问题:总距离÷株距=间隔数,植树棵树=间隔数+1(2)两端都不栽树的问题在一条线段上植树(两端都不栽树)的问题:总距离÷株距=间隔数,植树棵树=间隔数-1(3)在一条首尾相接的封闭曲线上植树的问题在一条首尾相接的封闭曲线上植树的问题:棵数=间隔数=总距离÷株距三、例题精讲考点一:数学广角——植树问题【典型一】将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。
A.7 B.10 C.12 D.14【分析】将一根木棒锯成4段需锯的次数是(4-1)次,需要6分钟,锯一次用的时间就是6÷(4-1)分钟,将这根木棒锯成7段需要锯的次数是(7-1)次,然后依据乘法的意义进行解答。
【详解】锯一次用的时间是:6÷(4-1)=6÷3=2(分钟)据7段需用的时间是:(7-1)×2=6×2=12(分钟)故答案为:C【点睛】本题属于植树问题,锯的次数=段数-1是本题的关键。
【典型二】学校要在周长为60米的圆形花坛一周每隔5米摆放一盆栀子花,可以摆放( )盆,每2盆栀子花之间摆放2盆长寿花,需要( )盆。
【分析】依据题意,可以把圆形花坛可知看作封闭图形,所以摆栀子花的盆数等于间隔数;用花坛的周长除以间隔的米数,即可求出一共需要摆多少盆栀子花。
每2盆栀子花之间摆放2盆长寿花,由于摆长寿花的间隔数与摆栀子花的间隔数相等,用间隔数乘2即可求出需要多少盆长寿花。
【详解】60÷5=12(盆)12×2=24(盆)【点睛】在一个封闭图形里面植树,封闭图形的周长除以间隔距离就是植树棵数。
【典型三】画图,用“〇”表示。
(1)在下面正三角形的每条边上摆4盆花,怎样摆需要的花最少?(2)12名同学在操场上做玩耍。
类型四植树问题【知识讲解】一、植树问题概念:按相等距离植树,在总距离、间隔数、株距之间,已知其中两个,要求第三个量,这类应用题叫做植树问题。
二、植树问题的类型:(一)不封闭路线上的植树问题1.两端都栽:总距离=株距×间隔数间隔数=棵数-1 (棵数=间隔数+1)2.一端栽另一端不栽:总距离=株距×间隔数间隔数=棵数3.两端都不栽:总距离=株距×间隔数间隔数=棵数+1注意:分清是一边植树问题?还是两边都植树问题?(例如:林荫道...)(二)封闭路线上的植树问题总距离=株距×间隔数间隔数=棵数注意:封闭图形的植树:(包含)圆、三角形、正方形、长方形、正多边形、闭合曲线等上面植树。
方形植树:棵数=距离÷棵数-4三角形植树:棵数=距离÷棵数-3三、解题思路和方法:先弄清植树问题的类型,然后利用公式解决。
【例题讲解】【例题1】先选择所属类型,再列式解答。
(1)小学生广播操队列中,其中一列纵队26米,相邻两个学生之间的距离是2米。
这列纵队一共有几个学生?属于()①两端种②一端种③两端不种(2)为迎接六一儿童节,学校准备在教学楼前60米的道路两旁摆放鲜花(靠墙一端不放),相邻两盆花之间的距离3米。
一共需要几盆花?属于()①两端种②一端种③两端不种(3)一根木头,要把它平均分成5段。
每锯下一段需要8分钟,锯完一共要花多少分钟?属于()①两端种②一端种③两端不种【解析】(1)小学生广播操队列的长度是第一个人到最后一个人的距离,所以是两端种的类型。
根据“棵数=总距离÷株距”可求这列纵队一共学生的人数。
(2)教学楼前摆放鲜花,靠墙一端不放,属于一端种的类型。
60米的道路两旁摆放鲜花,相邻两盆花之间的距离3米,所以一共需要60÷3×2=40盆花。
(3)一根木头平均分成5段需要锯4次,每锯下一段需要8分钟,锯完一共要花4×8=32分钟。
1.线段上的植树问题分以下三种情形讨论:(1)如果植树线路的两端都要植树,那么,植树的棵数 = 线路和全长÷株距+1线路的全长 = 株距×(植树的棵数-1)株距 = 线路的全长÷(植树的棵数-1)(2)如果植树线路的一端要植树,另一端不要植树,那么,植树的棵数 = 线路和全长÷株距线路的全长 = 株距×植树的棵数株距 = 线路的全长÷植树的棵数(3)如果植树线路的两端都不要植树。
植树的棵数 = 线路和全长÷株距-1线路的全长 = 株距×(植树的棵数+1)株距 = 线路的全长÷(植树的棵数+1)2.环形线路上的植树问题,线路的全长、植树的棵树、株距之间的数量关系是:植树的棵数 = 线路和全长÷株距线路的全长 = 株距×植树的棵数株距 = 线路的全长÷植树的棵数例1.在一条路的一边种树,从头到尾一共种了45棵,相邻两棵树之间相距5米,这条路长多少米?例2.在一条长42米的街道两边,每隔6米插一面彩旗(两端不插),一共需要插多少面彩旗?例3.在一个湖泊周围筑成周长是3060米的大堤,堤上每隔6米栽柳树1棵,然后在相邻的两棵柳树之间栽桃树2棵,大堤上栽柳树和桃树各多少棵?例4.把一根木头锯成4段需要6分,如果要锯成13段,需要多少分?例5.小平和小亮同住在一幢大楼里,小平住五楼,小亮住四楼,小平每天回家要走80级台阶,小亮回家要走多少级台阶?自主检测1.一条路长100米,在这条路的一旁从头到尾每隔5米插1面彩旗,一共要插多少面彩旗?2.在一条长75米的长廊一边摆花盆,起点和终点都摆,一共摆了26盆。
相邻两盆花之间的距离相等,相邻两盆花之间相距多远?3.在一条马路的两侧种树,每隔10米种一棵(两端都不种),这条马路全长240米,一共需种多少棵树?4.在一条道路的两旁栽树,一共栽了32棵,每隔8米栽一棵(两端各栽一棵),这条路长多少米?5.在一个鱼塘周围筑成周长是1200米的土堤,堤上每隔8米栽一棵杨树,然后要相邻两棵杨树中间栽一棵松树。
苏版五上数学《植树问题之一端栽、两端都不栽》教案学习目标:1.学生会探究发觉一条线段上两端植树和一端植两种情形植树问题的规律。
2.使学生经历和体验复杂问题简单化的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,激发数学爱好,体会数学价值。
学习过程:一、知识铺垫马路一边栽了25棵梧桐树。
假如每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?1. 你都明白了些什么?2. 一共要栽多少棵树?你是如何样想的。
二、自主探究大象馆和猴山相距60m。
绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。
一共要栽多少棵树?1. 你都明白了。
2. 你认为一共要栽多少棵树?你会运算吗?试一试吧!总结植树问题教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
总长()=()观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观看过程中指导。
我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。
有的小孩说“乌云跑得飞速。
”我加以确信说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。