2016年陕西省西安市XX学校中考数学四模试卷附答案解析
- 格式:doc
- 大小:549.88 KB
- 文档页数:28
2016年陕西省西安市碑林区中考数学四模试卷一、选择题1.在1、﹣、、四个实数中,绝对值最小的数是()A.1 B.C.D.2.一个正方体的平面展开图如图,每一个面都有一个汉字,则在该正方体中和“实”字相对的汉字是()A.我 B.的 C.梦 D.想3.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°4.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>05.已知关于x的方程x2﹣3mx+5m﹣2=0的一个根为x=2,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为( )A.8 B.10 C.8或10 D.6或106.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+ C.y=﹣D.y=﹣2x+7.如图,如图是按照一定规律画出的“树形图",经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A多出4个“树枝",图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.64 B.60 C.56 D.328.如图所示,将△ABC的三边分别扩大一倍得到△A1B1C1,(顶点均在格点上),它们是以P 点为位似中心的位似图形,则P点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3) C.(﹣4,﹣4)D.(﹣3,﹣4)9.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A.B.7C.4+3D.3+410.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,其中错误的结论为()A.方程ax2+bx+c=0的根为﹣1 B.b2﹣4ac>0C.a=c﹣2 D.a+b+c<0二、填空题11.已知x2+x﹣1=0,则代数式x3+2x2+2016= .12.如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.13.如图,正方形ABCD的边AD、CD上两个动点E,F,且满足AF=BE,BE交AF于点H.若正方形的边长为4,线段DH最大值为x,最小值为y,则﹣y的值是.三、填空题(共2小题,每小题3分,满分6分)14.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是.15.在一次数学课外实践活动中,小明想测树AB的高度.若小明在树底端B在同一水平面上的C点测得树的顶端A的仰角为24°,BC=37.2m,则树高AB约m(用科学计算器计算,使结果精确到0。
2016年陕西省西安市XX中学中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O 逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC 的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M 到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O 逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到R tOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB ⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+, =2﹣﹣1+4+, =5.17.解分式方程:﹣=1. 【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:x 2﹣5x +6﹣3x ﹣9=x 2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A 、B 、C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC 的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC 的外接圆圆心,再以此点为圆心,以此点到点A 的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC 中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.(2)首先求出DE和CE的长度,再根据S△AEF【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC 得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O 的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC 的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M 到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC 于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴C N=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。
2016年陕西省西安市碑林区铁一中学中考数学四模试卷一、选择题1.|﹣2|的倒数是()A.B.C.2 D.﹣22.如图所示的几何体的左视图为()A.B.C.D.3.下列运算正确的是()A.x2•x3=x6B.(﹣2x2)2=﹣4x4 C.(x3)2=x6D.x5÷x=x54.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=52°,则∠2的度数为()A.52°B.38°C.48°D.45°5.对于正比例函数y=kx(k≠0),当自变量x的值减小2时,函数y的值减小﹣6,则k的值为()A.B.C.3 D.﹣36.若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A.8 B.7 C.8或7 D.9或87.在平面直角坐标系中,若直线y=﹣x+a与直线y=2x+b(a,b为常数)的交点M(3,﹣1),则关于x的不等式﹣x+a≥2x+b的解集为()A.x≤3 B.x≥3 C.x≤﹣1 D.x≥﹣18.如图,已知A,B两点的坐标分别为(2,0),(0,2),P是△AOB外接圆上一点,且∠AOP=45°,则P点到x轴的距离为()A.B.C.D.9.如图所示,在矩形ABCD中,F是DC上的一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MD的长是()A. B.C.1 D.10.已知二次函数y=ax2+bx+1(a≠0)的图象过点(1,0),且顶点在第二象限,设P=a﹣b,则P的取值范围是()A.﹣1<P<0 B.﹣1<P<1 C.0<P<1 D.1<P<2二、填空题11.分解因式:(a+b)(a﹣2b)+b2的结果是.请在12,13两个小题中任选一题作答,若多选,则按12题计分.12.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若BC=2,∠B=60°,则CD的长为.13.如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是约为海里(用科学计算器计算,使结果精确到0.01).14.如图,已知双曲线y=(x>0)经过矩形OABC的边AB,BC的点F,E,若=且四边形OEBF的面积为4,则该反比例函数解析式是.15.已知点E是菱形ABCD边BC上的中点,∠ABC=30°,P是对角线BD上一点,且PC+PE=.则菱形ABCD面积的最大值是.三、解答题16.计算:(﹣)﹣2﹣(π﹣1)0﹣|﹣3|+2cos30°.17.计算:(+1)•.18.如图,已知矩形ABCD,求作⊙O,使得⊙O经过B,C两点,且与直线AD 相切.(保留作图痕迹,不写作法)19.我校为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生课外阅读时间的中位数是小时;(2)请你补全条形统计图;(3)若全校九年级共有学生1000人,请估计九年级一周课外阅读时间为6小时的学生有多少人?20.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.21.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)22.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C 的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?23.小刚、小涛两名同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小刚胜,否则,小涛胜.(1)问小刚取到红笔的概率是多少?(2)该游戏是否公平,若不公平,你认为对谁有利?请用列表或树状图等方法说明理由.24.如图,BC是O的直径,A是BC延长线上一点,AE、BE分别与⊙O相切于点D、B,连接BD,CD,EO.(1)求证:DC∥EO;(2)若,AC=6,求△BCD的面积.25.在平面直角坐标系中,抛物线C1:y=x2+x+的顶点为D,与x轴交于A,B两点(点A在点B左边).(1)求A,B,D三点的坐标;(2)将抛物线C1绕B点旋转180°,得到抛物线C2,再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于E,F两点(点E在点F左边),顶点为G,连接AG,DF,若四边形ADFG为矩形.①求B点平移的距离;②求过E,F,G三点抛物线的解析式.26.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF=;三角形EC'F的周长.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.2016年陕西省西安市碑林区铁一中学中考数学四模试卷参考答案与试题解析一、选择题1.|﹣2|的倒数是()A.B.C.2 D.﹣2【解答】解:|﹣2|=2,2的倒数是.故选:A.2.如图所示的几何体的左视图为()A.B.C.D.【解答】解:从左面看易得左视图为:.故选D.3.下列运算正确的是()A.x2•x3=x6B.(﹣2x2)2=﹣4x4 C.(x3)2=x6D.x5÷x=x5【解答】解:A、原式=x5,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选:C.4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=52°,则∠2的度数为()A.52°B.38°C.48°D.45°【解答】解:如图,∵∠1=52°,∴∠3=∠1=52°,∴∠2=90°﹣52°=38°.故选:B.5.对于正比例函数y=kx(k≠0),当自变量x的值减小2时,函数y的值减小﹣6,则k的值为()A.B.C.3 D.﹣3【解答】解:根据题意得y+6=k(x﹣2),即y+6=kx﹣2k,而y=kx,所以﹣2k=6,解得k=﹣3.故选D6.若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A.8 B.7 C.8或7 D.9或8【解答】解:∵等腰三角形三边长分别为a、b、4,∴a=b,或a、b中有一个数为4.当a=b时,有b2﹣4ac=(﹣6)2﹣4(n+1)=0,解得:n=8;当a、b中有一个数为4时,有42﹣6×4+n+1=0,解得:n=7,故选C.7.在平面直角坐标系中,若直线y=﹣x+a与直线y=2x+b(a,b为常数)的交点M(3,﹣1),则关于x的不等式﹣x+a≥2x+b的解集为()A.x≤3 B.x≥3 C.x≤﹣1 D.x≥﹣1【解答】解:因为直线y=﹣x+a与直线y=2x+b(a,b为常数)的交点M(3,﹣1),所以可得当x≤3,不等式﹣x+a≥2x+b.故选A.8.如图,已知A,B两点的坐标分别为(2,0),(0,2),P是△AOB外接圆上一点,且∠AOP=45°,则P点到x轴的距离为()A.B.C.D.【解答】解:作PF⊥OA于F,EC⊥PF于C,由题意得,OA=2,OB=2,∴AB==4,点E的坐标为(,1),设PF=x,∵∠AOP=45°,∴OF=PF=x,则PC=x﹣1,CE=x﹣,∴(x﹣1)2+(x﹣)2=22,解得,x1=1+,x2=0(舍去),故选:D.9.如图所示,在矩形ABCD中,F是DC上的一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MD的长是()A. B.C.1 D.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∵AE平分∠BAF,且DE⊥AF,∴AB=AM,BE=EM=3,又∵AE=2,∴AM=AB===,设MD=a,MF=x,在△ADM和△DFM中,∵∠AMD=∠DMF=90°,∠ADM=∠DFM,∴△ADM∽△DFM,∴,∴DM2=AM•MF,∴a2=x,在Rt△DEC中,DE=3+a,DC=AB=,由勾股定理得:EC==,在△DMF和△DCE中,∵∠DMF=∠C=90°,∠MDF=∠MDF,∴△DMF∽△DCE,∴,∴,∴,解之得:,∴MD=1,故答案选:C.方法二:设DM=a,由△AEM≌△AEB,可得AB=AM=,BE=EM=3,由△ADM≌△DEC可得AD=DE=a+3,在Rt△ADM中,可得(a+3)2=a2+()2,解得a=1.10.已知二次函数y=ax2+bx+1(a≠0)的图象过点(1,0),且顶点在第二象限,设P=a﹣b,则P的取值范围是()A.﹣1<P<0 B.﹣1<P<1 C.0<P<1 D.1<P<2【解答】解:∵二次函数y=ax2+bx+1(a≠0)的图象过点(1,0),且顶点在第二象限,∴a+b+1=0,a<0,b<0,由a=﹣b﹣1<0,可得:b>﹣1,结合b<0,可得:﹣1<b<0(1),由﹣b=a+1>0,可得:a>﹣1,结合a<0,可得:﹣1<a<0(2),由(1),可得:0<﹣b<1(3),由(2)(3),可得:﹣1<a+b<1,∴﹣1<P<1.故选:B.二、填空题11.分解因式:(a+b)(a﹣2b)+b2的结果是(a﹣b)2.【解答】解:(a+b)(a﹣2b)+b2=a2﹣ab﹣2b2+b2=a2﹣ab+b2=(a﹣b)2故答案为:(a﹣b)2请在12,13两个小题中任选一题作答,若多选,则按12题计分.12.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若BC=2,∠B=60°,则CD的长为.【解答】解:∵将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.∴AD=AB,∵∠B=60°,∴△ADB是等边三角形,∠C=30°,∴AB=AD=BD,AB=BC,∴AD=BD=BC,∴CD=BC=.故答案为:.13.如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是约为2.29海里(用科学计算器计算,使结果精确到0.01).【解答】解:如图,由题意可知∠NPA=55°,AP=4海里,∠ABP=90°,∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=4海里,∴AB=AP•cos∠A=4cos55°=2.29(海里).故答案为:2.29.14.如图,已知双曲线y=(x>0)经过矩形OABC的边AB,BC的点F,E,若=且四边形OEBF的面积为4,则该反比例函数解析式是y=.【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAB=∠OCE=∠FBE=90°,△OAB的面积=△OBC的面积,∵F、E在反比例函数y=(x>0)的图象上,∴△OAF的面积=△OCE的面积,∴△OBF的面积=△OBE的面积=四边形OEBF的面积=2,∵=,∴△OCE的面积=△OBE的面积=3,∴k=6,∴该反比例函数解析式是y=.故答案为:y=.15.已知点E是菱形ABCD边BC上的中点,∠ABC=30°,P是对角线BD上一点,且PC+PE=.则菱形ABCD面积的最大值是20+8.【解答】解:取AB的中点E′,连接CE′交BD于P,∵四边形ABCD是菱形,∴∠ABD=∠CBD,∵BE=EC,∴E、E′关于直线BD对称,∴PE=PE′,∴PE+PC=PE′+PC,∴当PC+PE′=CE′=时,菱形ABCD面积的最大,作E′H⊥BC于H,AM⊥BC于M.设AB=BC=2a,则AM=a,E′H=a,BH=a,CH=2a﹣a,在Rt△CHE′中,∵CE′2=CH2+HE′2,∴26=a2+(2﹣)2a2,∴a2=,∴菱形ABCD面积的最大值=BC•AM=2a•a=2a2=2×=20+8.故答案为20+8.三、解答题16.计算:(﹣)﹣2﹣(π﹣1)0﹣|﹣3|+2cos30°.【解答】解:原式=4﹣1﹣2+3+=6﹣.17.计算:(+1)•.【解答】解:原式=(+1)•=×+=+=a﹣118.如图,已知矩形ABCD,求作⊙O,使得⊙O经过B,C两点,且与直线AD 相切.(保留作图痕迹,不写作法)【解答】解:如图所示:⊙O即为所求.19.我校为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为50人,被调查学生课外阅读时间的中位数是4小时;(2)请你补全条形统计图;(3)若全校九年级共有学生1000人,请估计九年级一周课外阅读时间为6小时的学生有多少人?【解答】解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴10÷20%=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时.故答案为:50,4(2)如图所示.(3)∵课外阅读6小时的人数是4人,∴1000×=80(人).答:九年级一周课外阅读时间为6小时的学生大约有80人.20.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.21.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【解答】解:如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF=≈=x+,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴x+56=x+,解得:x=52,答:该铁塔的高AE为52米.22.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60千米/时,乙车的速度是96千米/时,点C 的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.23.小刚、小涛两名同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小刚胜,否则,小涛胜.(1)问小刚取到红笔的概率是多少?(2)该游戏是否公平,若不公平,你认为对谁有利?请用列表或树状图等方法说明理由.【解答】解:(1)∵一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,∴小刚取到红笔的概率==;(2)列表得:共20种等可能的情况,其中颜色相同的有8种,则小刚获胜的概率为=,小涛获胜的概率为1﹣=,∵<,∴不公平,对小涛有利.24.如图,BC是O的直径,A是BC延长线上一点,AE、BE分别与⊙O相切于点D、B,连接BD,CD,EO.(1)求证:DC∥EO;(2)若,AC=6,求△BCD的面积.【解答】(1)证明:∵AE、BE分别与⊙O相切于点D、B,∴ED=EB,∵OB=OD,∴EO⊥BD,∵BC是O的直径,∴DC⊥BD,∴DC∥EO;(2)解:∵AE是⊙O的切线,∴(AD)2=AC•AB,∴=6AB,∴AB=12,∴BC=6,∴BO=CO=3,∴S=S△AOD=××3×6=6,△BCD即△BCD的面积=6.25.在平面直角坐标系中,抛物线C1:y=x2+x+的顶点为D,与x轴交于A,B两点(点A在点B左边).(1)求A,B,D三点的坐标;(2)将抛物线C1绕B点旋转180°,得到抛物线C2,再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于E,F两点(点E在点F左边),顶点为G,连接AG,DF,若四边形ADFG为矩形.①求B点平移的距离;②求过E,F,G三点抛物线的解析式.【解答】解:(1)对于抛物线y=x2+x+,令y=0,得到x2+x+=0,解得x=﹣1或﹣4,∴A(﹣4,0),B(﹣1,0),∵y=x2+x+=(x+)2﹣3,∴抛物线的顶点坐标D(﹣,﹣3).(2)如图,作GK⊥x轴于G,DH⊥AB于H.由题意GK=DH=3,AH=HB=EK=KF=1.5,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK,∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴=,∴=,∴AK=6,BK=3,BE=1.5,OK=2,∴G(2,3),∴B点平移的距离为1.5;过E,F,G三点抛物线的解析式为y=﹣(x﹣2)2+3.26.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF=45°;三角形EC'F的周长2.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.【解答】解:(1)∵正方形ABCD绕点A逆时针旋转α°,后得到正方形AB′C′D′,∴∠D'AB'=∠D'=∠ADE=90°,AD'=AD=C'D'=B'C'=1在Rt△AD'E和Rt△ADE中,,∴Rt△AD'E≌Rt△ADE(HL),∴D'E=DE,∠D'AE=∠DAE,同理:B'F=DF,∠B'AF=∠DAF,∴∠EAF=∠DAE+∠DAF=∠B'AD'=45°,△EC′F的周长为C'E+EF+C'F=C'E+DE+DF+C'F=C'E+D'E+B'F+C'F=C'D+B'C'=2,故答案为:45°,2;(2)∵B'D'是正方形AB'C'D'的对角线,∴B'D'=,∵D′P=a,QB′=b∴PQ=B'D'﹣D'P﹣B'Q=﹣a﹣b;(3)如图②中,连接EQ.∵∠ED′P=∠PAQ=45°,∠EPD′=∠APQ,∴△EPD′∽△QPA,∴=,∴=,∵∠APD′=∠EPQ,∴△PAD′∽△PQE,∴∠AD′P=∠PEQ=45°,∴∠QAE=∠QEA=45°,∴△AEQ是等腰直角三角形,∴AE=AQ,同理,AF=AP,∴=,∵∠PAQ=∠EAF,∴△PAQ∽△FAE,∴=,∵EF最小时,△AEF的面积最小,此时△APQ的面积最小,由(1)可知,△C′EF的周长=EC′+C′F+EF=C′E+ED′+FB′=C′D′+C′B′=2=定值,可以证明当EC′=C′F时,斜边EF定值最小.设C′E=x,C′F=y,EF=z,则x+y+z=2,x2+y2=z2,x+y=2﹣z,xy=2﹣2z,∴x,y是方程M的两根,M2﹣(2﹣z)M+2﹣2z=0,∵△≥0,∴(2﹣z)2﹣4(2﹣2z)≥0,∴(z+2)2≥8,∴z+2≥2,∴z﹣2,∴斜边EF的最小值为2﹣2,此时△AEF的面积=×1×(2﹣2)=﹣1,=,△APQ的面积=•S△AEF∴△APQ的面积的最小值为.。
2016年陕西师范大学附中中考数学四模试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.2.如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.54.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.46.在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定7.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A.增加6m2B.增加9m2C.减少9m2D.保持不变8.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.9.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.10.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题3分,计12分)11.请给出一元二次方程x2﹣8x+ =0的一个常数项,使这个方程有两个不相等的实数根.12.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A 的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .14.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三、解答题(共11小题,计78分)第17题图aAB15.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.16.先化简,再求值:÷(1+),其中x=﹣1.17.如图,已知线段a.只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC,以AB和BC分别为两条直角边,使AB=a,BC=a(要求保留作图痕迹,不必写出作法)18.为了推动课堂教学改革,打造“贵生课堂”,我县某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:(1)本次调查的八年级部分学生共有名;请补全条形统计图;(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?19.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,(1)求证:△ABF≌△ACE;(2)求证:PB=PC.20.我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,co s68°≈0.37,tan68°≈2.50,).21.附中现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全市汉字听写大赛.(1)请用树形图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.22.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.23.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.24.如图,抛物线y=﹣x2+2x+3与x轴交与A,B两点(点A在点B的左侧),与y轴交于点C.点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x 轴交直线AD于点H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q 为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.25.已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,P为AB边上的一点,以PD、PC为边作▱PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作▱PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(3)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE、PC为边作▱PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(4)如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB 为边作▱PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,直接写出最小值,如果不存在,请说明理由.2016年陕西师范大学附中中考数学四模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.【考点】实数大小比较;零指数幂;负整数指数幂.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.【解答】解:|﹣2|=2,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.2.如图是一个螺母的示意图,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.4.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.6.在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定【考点】反比例函数与一次函数的交点问题.【分析】根据一次函数与反比例函数图象的性质作答.【解答】解:y=x+1的图象过一、二、三象限;函数的中,k>0时,过一、三象限.故有两个交点.故选:C.7.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A.增加6m2B.增加9m2C.减少9m2D.保持不变【考点】平方差公式.【分析】根据正方形和长方形的面积公式求出原来正方形草坪面积和改造后的长方形草坪面积,比较即得结论.【解答】解:设正方形草坪的原边长为a,则面积=a2;将一正方形草坪的南北方向增加3m,东西方向缩短3m后,边长为a+3,a﹣3,面积为a2﹣9.故减少9m2.故选C.8.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.【考点】垂径定理;勾股定理.【分析】首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.【解答】解:过点O作OD⊥AB于点D,∵弦AB=2,∴AD=BD=AB=,AC=AB=,∴CD=AD﹣AC=,∵⊙O的半径为2,即OB=2,∴在Rt△OBD中,OD==1,在Rt△OCD中,OC==.故选D.9.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.【考点】旋转的性质;含30度角的直角三角形;等腰直角三角形.【分析】根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,故选C.10.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a>0,据此解答即可.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=8a,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:③④.故选:B.二、填空题(共4小题,每小题3分,计12分)11.请给出一元二次方程x2﹣8x+ 12(答案不唯一)=0的一个常数项,使这个方程有两个不相等的实数根.【考点】根的判别式.【分析】方程有两个不相等的实数根,则△>0,建立关于c的不等式,求出c的取值范围.【解答】解:由题意知,△=64﹣4c>0,∴c<16,即当c取小于16时就能满足题意.比如c=12满足方程有两个不相等的实数根.12.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5 米.【考点】垂径定理的应用;勾股定理.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,在Rt△OAD中,根据勾股定理,OD==2(米),∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A 的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】首先根据点A在双曲线y=(x>0)上,设A点坐标为(a,),再利用含30°直角三角形的性质算出OA=2a,再利用菱形的性质进而得到B点坐标,即可求出k的值.【解答】解:因为点A在双曲线y=(x>0)上,设A点坐标为(a,),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,),可得:k=,故答案为:14.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理.【分析】根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三、解答题(共11小题,计78分)第17题图aAB15.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.16.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.17.如图,已知线段a.只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC,以AB和BC分别为两条直角边,使AB=a,BC=a(要求保留作图痕迹,不必写出作法)【考点】作图—复杂作图.【分析】先画线段AB=a,再作AB的垂直平分线得到其中点D,接着过B点作l⊥AB,然后再l上截取BC=BD,则△ABC满足条件.【解答】解:如图,△ABC为所作.18.为了推动课堂教学改革,打造“贵生课堂”,我县某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:(1)本次调查的八年级部分学生共有54 名;请补全条形统计图;(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢的人数是18人,根据对应的圆心角即可求得所占的比例,利用18除以所占的比例即可求得总人数,进而求得非常喜欢的人数,从而补全条形统计图;(2)利用总人数540乘以对应的比例即可求解.【解答】解:(1)本次调查的八年级部分学生共有18÷=54(人),“非常喜欢”的人数为:54﹣18﹣6=30(人),补全条形统计图如图:(2)×540=480(人),答:估计该校八年级有480名学生支持“分组合作学习”方式.故答案为:(1)54.19.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,(1)求证:△ABF≌△ACE;(2)求证:PB=PC.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)根据AE=AF,AB=AC,∠A=∠A即可证明三角形全等;(2)根据(1)结论可证∠ABF=∠ACE,即可证明∠PBF=∠PCE,即可解题.【解答】证明:(1)在△ABF和△ACE中,,∴△ABF≌△ACE(SAS);(2)∵AB=AC,∴∠ABC=∠ACB,∵△ABF≌△ACE,∴∠ABF=∠ACE,∴∠PBF=∠PCE,∴BP=CP.20.我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,).【考点】解直角三角形的应用-坡度坡角问题.【分析】在Rt△BAE中,根据BE=162米,∠BAE=68°,解直角三角形求出AE的长度,然后在Rt△DCE中解直角三角形求出CE的长度,然后根据AC=CE﹣AE求出AC的长度即可.【解答】解:在Rt△BAE中,∵BE=162米,∠BAE=68°,∴AE===64.8(米),在Rt△DCE中,∵DE=176.6米,∠DCE=60°,∴CE===≈102.1(米),则AC=CE﹣AE=102.1﹣64.8=37.3(米).答:工程完工后背水坡坡底端水平方向增加的宽度AC约为37.3米.21.附中现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全市汉字听写大赛.(1)请用树形图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)利用列表法展示所有有12种等可能的选派方案;(2)找出恰有一男一女参赛的结果数,然后根据概率公式求解.【解答】解:(1)列表如下:甲乙丙丁甲乙甲丙甲丁甲乙乙甲乙丙乙丁丙丙甲丙乙丙丁丁丁甲丁乙丁丙共有12种等可能的选派方案;(2)恰有一男一女参赛共有8种可能,所以P(一男一女)==.22.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.【考点】一次函数的应用.【分析】(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.【解答】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.23.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【考点】切线的性质.【分析】(1)连接OC,只要证明OC∥BD即可.(2)在Rt△ABF中,根据BH=计算即可.【解答】证明(1)连接OC.∵C是中点,AB是○O的直径∴OC⊥AB,∵BD是○O切线,∴BD⊥AB.∴OC∥BD.∵AO=BO,∴AC=CD(2)∵E是OB中点,∴OE=BE在△COE与△FBE中,∠CEO=∠FEBOE=BE∠COE=∠FBE△COE≌△FBE(ASA)∴BF=CO∵OB=2,∴BF=2∴AF===2,∵AB是直径∴BH⊥AF∴AB•BF=AF•BH∴BH===.24.如图,抛物线y=﹣x2+2x+3与x轴交与A,B两点(点A在点B的左侧),与y轴交于点C.点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x 轴交直线AD于点H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q 为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.【考点】二次函数综合题.【分析】(1)求出A、D两点坐标,利用待定系数法即可解决问题.(2)首先证明△FHG是等腰直角三角形,构建二次函数利用函数性质解决问题即可.(3)分两种情形①如图2中,若AP为对角线,利用相似三角形性质求出点T坐标.②如图3中,若AQ为对角线,利用相似三角形性质即可解决问题.【解答】解:(1)∵抛物线y=﹣x2+2x+3与x轴交与A,B两点(点A在点B的左侧),与y 轴交于点C,∴点A坐标(﹣1,0),点B坐标(3,0),点C坐标(0,3),∵抛物线对称轴x=1,D、C关于对称轴对称,∴点D坐标(2,3),设直线AD为y=kx+b.则解得;∴直线AD解析式为:y=x+1.(2)如图1中,∵OA=OE=1,∴∠EAO=45°,∵FH∥AB,∴∠FHA=∠EAO=45°,∵FG⊥AH,∴△FGH是等腰直角三角形,设点F坐标(m,﹣m2+2m+3),∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),∴FH=﹣m2+m+2,∴△FGH的周长=(﹣m2+m+2)+2×(﹣m2+m+2)=﹣(1+)(m﹣)2+∴△FGH的周长最大值为.(3)①如图2中,若AP为对角线作PS⊥对称轴于于S,对称轴与x轴的交点为R,∵∠PMS+∠MPS=90°,∠PMS+∠AMR=90°,∴∠MPS=∠AMR,∵∠PSM=∠MRA,∴△PMS∽△MAR可得=,∴=,∴SM=,∴点P坐标(0,)由点的平移可知Q(﹣2,)故Q点关于直线AM的对称点T为(0,﹣).②如图3中,若AQ为对角线,作AR∥y轴,MR∥x轴,AS∥y轴,PS∥AB,同理可证△ARM∽△PSA,∴=,∴AS=∴点P坐标(0,﹣),由点的平移可知Q(2,),故Q点关于直线AM的对称点T为(0,).25.已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,P为AB边上的一点,以PD、PC为边作▱PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作▱PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(3)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE、PC为边作▱PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(4)如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作▱PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,直接写出最小值,如果不存在,请说明理由.【考点】相似形综合题.【分析】(1)由四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,得出∠DPC=90°,由勾股定理得出DC=2,设PB=x,则AP=2﹣x,在Rt△DPC中,由勾股定理得出方程,方程无解,得出对角线PQ与DC不可能相等.(2)过点Q作QH⊥BC,交BC的延长线于H,由AAS证明△ADP≌△HCQ,得出AD=HC求出BH=4,当PQ⊥AB时,PQ的长最小,即为4.(3)设PQ与DC相交于点G,由平行线得出=,得出G是DC上一定点,作QH⊥BC,交BC的延长线于H,证明Rt△ADP∽Rt△HCQ,得出=,求出CH=2得出BH=BG+CH=5,当PQ⊥AB时,PQ的长最小,即为5.(4)设PQ与AB相交于点G,由平行线得出=,作QH∥PD,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,证明△ADP∽△BHQ,得出=,求出BH=n+1,得出CH=BH+BC=n+4,过点D作DM⊥BC于M,则四边形ABND是矩形,得出BM=AD=1,DM=AB=2,证出∠KCH=45°,由三角函数得出CK=CH•cos45°=(n+4),即可得出结果.【解答】解:(1)对角线PQ与DC不可能相等,理由如下:∵四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,∴∠DPC=90°,∵AD=1,AB=2,BC=3,∴DC=2,设PB=x,则AP=2﹣x,在Rt△DPC中,PD2+PC2=DC2,即x2+32+(2﹣x)2+12=(2)2,整理得:x2﹣2x+3=0,∵△=(﹣2)2﹣4×1×3=﹣8<0,∴方程无解,∴对角线PQ与DC不可能相等.(2)存在,理由如下:如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,则G是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,∵AD∥BC,AB⊥BC,∴AD⊥AB,∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,∵PD∥CQ,∴∠PDC=∠DCQ,∴∠ADP=∠QCH,在△ADP和△HCQ中,,∴△ADP≌△HCQ(AAS),∴AD=HC,∵AD=1,BC=3,∴BH=4,∴当PQ⊥AB时,PQ的长最小,即为4.(3)存在,理由如下:如图3,设PQ与DC相交于点G,∵PE∥CQ,PD=DE,∴=,∴G是DC上一定点,作QH⊥BC,交BC的延长线于H,同(2)得:∠ADP=∠QCH,∴Rt△ADP∽Rt△HCQ,∴=,∴CH=2,∴BH=BG+CH=3+2=5,∴当PQ⊥AB时,PQ的长最小,即为5.(4)存在,理由如下:如图4,设PQ与AB相交于点G,∵PE∥BQ,AE=nPA,∴=,作QH∥PD,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,∵AD∥BC,AB⊥BC,∴∠ADP=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,∴∠QBH=∠PAD,∴△ADP∽△BHQ,∴=,∵AD=1,∴BH=n+1,∴CH=BH+BC=3+n+1=n+4,过点D作DM⊥BC于M,则四边形ABND是矩形,∴BM=AD=1,DM=AB=2∴CM=BC﹣BM=3﹣1=2=DM,∴∠DCM=45°,∴∠KCH=45°,∴CK=CH•cos45°=(n+4),∴当PQ⊥CD时,PQ的长最小,最小值为(n+4).。
2016年陕西省中考数学试卷及解析答案2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(-)×2=()A。
-1 B。
1 C。
4 D。
-42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A。
B。
C。
D.3.下列计算正确的是()A。
x^2+3x^2=4x^4 B。
x^2y·2x^3=2x^4y C。
(6x^2y^2)÷(3x)=2x^2 D。
(-3x)^2=9x^24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A。
65° B。
115° C。
125° D。
130°5.设点A(a,-a)是正比例函数y=-x图象上的任意一点,则下列等式一定成立的是()A。
2a+3b=0 B。
2a-3b=0 C。
3a-2b=0 D。
3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A。
7 B。
8 C。
9 D。
107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A。
2对 B。
3对 C。
4对 D。
5对9.OC.⊙O的半径为4,△ABC是⊙O的内接三角形,如图,连接OB,若∠BAC与∠BOC互补,则弦BC的长为()A。
3 B。
4 C。
5 D。
610.已知抛物线y=-x^2-2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A。
精心整理2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A .B .C .D .3.(3分)下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x3y2)÷(3x)=2x2D.(﹣3x)2=9x24.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.(3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对 D.5对9.(3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.(3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A .B .C .D.2二、填空题(共4小题,每小题3分,满分12分)11.(3分)不等式﹣x+3<0的解集是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.(3分)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.(5分)计算:﹣|1﹣|+(7+π)0.16.(5分)化简:(x﹣5+)÷.17.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.(5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.(7分)如图,在?ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.(7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.(7x(时)(1(222.(7①“可”、“”(当”);③次“(1(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.(8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.24.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N (3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.(12分)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G 分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣×2=﹣1,故选A【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C. D.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x3y2)÷(3x)=2x2D.(﹣3x)2=9x2【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2x2y2,错误;D、原式=9x2,正确,故选D【点评】此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.4.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.【点评】本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.7.(3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.【点评】本题主要考查两直线相交问题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对 D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.9.(3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB?cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.【点评】本题考查二次函数与x轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)11.(3分)不等式﹣x+3<0的解集是x>6.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9【点评】本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要运用四舍五入法求解.13.(3分)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.【点评】本题考查了反比例函数与一次函数的交点,相似三角形的判定和性质,求函数的解析式,正确的作出图形是解题的关键.14.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【解答】解:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,为2;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为2√3﹣2;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为2﹣2.【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(共11小题,满分78分)15.(5分)计算:﹣|1﹣|+(7+π)0.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.【点评】此题主要考查了实数运算,正确利用绝对值的性质去掉绝对值是解题关键.16.(5分)化简:(x﹣5+)÷.【分析】根据分式的除法,可得答案.【解答】解:原式=?=(x﹣1)(x﹣3)=x2﹣4x+3.【点评】本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.17.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.18.(5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.选BBD(2(319.(7F,使求证:【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF ≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.【点评】此题主要考查了相似三角形的判定与性质,正确利用已知得出相似三角形是解题关键.21.(7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【点评】本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.22.(7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.【点评】此题考查了列表法或树状图法求概率.注意此题是放回实验;用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC?BG.【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.24.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N (3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、函数与方程的关系、等腰三角形的性质、坐标平移和分类讨论等.在(1)中注意方程与函数的关系,在(2)中确定出B点的坐标是解题的关键,注意抛物线顶点坐标的求法.本题属于基础题,难度不大.25.(12分)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G 分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出。
2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD 与△CAD相似.【解答】解:如图,AD为所作.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG 关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,。
2016年陕西省西安市XX 学校中考数学四模试卷一.选择题1.实数1,﹣1,﹣,0,四个数中,最小的数是( )A .0B .1C .﹣1D .﹣2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( )A .B .C .D .3.下列运算正确的是( )A . +=B .3x 2y ﹣x 2y=3C .=a +bD .(a 2b )3=a 6b 34.如图,AB ∥CD ,DB ⊥BC ,∠BDC=50°,则∠FBE 的度数是( )A .50°B .45°C .40°D .30°5.若点A (﹣2,m )在正比例函数y=﹣x 的图象上,则m 的值是( )A .B .﹣C .1D .﹣16.如图,在平行四边形ABCD 中,AE=EB ,AF=2,则FC 的值为( )A .5B .4C .3D .27.不等式组的所有整数解的和是()A.2 B.3 C.5 D.68.如图,AD、AC分别为⊙O的直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5,则CD的长为()A.2 B.3 C.4 D.59.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF=()A. B.5 C. +2 D.310.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.二.填空题11.分解因式:x2y﹣6xy+9y=.请从12,13两小题中任选一个作答,若多选,则按第一题计分.12.在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.13.比较大小:8cos31°(填“>”,“=”,“<”).14.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,3),反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是.15.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD 和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题16.计算:(π﹣3.14)0+()﹣2﹣﹣2sin60°.17.解方程: +=﹣1.18.已知:如图,△ABC.求作:直线MN,使MN经过点A,MN∥BC.(尺规作图,保留作图痕迹,不写作法,注意描黑)19.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图.(2)户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?20.如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:BE=CE.21.有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.22.光大路桥公司中标承包了一段路基工程,进入施工场地后,所挖路基的长度y(m)与工作时间x(天)之间的函数关系如图所示,请根据提供的信息解答下列问题:(1)求y与x的函数关系式;(2)预测完成1620m的路基工程,需要工作多少天?23.如图,一条东西走向的笔直公路,点A、B表示公路北侧间隔150米的两棵树所在的位置,点C表示电视塔所在的位置.小王在公路PQ南侧直线行走,当他到达点P的位置时,观察树A 恰好挡住电视塔,即点P、A、C在一条直线上,当他继续走180米到达点Q的位置时,以同样方法观察电视塔,观察树B也恰好挡住电视塔.假设公路两侧AB∥PQ,且公路的宽为60米,求电视塔C到公路南侧PQ的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,=,求⊙O的半径.25.如图,在平面直角坐标系中,抛物线W1:y=﹣x2+6x﹣5与x轴交于A、B两点,点C是该抛物线的顶点.(1)若抛物线W1与抛物线W2关于直线x=﹣1对称,其中,点C与点F,点E与点B,点D与点A是对应点,求抛物线W2的表达式.(2)连接BC,在直线x=﹣1上找一点H,使得△BCH周长最小,并求出点H的坐标.(3)连接FD,点P是直线x=﹣1上一点,点Q是抛物线W1上一点,若以点D、F、P、Q为顶点的四边形是平行四边形,请求出符合条件的点Q的坐标.26.问题探究:三角形的内接四边形指顶点在三角形各边上的四边形.(1)如图1,△ABC中,AB=AC,正方形MNEF的顶点M、E在BC上,顶点N在AB上,请以点B为位似中心,作△ABC的内接正方形.(不写作法).(2)如图2,△ABC中,BC=12,∠B=45°,AD⊥BC于点D,AD=8,请以点D为位似中心,作△ABC的内接正方形,并求出所作正方形的面积(不写作法).问题解决(3)如图3,将(2)中的△ABC翻折得到四边形ABEC,对角线AE、BC相交于点D,请以点D 为位似中心作正方形MNPQ,使得点M、N、P、Q在正方形ABEC的各边上.要求:①写出作法,证明四边形MNPQ是正方形;②求出正方形MNPQ的面积.2016年陕西省西安市XX学校中考数学四模试卷参考答案与试题解析一.选择题1.实数1,﹣1,﹣,0,四个数中,最小的数是()A.0 B.1 C.﹣1 D.﹣【考点】实数大小比较.【分析】根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1>0>﹣>﹣1,所以在1,﹣1,﹣,0中,最小的数是﹣1.故选:C.2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.3.下列运算正确的是()A. += B.3x2y﹣x2y=3C.=a+b D.(a2b)3=a6b3【考点】幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.【分析】A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.【解答】解:∵,∴选项A不正确;∵3x2y﹣x2y=2x2y,∴选项B不正确;∵,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.4.如图,AB∥CD,DB⊥BC,∠BDC=50°,则∠FBE的度数是()A.50°B.45°C.40°D.30°【考点】平行线的性质;垂线.【分析】根据三角形内角和定理求出∠BCD,再根据平行线的性质,即可得出∠FBE的度数.【解答】解:∵DB⊥BC,∴∠CBD=90°,∵∠BDC=50°,∴∠BCD=40°,∵CD∥AB,∴∠FBE=∠BCD=40°,故选:C.5.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣ C.1 D.﹣1【考点】一次函数图象上点的坐标特征.【分析】利用待定系数法代入正比例函数y=﹣x可得m的值.【解答】解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.6.如图,在平行四边形ABCD中,AE=EB,AF=2,则FC的值为()A.5 B.4 C.3 D.2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】要求FC的长,只要能证明△AEF∽△CDF利用线段比就可以求出其长,▱ABCD中,DC ∥AB,问题就得以解决.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠CDE=∠AED,∠DCA=∠CAB,∴△AEF∽△CDF,∴AF:CF=AE:CD,∵AE=EB,∴AE=AB,∴AE=CD,即AE:CD=1:2,∵AF=2,∴CF=4,故选:B.7.不等式组的所有整数解的和是()A.2 B.3 C.5 D.6【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.8.如图,AD、AC分别为⊙O的直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5,则CD的长为()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;解直角三角形.【分析】在Rt△ABO中,由∠AOB=90°、BO=5、∠BAO=30°即可求出AB、AO的长度,根据AD 为⊙O的直径可得出∠ACD=90°=∠AOB,再结合∠BAO=∠DAC即可得出△ABO∽△ADC,根据相似三角形的性质即可得出,代入数据求出CD,此题得解.【解答】解:在Rt△ABO中,∠AOB=90°,BO=5,∠BAO=30°,∴AB=2BO=10,AO==5,∴AD=2AO=10.∵AD为⊙O的直径,∴∠ACD=90°=∠AOB,又∵∠BAO=∠DAC,∴△ABO∽△ADC,∴,∴CD==5.故选D.9.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF=()A. B.5 C. +2 D.3【考点】旋转的性质.【分析】相办法把AF放入直角三角形当中,于是过点F作FH垂直AC于H,过点F作FG垂直CD于G,算出HF和AH即可求出AF.【解答】解:如图,过点F作FH垂直AC于H,过点F作FG垂直CD于G,由旋转的性质可知:CD=CA=6,CE=CB=4,∵F为ED中点,∴GF=CH=EH=2,HF=CG=GD=3,∴AH=AC﹣CH=6﹣2=4,由勾股定理可知:AF=.故选B.10.如图,一次函数y 1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.二.填空题11.分解因式:x2y﹣6xy+9y=y(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)2请从12,13两小题中任选一个作答,若多选,则按第一题计分.12.在半径为5cm的⊙O中,45°的圆心角所对的弧长为πcm.【考点】弧长的计算.【分析】根据弧长公式L=进行求解.【解答】解:L==π.故答案为:π.13.比较大小:8cos31°>(填“>”,“=”,“<”).【考点】锐角三角函数的增减性.【分析】分别求出8cos31°与的近似值,再比较即可.【解答】解:∵8cos31°≈8×0.8572=6.8576,≈5.9161,∴8cos31°>的.故答案为:>.14.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,3),反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是﹣12.【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】首先过点C作CE⊥x轴于点E,由顶点C的坐标为(﹣3,3),可求得OC的长,可得∠BOC=60°,又由菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,可求得OB的长,且∠AOB=30°,继而求得DB的长,则可求得点D的坐标,又由反比例函数y=的图象与菱形对角线AO交D点,即可求得答案.【解答】解:过点C作CE⊥x轴于点E,∵顶点C的坐标为(﹣3,3),∴OE=3,CE=3,∴∠BOC=60°,∵四边形ABOC是菱形,∴OB=OC==6,∠BOD=∠BOC=30°,∵DB⊥x轴,∴DB=OB•tan30°=6×=2,∴点D的坐标为:(﹣6,2),∵反比例函数y=的图象与菱形对角线AO交D点,∴k=xy=﹣12.故答案为:﹣12.15.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD 和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是5.【考点】二次函数的最值;正方形的性质.【分析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y2关于x的二次函数关系式,求二次函数的最值即可.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=10﹣2x,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0≤x≤10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.三.解答题16.计算:(π﹣3.14)0+()﹣2﹣﹣2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算乘方和开方,然后从左向右依次计算即可.【解答】解:(π﹣3.14)0+()﹣2﹣﹣2sin60°=1+﹣2﹣2×=﹣317.解方程: +=﹣1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(2+x)2+3(2﹣x)=x2﹣4整理得:4+4x+x2+6﹣3x=x2﹣4,解得:x=﹣14,经检验x=﹣14是分式方程的解.18.已知:如图,△ABC.求作:直线MN,使MN经过点A,MN∥BC.(尺规作图,保留作图痕迹,不写作法,注意描黑)【考点】作图—复杂作图;平行线的判定.【分析】直接利用作一角等于已知角的方法得出MN的位置即可.【解答】解:如图所示:MN即为所求.19.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图.(2)户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?【考点】条形统计图;扇形统计图;中位数;众数.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【解答】解:(1)被调查的学生总数为32÷40%=80人,∴0.5小时的人数为80×20%=16人,补全图形如下:(2)户外活动时间的众数时1小时,达到32人,中位数为第40、41个数据的平均数,即=1小时;(3)本次调查中学生参加户外活动的平均时间是=1.175小时,∴符合要求.20.如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:BE=CE.【考点】矩形的性质;全等三角形的判定与性质.【分析】欲证明BE=CE,只要证明△EAB≌△EDC即可.【解答】证明:∵四边形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵EA=ED,∴∠EAD=∠EDA,∴∠EAB=∠EDC,在△EAB和△EDC中,,∴△EAB≌△EDC,∴EB=EC.21.有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.【考点】列表法与树状图法;概率公式.【分析】(1)判断菱形,平行四边形,线段及角中轴对称图形的个数,即可得到所求的概率;(2)找出四个图形中中心对称图形的个数,列表得出所有等可能的情况数,找出两张都为中心对称图形的情况数,即可求出所求的概率.【解答】解:(1)菱形,轴对称图形;平行四边形,不是轴对称图形;线段,轴对称图形;角,轴对称图形,则随机抽取一张卡片图案是轴对称图形的概率是;故答案为:;(2)列表如下:其中A,B,C为中心对称图形,D不为中心对称图形,所有等可能的情况有12种,其中都为中心对称图形的有6种,则P==.22.光大路桥公司中标承包了一段路基工程,进入施工场地后,所挖路基的长度y(m)与工作时间x(天)之间的函数关系如图所示,请根据提供的信息解答下列问题:(1)求y与x的函数关系式;(2)预测完成1620m的路基工程,需要工作多少天?【考点】一次函数的应用.【分析】(1)本题图形分为两段(2,80)为转折点,①前段为正比例函数,②后段为一次函数;(2)把完成1620m的路基工程代入(1)的函数关系式即可求出需要工作的天数.【解答】解:(1)①当0≤x<2时,设y与x的函数关系式为y=kx(k≠0),∵(1,40)在图象上,∴40=k,∴y与x的函数式为y=40x(0≤x<2);②当x≥2时,设y与x的函数式为y=kx+b(k≠0),依题意得,解得,∴y与x的函数式为y=35x+10(x≥2),∴y与x的函数关系式为y=;(2)当y=1620时,35x+10=1620,解得x=46.答:需要工作46天.23.如图,一条东西走向的笔直公路,点A、B表示公路北侧间隔150米的两棵树所在的位置,点C表示电视塔所在的位置.小王在公路PQ南侧直线行走,当他到达点P的位置时,观察树A 恰好挡住电视塔,即点P、A、C在一条直线上,当他继续走180米到达点Q的位置时,以同样方法观察电视塔,观察树B也恰好挡住电视塔.假设公路两侧AB∥PQ,且公路的宽为60米,求电视塔C到公路南侧PQ的距离.【考点】相似三角形的应用;相似三角形的性质.【分析】作CE⊥PQ交AB于D点,利用相似三角形对应边上的高的比等于相似比,即可求得电视塔到公路南侧所在直线的距离.【解答】解:如图所示,作CE⊥PQ于E,交AB于D点,设CD为x,则CE=60+x,∵AB∥PQ,∴△ABC∽△PQC,∴=,即=,解得x=300,∴x+40=340 米,答:电视塔C到公路南侧所在直线PQ的距离是340 米.24.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,=,求⊙O的半径.【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE垂直于AC,再由BC垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)根据(1)中的结论,再根据锐角三角函数和三角形相似的知识即可求出圆的半径长.【解答】(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,∴BF=BD;(2)解:设OA=3x,则AB=5x,BO=2x,∴BD=4x,∵CF=1,BD=BF,∴BC=4x﹣1,∵OE∥BC,∴△AOE∽△ABC,∴,∵=,∴,即,解得,x=1.5,∴2x=3,即⊙O的半径是3.25.如图,在平面直角坐标系中,抛物线W1:y=﹣x2+6x﹣5与x轴交于A、B两点,点C是该抛物线的顶点.(1)若抛物线W1与抛物线W2关于直线x=﹣1对称,其中,点C与点F,点E与点B,点D与点A是对应点,求抛物线W2的表达式.(2)连接BC,在直线x=﹣1上找一点H,使得△BCH周长最小,并求出点H的坐标.(3)连接FD,点P是直线x=﹣1上一点,点Q是抛物线W1上一点,若以点D、F、P、Q为顶点的四边形是平行四边形,请求出符合条件的点Q的坐标.【考点】二次函数综合题.【分析】(1)先求得点A、B的坐标,然后利用对称性可得到E、D的坐标,故此W2可看作是W1向左平移8个单位得到;(2)连结BF交x=﹣1与H.然后求得直线FB的解析式,在求得当x=﹣1时,对应的y值,从而可得到点H的坐标;(3)当DP为平行四边形的对角线时,设点P的坐标为(﹣1,a),Q(x,y),依据中点坐标公式可知Q(1,a﹣4),然后将点Q的坐标代入W1的解析式可求得a的值;当DP为平行四边形的边时.设点P的坐标为(﹣1,a),由PQ∥DF且PQ=DF可知点Q的坐标为(﹣3,a+4),然后将点Q的坐标代入W1的解析式可求得a的值.【解答】解:(1)令y=0得:0=﹣x2+6x﹣5,解得x=1或x=5,∴A(1,0),B(5,0).∵点E与段B关于x=﹣1对称,∴点E(﹣7,0).∴AE=8.∴W2可由W1向右平移8个单位得到.∴抛物线W2的表达式为y=﹣(x+8)2+6(x+8)﹣5,即y=﹣x2﹣10x﹣21.(2)如图1所示:连结BF交x=﹣1与H.∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴C(3,4).∵点F与点C关于x=﹣1对称,∴FH=CH,F(﹣5,4).∴当点F、H、B在一条直线上时,HC+BH有最小值,即△BCH的周长最小.设BF的解析式为y=kx+b,将点B和点F的坐标代入得:,解得:k=﹣,b=2.∴直线BF的解析式为y=﹣x+2.当x=﹣1时,y=.∴H(﹣1,).(3)当DP为平行四边形的对角线时,设点P的坐标为(﹣1,a),Q(x,y).∵平行四边形的对角线互相平分,∴,,∴x=1,y=a﹣4.∴Q(1,a﹣4).将点Q的坐标代入W1的解析式得:a﹣4=﹣1+6﹣5,解得a=4.∴Q(1,0).当DP为平行四边形的边时.设点P的坐标为(﹣1,a).∵平行四边形的对边平行且相等,∴PQ可看作由DF平移得到.∴点Q的坐标为(﹣1﹣2,a+4).将点Q的坐标代入W1的解析式得:a+4=﹣9+6×(﹣3)﹣5,解得a=﹣36.∴Q(﹣3,﹣32).综上所述,点Q的坐标为(1,0)或(﹣3,﹣32)时,以点D、F、P、Q为顶点的四边形是平行四边形.26.问题探究:三角形的内接四边形指顶点在三角形各边上的四边形.(1)如图1,△ABC中,AB=AC,正方形MNEF的顶点M、E在BC上,顶点N在AB上,请以点B为位似中心,作△ABC的内接正方形.(不写作法).(2)如图2,△ABC中,BC=12,∠B=45°,AD⊥BC于点D,AD=8,请以点D为位似中心,作△ABC的内接正方形,并求出所作正方形的面积(不写作法).问题解决(3)如图3,将(2)中的△ABC翻折得到四边形ABEC,对角线AE、BC相交于点D,请以点D 为位似中心作正方形MNPQ,使得点M、N、P、Q在正方形ABEC的各边上.要求:①写出作法,证明四边形MNPQ是正方形;②求出正方形MNPQ的面积.【考点】四边形综合题.【分析】(1)如图1中,延长BF交AC于F′,作F′E′∥EF交BC于E′,作F′N′∥BC交AB于N′,作N′M′∥EF交BC于M′,正方形M′N′F′E′即为所求.(2)如图2中,正方形MNEF的顶点M、F在BC上,且DM=2DF.延长DE交AC于E′,作E′F′⊥BC于F′,延长DN交AB于N′,作N′M′⊥BC于M′,正方形M′N′E′F′即为所求.设正方形M′N′E′F′的边长为x,由N′E′∥BC,推出△AN′E′∽△ABC,可得=,解方程即可.(3)作正方形MNEF,使得MN∥AD,MN交BC于P,EF交BC于Q,且PN=PM,PD=2DQ,延长DE交AC于E′,延长DN交AB于N′,延长DM交BE于M′,延长DF交EC于F′,连接M′N′,N′E′,E′F′,F′M′,则四边形M′N′E′F′即为所求.设E′F′交BC于G,M′N′交BC于H.首先证明四边形M′N′E′F′是平行四边形,再证明有一个角是直角,邻边相等即可.【解答】解:(1)如图1中,请以点B为位似中心,△ABC的内接正方形M′N′F′E′如图所示.(2)如图2中,以点D为位似中心,△ABC的内接正方形M′N′E′F′如图所示.正方形MNEF的顶点M、F在BC上,且DM=2DF.延长DE交AC于E′,作E′F′⊥BC于F′,延长DN交AB于N′,作N′M′⊥BC于M′,正方形M′N′E′F′即为所求.设正方形M′N′E′F′的边长为x,∵N′E′∥BC,∴△AN′E′∽△ABC,∴=,∴x=,∴正方形M′N′E′F′的边长为.(3)如图3中,作正方形MNEF,使得MN∥AD,MN交BC于P,EF交BC于Q,且PN=PM,PD=2DQ,延长DE 交AC于E′,延长DN交AB于N′,延长DM交BE于M′,延长DF交EC于F′,连接M′N′,N′E′,E′F′,F′M′,则四边形M′N′E′F′即为所求.设E′F′交BC于G,M′N′交BC于H.由题意AB=AD=8,DC=4,∴AD=2DC,∵△BCE是由△ABC翻折得到,PN=PM,QE=QF,∴根据对称性可知,E′F′∥AE∥M′N′,∵EQ:DQ=3:2,∴E′G:DG=3:2,∵E′G:GC=AD:DC=2:1,∴AE′:E′C=DG:GC=4:3,同理可证AN′:BN′=4:3,∴AN′:BN′=AE′:E′C,∴E′N′∥BC,同理可证M′F′∥BC,∴四边形M′N′E′F′是平行四边形,易知∠M′N′E′=90°,∴四边形M′N′E′F′是矩形,∵EN∥E′N′,EF∥E′F′,∴EN:E′N′=DE:DE′=EF:E′F′,∵EN=EF,∴N′E′=E′F′,∴四边形M′N′E′F′是正方形.设边长为a,∵N′E′∥BC,∴△AN′E′∽△ABC,∴=,∴a=∴正方形M′N′E′F′的边长为.2017年5月9日。