平行线的性质和尺规作图提升
- 格式:doc
- 大小:458.89 KB
- 文档页数:30
平行线的性质归纳总结平行线是几何学中一个重要的概念,它们具有一系列独特的性质和规律。
在本文中,我们将对平行线的性质进行归纳总结。
一、平行线的定义和符号表示平行线是指在同一个平面内永不相交的两条直线。
我们可以用符号"||" 表示平行线。
二、平行线的性质1. 垂直的平行线若一条直线与另外两条不同的直线相交,且与其中一条直线垂直,那么另外两条直线是平行的。
例如:若直线l与直线m相交,直线l与直线n垂直,那么直线m与直线n是平行的。
2. 平行线的性质1:同向性若两条平行线与同一直线相交,折角之间的关系保持不变。
例如:若直线l与直线m平行,直线m与直线n相交,则角A与角B是对应角,角A与角C是内错角。
3. 平行线的性质2:内角性质当两条平行线被一条截线所切分时,内错角互补,即它们的和等于180度。
180度。
4. 平行线的性质3:外角性质当两条平行线被一条截线所切分时,外错角相等。
例如:若直线l与直线m平行,直线n为截线,则角A = 角C。
5. 平行线的性质4:同位角当两条平行线被一条截线所切分时,同位角相等。
例如:若直线l与直线m平行,直线n为截线,则角A = 角D。
6. 平行线的性质5:内错角当两条平行线被一条截线所切分时,内错角相等。
例如:若直线l与直线m平行,直线n为截线,则角B = 角C。
7. 平行线的性质6:同旁内角当两条平行线被一条截线所切分时,同旁内角互补,即它们的和等于180度。
例如:若直线l与直线m平行,直线n为截线,则角B + 角D = 180度。
8. 平行线的性质7:同旁外角当两条平行线被一条截线所切分时,同旁外角相等。
9. 平行线的性质8:错综对应角若两条平行线被多条截线所切分,那么对应角相等。
例如:若直线l与直线m平行,直线n和直线p均为截线,则角A = 角E,角B = 角F,角C = 角G。
10. 平行线的性质9:平行线之间的距离两条平行线之间的距离是恒定的,且等于它们之间任意一点到两条平行线的距离。
初中数学如何画一条平行于给定线段的线段在初中数学中,画一条平行于给定线段的线段是一个基本的几何问题。
下面我将详细介绍几种常见的方法来画一条平行于给定线段的线段。
方法一:使用尺规作图尺规作图是一种传统的几何作图方法,可以用来画一条平行于给定线段的线段。
假设我们要画一条平行于线段AB的线段。
首先,在线段AB的一侧选择一个点C,并在该点处画一条任意线段。
然后,使用尺规,设置一个固定的距离,将该距离在线段AB上量取为DE。
接下来,在点D处画一条与线段AB平行的线段FG。
最后,通过点C和点F,画一条线段CF,这条线段就是所求的平行于线段AB的线段。
方法二:使用平行线的性质根据平行线的性质,平行于给定线段的线段与给定线段上的任意一点到另一条线段的距离相等。
假设我们要画一条平行于线段AB的线段。
首先,在线段AB上选择一个点C,并在该点处画一条任意线段。
然后,选择一个任意点D,将该点与线段AB连接,得到线段CD。
接下来,通过点D,画一条与线段AB平行的线段EF。
然后,通过点C和点E,画一条线段CE。
最后,通过点D和点F,画一条线段DF。
线段DF 就是所求的平行于线段AB的线段。
方法三:使用传统几何工具如果你使用传统的几何工具(如直尺和圆规),你可以按照以下步骤画出一条平行于给定线段的线段:1. 在给定的线段上选择一个点A。
2. 使用圆规设置一个合适的半径,固定在点A上,并画一个圆弧。
3. 然后,移动圆规到圆弧的另一侧,再次画一个圆弧,使其与第一个圆弧相交于点B。
4. 使用直尺连接点A和点B,得到线段AB。
5. 将线段AB按比例延长或缩短,得到一条平行于给定线段的线段。
以上是几种常见的方法来画一条平行于给定线段的线段。
在实际问题中,可以根据具体的情况选择适合的方法。
这些方法在初中数学中是非常重要的几何概念,帮助我们理解和应用平行线的性质。
第二章 平行线与相交线余角余角补角补角角两线相交 对顶角同位角内错角尺规作图一、平行线与相交线1、平行线:在同一平面内,不相交的两条直线叫做平行线。
2、若两条直线只有一个公共点,我们称这两条直线为相交线。
二、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
即:(1)00001290(180),1390(180),∠+∠=∠+∠=则23∠=∠(同角的余角(或补角)相等)。
(2)00001290(180),3490(180),∠+∠=∠+∠=且14,∠=∠则23∠=∠(等角的余角(或补角)相等)。
三、对顶角1、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、对顶角的性质:对顶角相等。
4、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
四、垂线及其性质1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线(被截线)的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
3、内错角:两个角都在两条直线(被截线)之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
4、同旁内角:两个角都在两条直线(被截线)之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。
平行线的性质及尺规作图【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念.3.了解尺规作图的基本知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.举一反三:【变式】如图,直线l1∥l2,∥α=∥β,∥1=40°,则∥2=.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则() .A.S1>S2B.S1=S2C.S1<S2D.不确定举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【巩固练习】一、选择题1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④2.如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于().A.60°B.90°C.120°D.150°3.下列图形中,由AB∥CD,能得到∠1=∠2的是().4.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56° C.66° D.54°5.如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC的大小为().A.60°B.70°C.80°D.120°6.如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于().A.55°B.30°C.65°D.70°二、填空题7.如图,AB∥CD,BC∥AD.AC⊥BC于点C,CE⊥AB于点E,那么AB、CD间的距离是________的长,BC、AD间的距离是________的长.8. 画线段AB,延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=•AC,则线段CD=______AB.9.如图所示,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2=______度.10.如图,在四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=_______.11.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________.12.如图,已知AB∥CD,∠α=.三.解答题13.如图,已知AB∥CD,MG、NH分别平分∠BMN与∠CNM,试说明NH∥MG?14. 如图,a∥b∥c,∠1=60°,∠2=36°,AP平分∠BAC,求∠PAQ的度数.15.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?。
平行线的性质_课件一、引入1、复习:什么是平行线?在同一平面内不相交的两条直线叫做平行线.2、两条直线真的不相交吗?当两条直线无限延伸时,它们不会相交.二、学习目标1、掌握平行线的性质.2、能够运用平行线的性质进行简单的推理和计算.三、知识点拨1、平行线的定义和性质是几何学的基础概念,它们是解决几何问题的关键工具.2、平行线的性质有很多,包括:距离相等、角相等、角互补等等.3、在解决几何问题时,我们需要灵活运用这些性质,通过推理和计算得出结论.四、学习方法指导1、观察法:观察平行线的图形,理解图形特点.2、推理法:运用平行线的性质进行推理和计算.3、练习法:多做练习题,巩固知识,提高解题能力.五、学习过程1、了解平行线的性质:距离相等、角相等、角互补等.2、学习平行线的证明方法:通过同位角、内错角等证明两条直线平行.3、通过例题进行讲解,理解平行线的性质在解题中的应用.4、进行练习,提高解题能力.六、课堂小结1、掌握平行线的定义和性质.2、能够运用平行线的性质进行简单的推理和计算.3、熟悉平行线的证明方法,能够解决相关问题.七、作业布置1、完成课后练习题.2、自己找一些关于平行线的题目进行练习,加深对知识点的理解. 本文1)定义:在同一平面内,不相交的两条直线叫做平行线。
本文2)性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
例如:自行车的轮子、楼梯扶手、铁轨等的设计都应用了平行线的性质。
例如:在解决几何问题时,常常用到平行线的性质来证明线段相等或角相等;在解决代数问题时,常常用到平行线的性质来求某些代数式的值。
例1:如图,AB//CD,EF分别交AB、CD于点E、F,EP平分∠AEF,FP平分∠CFE.请说明:四边形PEPF是矩形。
分析:本题主要考查了矩形的判定定理和平行线的性质定理的综合运用。
解题的关键是利用角平分线的定义证明四边形PEPF是矩形。
解:∵AB//CD,∴∠AEF=∠CFE(两直线平行,同位角相等).又∵EP 平分∠AEF,FP平分∠CFE(角平分线的定义),∴∠PEF=∠AEF,∠PFE=∠CFE(角平分线定义).∴∠PEF=∠PFE(等量代换),∴PE//FP(内错角相等,两直线平行),∴四边形PEPF是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠AEF=∠CFE,即对角相等,∴四边形PEPF是矩形(对角线相等的平行四边形是矩形).掌握平行线的性质,能熟练地运用平行线的性质进行计算和证明. 学会推理和逻辑论证,培养学生对数学严谨性的认识.培养学生分析问题和解决问题的能力,激发学生对数学的兴趣.引入课题:今天我们将进一步学习平行线的性质。
初中数学平行线知识点归纳总结(二)引言:平行线是初中数学中重要的基础概念之一,它们在几何图形的性质和运算中有着广泛的应用。
对平行线的理解及运用不仅能够帮助学生建立几何思维,还能够培养学生的逻辑推理和证明能力。
本文将系统地总结初中数学中关于平行线的知识点,并从几何性质、证明方法、运算应用等方面进行详细阐述。
概述:平行线是指在同一平面内,没有交点的两条直线。
平行线具有一些重要的性质,如平行线上的任意两点与另一条直线交点处的对应角相等等。
通过学习平行线的知识,学生可以解决课本中的平行线定理题目,提高几何思维能力和数学运算水平。
正文内容:1. 平行线的性质1.1 平行线的定义平行线是指在同一平面内,永远不会相交的两条直线。
1.2 平行线的判定定理(1)直线与直线判定两条直线在同一平面内,如果它们的斜率相等,则它们是平行线。
(2)线段与直线判定如果一条直线与另一直线上两点连线的线段都平行,则这两条直线是平行线。
(3)角与直线判定两条直线被一条截线分成两组相互对应的内角或外角,如果这些对应的角相等,则这两条直线是平行线。
1.3 平行线的性质(1)平行线上的任意两点与另一条直线交点处的对应角相等。
(2)平行线上的任意两条线段的比例相等。
(3)平行线与平行线之间的距离是恒定的。
2. 平行线的证明方法2.1 数学归纳法利用数学归纳法可以证明一些平行线的性质。
首先证明性质对于一个特殊情况成立,然后假设性质对于前n个情况成立,再证明对于第n+1个情况也成立。
2.2 等腰三角形法利用等腰三角形的特性,可以辅助进行平行线的证明。
当两个角相等时,可以通过证明边对应相等来推导出线段平行。
2.3 反证法利用反证法可以证明平行线的性质。
先假设平行线上的一些性质不成立,然后推导出矛盾,从而得出结论。
2.4 使用辅助线通过添加一些辅助线,可以改变原有构图,使问题更容易解决。
通过巧妙选择辅助线,可以推导出平行线的性质。
2.5 利用平行线的性质已知一些条件,可以利用平行线的性质进行推导。
平行线性质和尺规作图提升一.选择题(共18小题)1.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°3.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C D.4.如图,直线a将三角板的直角分为相等的两个角,a∥b,则∠1的度数为()A.70°B.105°C.60°D.75°5.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125° D.135°6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°7.如图,直线a∥b,∠1=75°,∠2=40°,则∠3的度数为()A.75°B.50°C.35°D.30°8.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A.10°B.15°C.20°D.25°9.下列语句正确的个数是()①不相交的两条直线叫做平行线②两点之间直线最短③只有一个公共点的两条直线叫做相交直线④两点确定一条直线.A.1 B.2 C.3 D.410.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CD B.因为AB∥CD,所以∠BAC=∠ACD C.因为∠ABD=∠CDB,所以AD∥BC D.因为AD∥BC,所以∠BCA=∠DAC 11.如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°12.如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠413.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”小刚说:“∠AGD一定大于∠BFE.”小颖说:“如果连接GF,则GF一定平行于AB.”他们四人中,有()个人的说法是正确的.A.1 B.2 C.3 D.414.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=()A.63°30′B.53°30′C.73°30′D.93°30′15.尺规作图是指()A.用直尺和圆规作图B.用直尺规范作图C.用刻度尺和圆规作图D.用没有刻度的直尺和圆规作图16.下列关于尺规的功能说法不正确的是()A.直尺的功能是:在两点间连接一条线段,将线段向两方向延长B.直尺的功能是:可作平角和直角C.圆规的功能是:以任意长为半径,以任意点为圆心作一个圆D.圆规的功能是:以任意长为半径,以任意点为圆心作一段弧17.有下列画图语句:①画出线段A,B的中点;②画出A,B两点的距离;③延长射线OP;④连接A,B两点,其中正确的个数是()A.1 B.2 C.3 D.418.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm二.填空题(共10小题)19.如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.20.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.21.裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠AEF=°.22.如图,已知AB∥CD,∠ABF=∠FEG=30°,则∠EGD=.23.如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC=.24.如图,∠1=83°,∠2=97°,∠3=100°,则∠4=.25.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示,由操作过程可知小敏画平行线的依据可以是.(把所有正确结论的序号都填在横线上)①如果两条直线和第三条直线平行,那么这两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.26.在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB、CD,并说出自己做法的依据.小琛、小萱、小冉三位同学的做法如下:小琛说:“我的做法的依据是内错角相等,两直线平行.”小萱做法的依据是.小冉做法的依据是.27.如图,DA是∠BDF的平分线,∠3=∠4,若∠1=40°,∠2=140°,则∠CBD的度数为.三.解答题(共6小题)28.如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.29.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).30.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN 便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC 与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.31.如图,已知∠1=50°,∠2=130°,且BD∥CE,AC与DF平行吗?为什么?32.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.33.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)2018年04月12日主帐号7的初中数学组卷参考答案与试题解析一.选择题(共18小题)1.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°【解答】解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故选:C.3.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.4.如图,直线a将三角板的直角分为相等的两个角,a∥b,则∠1的度数为()A.70°B.105°C.60°D.75°【解答】解:∵直线a将三角板的直角分为相等的两个角,∴∠2=45°,∵∠3是三角形额外角,∴∠3=45°+30°=75°,又∵a∥b,∴∠1=∠3=75°,故选:D.5.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125° D.135°【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.7.如图,直线a∥b,∠1=75°,∠2=40°,则∠3的度数为()A.75°B.50°C.35°D.30°【解答】解:∵a∥b,∴∠1=∠4=75°,∴∠2+∠3=∠4,∵∠1=75°,∠2=40°,∴∠3=75°﹣40°=35°.故选:C.8.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A.10°B.15°C.20°D.25°【解答】解:∵Rt△ABC中,∠C=45°,∴∠ABC=45°,∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°﹣30°=15°,故选:B.9.下列语句正确的个数是()①不相交的两条直线叫做平行线②两点之间直线最短③只有一个公共点的两条直线叫做相交直线④两点确定一条直线.A.1 B.2 C.3 D.4【解答】解:①不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;②应为两点之间线段最短,故本选项错误;③只有一个公共点的两条直线叫做相交直线,故本选项正确;④两点确定一条直线,故本选项正确,∴正确的个数是2,故选:B.10.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC【解答】解:∵∠BAD和∠ADC是AB和CD两条直线被AD所截得到的一对同旁内角,∴当∠BAD+∠ADC=180°时,可得AB∥CD,故A判断是正确的,不符合题意;∵AB∥CD,∴∠BAC=∠ACD,故B判断是正确的,不符合题意;∵∠ABD和∠CDB是AB和CD两条直线被BD所截得到的一对内错角,∴AB∥CD,故C是判断错误的,符合题意;∵AD∥BC,∴∠BCA=∠DAC,故D判断是正确的,不符合题意;故选:C.11.如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b.∵∠3=85°,∴∠4=∠3=85°.故选:B.12.如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4【解答】解:∵∠A+∠ABC=180°,∴AD∥BC,∴∠2=∠4.故选:D.13.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”小刚说:“∠AGD一定大于∠BFE.”小颖说:“如果连接GF,则GF一定平行于AB.”他们四人中,有()个人的说法是正确的.A.1 B.2 C.3 D.4【解答】解:已知EF⊥AB,CD⊥AB,∴CD∥EF,(1)若∠CDG=∠BFE,∵∠BCD=∠BFE,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB.(2)若∠AGD=∠ACB,∴DG∥BC,∴∠BCD=∠CDG,∠BCD=∠BFE,∴∠CDG=∠BFE.(3)∵DG不一定平行于BC,所以∠AGD不一定大于∠BFE;(4)如果连接GF,则GF不一定平行于AB;综上知:正确的说法有两个.故选:B.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=()A.63°30′B.53°30′C.73°30′D.93°30′【解答】解:∵∠1=40°,∠2=40°,∴∠1=∠2,∴a∥b,∴∠3=∠5=116°30′,∴∠4=180°﹣116°30′=63°30′,故选:A.15.尺规作图是指()A.用直尺和圆规作图B.用直尺规范作图C.用刻度尺和圆规作图D.用没有刻度的直尺和圆规作图【解答】解:尺规作图所用的作图工具是指不带刻度的直尺和圆规,故选:D.16.下列关于尺规的功能说法不正确的是()A.直尺的功能是:在两点间连接一条线段,将线段向两方向延长B.直尺的功能是:可作平角和直角C.圆规的功能是:以任意长为半径,以任意点为圆心作一个圆D.圆规的功能是:以任意长为半径,以任意点为圆心作一段弧【解答】解:A、直尺的功能是:在两点间连接一条线段,将线段向两方向延长.正确.B、直尺的功能是:可作平角和直角.错误.C、圆规的功能是:以任意长为半径,以任意点为圆心作一个圆.正确.D、圆规的功能是:以任意长为半径,以任意点为圆心作一段弧.正确.故选:B.17.有下列画图语句:①画出线段A,B的中点;②画出A,B两点的距离;③延长射线OP;④连接A,B两点,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:①、画出线段AB的中点,线段表示错误;②、A,B两点的距离只能测量,此语句错误;③射线不能顺向延长,只能反向延长,此语句错误;④连接A,B两点,此语句正确;故选:A.18.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.二.填空题(共10小题)19.如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为240°.【解答】解:如图所示,过C作CG∥AB,过D作DH∥EF,∵AB∥EF,∴AB∥EF∥CG∥DH,∴∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,∴∠BCD+∠CDE=35°+180°+25°=240°,故答案为:240°.20.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=80度.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.21.裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F 点处,若∠BAF=50°,则∠AEF=70°.【解答】解:∵∠BAF=50°,∠BAD=90°,∴∠FAD=40°,由折叠的性质知,∠DAE=∠EAF=∠FAD=20°,∠AFE=∠D=90°,∴Rt△AEF中,∠AEF=90°﹣20°=70°,故答案为:70.22.如图,已知AB∥CD,∠ABF=∠FEG=30°,则∠EGD=60°.【解答】解:过点E作EM∥AB,∵AB∥CD,∴EM∥CD,∴∠ABF=∠BEM,∴∠EGD+∠GEM=180°,∵∠ABF=∠FEG=30°,∴∠BEM=30°,∵∠BEM+∠GEM+∠FEG=180°,∴∠EGD=∠BEM+∠FEG=30°+30°=60°;故答案为:60°.23.如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC=122°.【解答】解:设∠EFC=x,∠1=y,则∠BFC′=x﹣y,∵∠BFC′比∠BFE多6°,∴x﹣2y=6,∵x+y=180°,可得x=122°故答案为122°.24.如图,∠1=83°,∠2=97°,∠3=100°,则∠4=100°.【解答】解:∵∠2=97°,∴∠5=∠2=97°,∵∠1=83°,∴∠1+∠5=180°,∴a∥b,∴∠4=∠3,∵∠3=100°,∴∠4=100°,故答案为:100°.25.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示,由操作过程可知小敏画平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①如果两条直线和第三条直线平行,那么这两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.26.在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB、CD,并说出自己做法的依据.小琛、小萱、小冉三位同学的做法如下:小琛说:“我的做法的依据是内错角相等,两直线平行.”小萱做法的依据是同位角相等,两直线平行.小冉做法的依据是内错角相等,两直线平行.【解答】解:小萱:依题意得:∠B=∠D,则AB∥CD(同位角相等,两直线平行);小冉:依题意得:∠ACB=∠DBC,则AB∥CD(内错角相等,两直线平行);故答案是:同位角相等,两直线平行;内错角相等,两直线平行.27.如图,DA是∠BDF的平分线,∠3=∠4,若∠1=40°,∠2=140°,则∠CBD的度数为70°.【解答】解:∵∠2=140°,∴∠BDC=40°,∵∠1=40°,∴∠1=∠BDC,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠3=∠ADF,∴AD∥BC,∵∠BDF=∠2=140°,DA平分∠BDF,∴∠ADB=×140°=70°,∵AD∥BC,∴∠CBD=∠BDA=70°,故答案为:70°.28.作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.【解答】解:作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.故答案为:已知、求作、作法,图形,结论,作图痕迹.三.解答题(共6小题)29.如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.【解答】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD=∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°.30.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.31.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN 便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=60°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC 与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCD=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.32.如图,已知∠1=50°,∠2=130°,且BD∥CE,AC与DF平行吗?为什么?【解答】解:平行.∵BD∥CE,∠1=50°,∴∠C=∠1=50°,∵∠2=130°,∴∠CED=130°,∴∠C+∠CED=180°,∴AC∥DF.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.【解答】解:(1)DE∥BO,DO∥CF,理由如下:∵DE⊥AO,BO⊥AO(已知),∴DE∥BO(在同一平面内,垂直于同一直线的两直线平行),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DO∥CF(同位角相等,两直线平行);(2)DO⊥AB,理由如下:由(1)得:DO∥CF,∴∠BCF=∠BDO(两直线平行,同位角相等),∵FC⊥AB(已知),∴∠BCF=90°(垂直定义),∴∠BDO=90°(等量代换),∴DO⊥AB(垂直定义).34.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.。