【解析版】2014-2015学年广东省深圳市文汇中学七年级下期中数学试卷
- 格式:doc
- 大小:288.00 KB
- 文档页数:15
2020-2021学年广东省深圳市宝安区文汇学校七年级(上)期中数学试卷1. 2020的相反数是( )A. 2020B. −2020C. 12020D. −12020 2. 已知地球围绕太阳公转的轨道半长径约为150000000km ,这个数据用科学记数法表示为( )A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km 3. −512,|−4|,−(−7),|0|,−|−2|,负数共有( )A. 1个B. 2个C. 3个D. 4个4. 如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是( )A.B.C.D.5. 下列各式计算正确的是( )A. 6a +a =7a 2B. −2a +5b =3abC. 4m 2n −2mn 2=2mnD. 3ab 2−5b 2a =−2ab 26. 若−x m y n+4与5x 2y 是同类项,则m +n 的值为( )A. −2B. 3C. −1D. 27. 某企业去年产值p 万元,今年比去年增产10%,今年产值是( )A. p(1+10%)万元B. (p +10%)万元C. p 1+10%万元D. p1−10%万元 8. 若代数式y 2−2y +1的值是5,则代数式2y 2−4y −5的值是( )A. −3B. 25C. −25D. 39.如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离10.下列说法中,正确的有()①0是最小的整数;②若|a|=|b|,则a=b;③互为相反数的两数之和为零;④n棱柱有(n+2)个面,2n个顶点;⑤若a2=4,则a=±2;⑥早上8点30分,时针和分针成70度角.A. 2个B. 3个C. 4个D. 5个11.已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是()A. a+bB. a−bC. |a+b|D. |a−b|12.如图,在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧,以D为圆心,3为径作圆弧.若图中阴影部分的面积分为S1、S2则S1−S2为()A. 9B. 9−ππ−9C. 134πD. 13413.如果收入10元记作+10元,那么支出80元记作______元.14.若(a+2)2+|b−3|=0,则−a b的值是______.15.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为______.16. 将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n 个图案中棋子的个数为______.17. 计算:(要求写出必要的解题步骤,否则不给分.)(1)−13−(−22)+(−28)(2)(38−16+34)×(−48) (3)2313+(−412)−(−1623)−512(4)−14−16×[3−(−3)2].18. (1)化简:5(x 2+2xy)−2(52x 2−xy)(2)先化简,再求代数式的值:3(a 2b +ab 2)−12(4a 2b −2)−(3ab 2+2),其中a =−3,b =2.19. 用一些相同的小立方体搭一个几何体,它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置的小立方块的个数,请解答下列问题:(1)a、b、c各表示几?(2)这个几何体最少由几个小立方体搭成?最多呢?(3)当d=e=1,f=2时,画出这个几何体的左视图.20.粮库3天内进出库的吨数记录如下(“+”表示进库,“−”表示出库):+26,−32,−15,+34,−38,−20(1)经过3天,粮库里的粮食是增多了还是减少了?(2)经过3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存量有多少吨?(3)如果进库出库的装卸费都是每吨5元,那么这3天要付出多少装卸费?21.如图,点A、B、C、D在同一条直线上,AD=10cm,AC=16cm,若点B是线段CD的中点,求线段AB的长.22.自进入秋季以来,因为天气原因,更多人选择了戴口罩,为了满足市场需求,某厂家生产A、B两种款式的环保口罩,每天共生产500个,两种口罩的成本和售价如下表:成本(元/个)售价(元/个)A58B79若设每天生产A口罩x个.(1)用含x的代数式表示:①该工厂每天生产B种口罩______个;②每天生产A种口罩的成本为______元;③每天生产B种口罩的成本为______元;④每天生产A、B两种口罩的总成本为______元;(2)用含x的代数式表示该工厂每天获得的利润,并将所列代数式进行化简;(利润=售价−成本)(3)当x=300时,求该工厂每天生产的总成本及获得的利润.23.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.=______;a5+b5的值为______;(1)a+b=______,ba(2)若数轴上有点P表示数为−1,将点P向左移动2018个单位长度,再向右移动20181个单位长度到点Q,那么终点Q表示的数是______,P,Q两点间的距离为3______;(3)化简:|a−c|−2|b+c|+|c|.答案和解析1.【答案】B【解析】【分析】此题主要考查了相反数,正确把握相反数的定义是解题的关键。
2014-2015学年广东省深圳市文汇中学八年级(下)期中数学试卷一、选择题1.已知a>b,下列四个不等式中不正确的是()A.4a>4b B.﹣4a<﹣4b C.a+4>b+4 D.a﹣4<b﹣42.下列图形中,不是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(﹣2,3)向上平移3个单位长度,那么平移后对应的点A′的坐标是()A.(﹣2,﹣3) B.(﹣2,6)C.(1,3) D.(﹣2,1)4.等腰三角形的一个角是50°,则它顶角的度数是()A.80°或50° B.80°C.80°或65°D.65°5.下列各式分解因式正确的是()A.﹣2a2=(1+2a)(1﹣2a)B.x2+4y2=(x+2y)2C.x2﹣3x+9=(x﹣3)2D.x2﹣y2=(x﹣y)26.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC8.下列命题的逆命题是真命题的是()A.如果a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等D.若a=6,则|a|=|6|9.若(m﹣1)x>m﹣1的解集为x<1,则m的取值范围是()A.m>1 B.m<1 C.m>0 D.m<010.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣211.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③ B.①②③④C.①②D.①12.用甲乙两种原料配制成某种饮料,已知每千克的这两种原料的维生素C含量及购买这两种原料的价格如表所示:现配制这种饮料10kg,要求至少含有4200单位的维生素C,且购买原料的费用不超过72元.设所需甲种原料x(kg),则可列不等式组为()A.B.C.D.二、填空题13.计算:2015×3.501﹣2015×2.501=.14.不等式2(x﹣3)≥5x﹣4的最大整数解为.15.如图,在△ABC中,AB=5,AC=3,BC的垂直平分线交AB于D,交BC于E,则△ADC的周长等于.16.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,CD=,将△ACD沿直线AD折叠,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是.三.解答题(共52分)17.因式分解:3a3﹣12a2b+12ab2.18.先因式分解,然后计算求值:(x+y)(x2+3xy+y2)﹣5xy(x+y),其中x=6.6,y=﹣3.4.19.解不等式(组),并把解集表示在数轴上.(1)≥(2).20.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC各顶点都在格点上,点A、C 的坐标分别为(﹣1,2)、(0,﹣1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于;(2)画出△ABC向右平移2个单位得到的△A1B1C1;(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△A2B2C2(4)三角形ABC的面积是.21.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.22.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,(1)求证:△ACE≌△BCD;(2)若AE=3,AD=2,求DE的长度.23.为了加快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上,则从第11台开始按报价的70%计算;乙公司的报价也是每台5800元,优惠条件是每台均按报价的85%计算.假如你是学校有关方面负责人,在电脑品牌、质量、售后服务等完全相同的前提下,你如何选择?请说明理由.2014-2015学年广东省深圳市文汇中学八年级(下)期中数学试卷参考答案与试题解析一、选择题1.已知a>b,下列四个不等式中不正确的是()A.4a>4b B.﹣4a<﹣4b C.a+4>b+4 D.a﹣4<b﹣4【考点】不等式的性质.【分析】根据不等式的性质对各选项分别分析判断得出即可.【解答】解:A、不等式a>b的两边同时乘以4,可得4a>4b,正确,不符合题意;B、不等式a>b的两边同时乘以﹣4,可得﹣4a<﹣4b,正确,不符合题意;C、不等式a>b的两边同时加上4,可得a+4><b+4,正确,不符合题意;D、不等式a>b的两边同时减去4,可得a﹣4>b﹣4,错误,符合题意.故选:D.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.下列图形中,不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在平面直角坐标系中,将点A(﹣2,3)向上平移3个单位长度,那么平移后对应的点A′的坐标是()A.(﹣2,﹣3) B.(﹣2,6)C.(1,3) D.(﹣2,1)【考点】坐标与图形变化-平移.【分析】根据点的平移规律,向上平移3个单位,横坐标不变,纵坐标加3,即可得到答案.【解答】解:∵点(﹣2,3)向上平移3个单位,∴平移后的点的坐标为:(﹣2,3+3),即(﹣2,6),故选B.【点评】此题主要考查了点的平移规律,关键掌握好:左右移,横减加,纵不变;上下移,纵加减,横不变.4.等腰三角形的一个角是50°,则它顶角的度数是()A.80°或50° B.80°C.80°或65°D.65°【考点】等腰三角形的性质.【专题】分类讨论.【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:A.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.5.下列各式分解因式正确的是()A.﹣2a2=(1+2a)(1﹣2a)B.x2+4y2=(x+2y)2C.x2﹣3x+9=(x﹣3)2D.x2﹣y2=(x﹣y)2【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、原式=(1﹣4a2)=(1+2a)(1﹣2a),正确;B、原式不能分解,错误;C、原式不能分解,错误;D、原式=(x+y)(x﹣y),错误.故选A.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°【考点】反证法.【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:C.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【考点】全等三角形的判定.【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.下列命题的逆命题是真命题的是()A.如果a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等D.若a=6,则|a|=|6|【考点】命题与定理.【分析】先写出每个命题的逆命题,再进行判断即可.【解答】解;A.如果a>0,b>0,则a+b>0:如果a+b>0,则a>0,b>0,是假命题;B.直角都相等的逆命题是相等的角是直角,是假命题;C.两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.若a=6,则|a|=|6|的逆命题是若|a|=|6|,则a=6,是假命题.故选:C.【点评】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.若(m﹣1)x>m﹣1的解集为x<1,则m的取值范围是()A.m>1 B.m<1 C.m>0 D.m<0【考点】不等式的解集.【专题】计算题.【分析】根据已知不等式的解集,利用不等式的基本性质求出m的范围即可.【解答】解:∵(m﹣1)x>m﹣1的解集为x<1,∴m﹣1<0,解得:m<1,故选B【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.10.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣2【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的交点是(1,﹣2),根据图象得到x<1时不等式k1x+b<k2x+c成立.【解答】解:由图可得:l1与直线l2在同一平面直角坐标系中的交点是(1,﹣2),且x<1时,直线l1的图象在直线l2的图象下方,故不等式k1x+b<k2x+c的解集为:x<1.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.11.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③ B.①②③④C.①②D.①【考点】等腰三角形的判定;角平分线的性质.【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.故选A.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.12.用甲乙两种原料配制成某种饮料,已知每千克的这两种原料的维生素C含量及购买这两种原料的价格如表所示:现配制这种饮料10kg,要求至少含有4200单位的维生素C,且购买原料的费用不超过72元.设所需甲种原料x(kg),则可列不等式组为()A.B.C.D.【考点】由实际问题抽象出一元一次不等式组.【分析】所需甲种原料x(kg),则需乙种原料(10﹣x)kg.由题意得:xkg甲原料所含维生素+(10﹣x)kg乙≥4200单位;甲所花的费用+乙的费用≤72.【解答】解:设所需甲种原料的质量为xkg,则需乙种原料(10﹣x)kg.根据题意,得:,故选:B.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住题目中的不等关系,列出不等式.二、填空题13.计算:2015×3.501﹣2015×2.501=2015.【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取2015,计算即可得到结果.【解答】解:原式=2015×(3.501﹣2.501)=2015,故答案为:2015【点评】此题考查了因式分解﹣提公因式,熟练掌握提取公因式的方法是解本题的关键.14.不等式2(x﹣3)≥5x﹣4的最大整数解为0.【考点】一元一次不等式的整数解.【分析】首先解不等式,然后确定不等式中的整数解即可.【解答】解:去括号,得2x﹣6≥5x﹣4,移项,得2x﹣5x≥﹣4+6,合并同类项,得﹣3x≥2,系数化成1得x≤﹣.则最大的整数解是0.故答案是:0.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15.如图,在△ABC中,AB=5,AC=3,BC的垂直平分线交AB于D,交BC于E,则△ADC的周长等于8.【考点】线段垂直平分线的性质.【分析】已知中BC的垂直平分线交AB于D,根据线段的垂直平分线的性质可以得到CD=BD,由此推出△ADC的周长=AC+CD+AD=AD+BD+AC=AC+AB,然后利用已知条件就求出△ADC的周长.【解答】解:∵BC的垂直平分线交AB于D,交BC于E,∴CD=BD,∴△ADC的周长=AC+CD+AD=AD+BD+AC=AC+AB,而AB=5,AC=3,∴△ADC的周长=8.故填空答案:8.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等,进行线段的等效代换是正确解答本题的关键.16.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,CD=,将△ACD沿直线AD折叠,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是3+.【考点】轴对称-最短路线问题.【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【解答】解:如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,CD=DE=,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠BAC=30°,∴∠B=60°,∵DE=,∴BE=1,BD=2,即BC=2+,∴△PEB的周长的最小值是BC+BE=2++1=3+.故答案为:3+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.三.解答题(共52分)17.因式分解:3a3﹣12a2b+12ab2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3a,再利用完全平方公式进行分解即可.【解答】解:原式=3a(a2﹣4ab+4b2)=3a(a﹣2b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.先因式分解,然后计算求值:(x+y)(x2+3xy+y2)﹣5xy(x+y),其中x=6.6,y=﹣3.4.【考点】因式分解的应用.【专题】计算题.【分析】原式提取x+y,利用完全平方公式变形,将x与y的值代入计算即可求出值.【解答】解:原式=(x+y)(x2+3xy+y2﹣5xy)=(x+y)(x﹣y)2,当x=6.6,y=﹣3.4时,原式=3.2×100=320.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.19.解不等式(组),并把解集表示在数轴上.(1)≥(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)求出每个不等式的解集,再根据找不等式组解集的规律求出不等式组的解集即可.【解答】解:(1)≥3(3x﹣2)≥5(2x+1)9x﹣6≥10x+59x﹣10x≤5+6﹣x≤11x≥﹣11,在数轴上表示不等式的解集为:;(2)∵解不等式①得:x≤2,解不等式②得:x>,∴不等式组的解集为<x≤2,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,解一元一次不等式,在数轴上表示不等式(组)的解集的应用,能根据不等式求出不等式的解集合能根据不等式的解集求出不等式组的解集是解此题的关键.20.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC各顶点都在格点上,点A、C 的坐标分别为(﹣1,2)、(0,﹣1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于;(2)画出△ABC向右平移2个单位得到的△A1B1C1;(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△A2B2C2(4)三角形ABC的面积是.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)利用勾股定理计算AC的长;(2)利用平移的性质画出点A、B、C平移后的对应点A1、B1、C1,即可得到△A1B1C1;(3)利用网格特点和旋转的性质画出点A、B、C旋转后的对应点A2、B2、C2,即可得到△A2B2C2;(4)利用面积的和差求解:把三角形ABC的面积看作一个正方形的面积减去三个直角三角形的面积.【解答】解:(1)AC==;(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作;(4)S△ABC=3×3﹣×1×2﹣×3×1﹣×3×2=.故答案为,.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.21.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】证明题.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.22.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,(1)求证:△ACE≌△BCD;(2)若AE=3,AD=2,求DE的长度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,利用勾股定理得出答案即可.【解答】(1)证明:∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)解:∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.即DE==.【点评】本题考查三角形全等的判定与性质,等腰直角三角形的性质,及勾股定理的运用,掌握三角形全等的判定方法是解决问题的关键.23.为了加快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上,则从第11台开始按报价的70%计算;乙公司的报价也是每台5800元,优惠条件是每台均按报价的85%计算.假如你是学校有关方面负责人,在电脑品牌、质量、售后服务等完全相同的前提下,你如何选择?请说明理由.【考点】一元一次不等式的应用;一元一次方程的应用.【专题】应用题.【分析】设学校需购置电脑x台,分别表示出甲、乙两公司需要的付费,然后比较即可得出答案.【解答】解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x台,则到甲公司购买需付[10×5800+5800(x﹣10)×70%]元,到乙公司购买需付5800×85%x元.根据题意得:1)若甲公司优惠:则10×5800+5800(x﹣10)×70%<5800×85% x解得:x>20;2)若乙公司优惠:则10×5800+5800(x﹣10)×70%>5800×85% x解得:x<20;3)若两公司一样优惠:则10×5800+5800(x﹣10)×70%=5800×85%x解得:x=20.答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠.【点评】本题考查了一元一次不等式的应用,解答本题的关键是表示出甲、乙两公司需要的付费,难度一般.第21页(共21页)。
2015-2016学年广东省深圳市XX学校七年级(下)期中数学试卷一、选择题1.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣)﹣2=4 D.(﹣2)0=﹣12.已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.63.下列各式中,不能用平方差公式计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x+y)(﹣2x﹣y)C.(2x+y)(﹣2x+y) D.(2x﹣y)(﹣2x+y)4.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣25.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣36.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°8.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60°B.50°C.40°D.30°10.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°11.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.12.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.二、填空题13.若a2﹣b2=,a﹣b=,则a+b的值为.14.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.15.如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=度.16.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是.(把你认为正确结论的序号都填上)三.解答题(共6大题,共52分)17.计算:(1)(﹣x2y5)•(xy)3;(2)4a(a﹣b+1);(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).18.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.19.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)21.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到学校的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?22.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).2015-2016学年广东省深圳市XX学校七年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣)﹣2=4 D.(﹣2)0=﹣1【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.2.已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【考点】完全平方公式.【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选C【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.3.下列各式中,不能用平方差公式计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x+y)(﹣2x﹣y)C.(2x+y)(﹣2x+y) D.(2x ﹣y)(﹣2x+y)【考点】平方差公式.【分析】根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.【解答】解:A、由于两个括号中含x项的符号相反,故能使用平方差公式,A错误;B、两个括号中,含y项的符号相反,x项的符号相同,故能使用平方差公式,B错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,D正确;故选:D【点评】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.4.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【考点】平方差公式的几何背景.【专题】几何图形问题.【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.5.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣3【考点】完全平方式.【专题】计算题.【分析】本题考查完全平方公式的灵活应用,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.【解答】解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选D.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【考点】平行线的判定.【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.7.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.【点评】本题利用对顶角相等和平行线的性质,需要熟练掌握.8.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【考点】平行线的性质.【专题】压轴题.【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60°B.50°C.40°D.30°【考点】平行线的性质.【分析】先根据直角三角形的性质得出∠D的度数,再由平行线的性质即可得出结论.【解答】解:∵FE⊥DB,∵∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【考点】平行线的性质.【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选D【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.11.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为B.故选B.【点评】此题考查了函数的图象;用到的知识点是函数图象的应用,需注意容器粗细和水面高度变化的关联.12.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题13.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】平方差公式.【专题】计算题.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【考点】平行线的判定;垂线.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.15.如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=45度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰三角形性质和三角形的内角和定理求出∠ABC,根据平行线的性质得出∠1=∠ABC,即可得出答案.【解答】解:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵直线m∥n,∴∠1=∠ABC=45°,故答案为:45.【点评】本题考查了等腰三角形的性质,三角形内角和定理,平行线的性质的应用,解此题的关键是求出∠1=∠ABC和求出∠ABC的度数,注意:两直线平行,同位角相等.16.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是②③.(把你认为正确结论的序号都填上)【考点】函数的图象.【专题】压轴题.【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【解答】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故②正确;火车的长度是150米,故①错误;整个火车都在隧道内的时间是:35﹣5﹣5=25秒,故③正确;隧道长是:35×30﹣150=1050﹣150=900米,故④错误.故正确的是:②③.故答案是:②③.【点评】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三.解答题(共6大题,共52分)17.计算:(1)(﹣x2y5)•(xy)3;(2)4a(a﹣b+1);(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).【考点】整式的混合运算.【分析】(1)根据同底数幂的乘法计算即可;(2)根据单项式与多项式的乘法计算即可;(3)根据整式的乘法计算即可.【解答】解:(1)原式=﹣x2y5•x3y3=﹣x5y8.(2)原式=4a2﹣4ab+4a.(3)原式=9xy﹣3x2﹣(4x2+12xy﹣3xy﹣9y2)=9xy﹣3x2﹣(4x2+9xy﹣9y2)=﹣7x2+9y2.【点评】此题考查整式的混合计算,关键是根据法则进行计算.18.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab的值代入计算即可求出值.【解答】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD 的度数,题目较好,难度不大.20.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)【考点】平方差公式的几何背景.【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.【点评】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.21.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到学校的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?【考点】函数的图象.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.22.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).【考点】平行线的性质.【专题】阅读型;分类讨论.【分析】(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.【解答】解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.第21页(共21页)。
(完整)广东省深圳市福田区2014-2015学年七年级下学期期末数学试卷【解析版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)广东省深圳市福田区2014-2015学年七年级下学期期末数学试卷【解析版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)广东省深圳市福田区2014-2015学年七年级下学期期末数学试卷【解析版】的全部内容。
广东省深圳市福田区七年级下学期期末数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5 D.x2+x3=x53.(3分)下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b)B.(x+1)(1+x) C.(x﹣2y)(x+2y)D.(﹣x﹣y)(x+y)4.(3分)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°5.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.[来源:学科网ZXXK]6.(3分)计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b27.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或178.(3分)星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路[来源:学科网ZXXK]9.(3分)如图,属于内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠410.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC 11.(3分)下列说法正确的是()A.内错角相等B.两直线平行,同旁内角相等C.不相交的两条直线交平行线D.过直线外一点有且只有一条直线与已知直线平行[来源:学科网ZXXK]12.(3分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B 与点A重合,折痕为DE,则△ACD的周长为()A.10cm B.12cm C.15cm D.20cm二、填空题:(本题共4小题,每小题3分,共12分)13.(3分)若x﹣y=8,xy=10,则x2+y2=.14.(3分)如图,一只小鸟自由自在的在空中飞翔,然后随意落在如图所示的图形表示的空地上(每个方格除颜色外完全相同),则落在图中阴影部分的概率是.15.(3分)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于.16.(3分)如图a是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是.三、解答题:(本题共7小题,其中第17题8分,第18题6分,第19题8分,第20题7分,第21题6分,第22题8分,第23题9分,共52分)17.(8分)计算:(1)(﹣1)2015+()﹣2﹣(3。
深圳市文汇中学2018-2019年七年级下期中数学试卷一、细心选一选(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内,每题3分,共30分)1.下列各图中,与是对顶角的是A. B. C. D.2.的平方根是A. 2B.C.D.3.在下列所给出坐标的点中,在第二象限的是A. B. C. D.4.在实数,,,0,,,,中,无理数有A. 2个B. 3个C. 4个D. 5个5.如图所示,点E在AC的延长线上,下列条件中不能判断A. B.C. D.6.下列命题是假命题的是A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行7.如图,表示的点在数轴上表示时,所在哪两个字母之间A. C与DB. A与BC. A与CD. B与C8.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是A. B. C. D.9.在平面直角坐标系中,线段CF是由线段AB平移得到的;点的对应点为;则点的对应点F的坐标为A. B. C. D.10.如图所示,将含有角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则的度EDC B A数 A. B. C. D.二、细心填一填:(本大题共8个小题,每题4分,满分32分,请把答案直接写在题中的横线上)。
11. (﹣0.7)2的平方根是 。
12.已知点(33)P -,,(,3)Q n 且PQ=6,则n 的值等于.13.规定用符号[m ]表示一个实数m 的整数部分,例如[23]=0,[3.14]=3,按此规律1]= .14. 如图所示,在四边形ABCD 中,BD 是它的一条对角线,若∠1=∠2,∠A =55°, 则∠ADC=_______.15.已知线段DE 是由线段AB 平移得到的,且AB=DC=4cm ,EC=3cm ,则△DCE 的周长为 .16. 已知关于x 的不等式x+a ≤1的解集是如图所示,则a 的值为 ..17. 某单位购买甲、乙两种纯净水共用240元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的13.则购买甲、乙两种水一共桶.18. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是 .三、解答题:(本大题共有8个题。
广东省深圳中学七年级下学期期中数学试卷解析版一、选择题.(本大题共12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的.)1.下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.同角的补角相等D.三角形的三个内角之和为360°解:A、内错角相等,两直线平行,正确;B、两直线平行,同旁内角互补,正确;C、同角的补角相等,正确;D、三角形的三个内角之和为180°,此选项错误;故选:D.2.下列计算正确的是()A.a2+a3=a5B.a4÷a4=a C.a2•a3=a6D.(﹣a2)3=﹣a6解:A、a2与a3不是同类项,不能合并,错误;B、a4÷a4=1,错误;C、a2•a3=a5,错误;D、(﹣a2)3=﹣a6,正确;故选:D.3.当老师讲到肥皂泡的厚度为0.00000007m时,小明立刻举手说:“老师,我们用科学记数法表示它的厚度更科学”.老师对小明表示了肯定,则肥皂的厚度用科学记数法表示为()A.0.7×10﹣7m B.0.7×108m C.7×10﹣8m D.0.7×10﹣8m 解:0.00000007m=7×10﹣8m.故选:C.4.如图,∠1与∠2是对顶角的是()A.B.C.D.解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D选项错误.故选:C.5.如图,已知∠1=∠2,那么下列结论正确的是()A.∠A=∠C B.AD∥BC C.AB∥CD D.∠3=∠4解:∵∠1=∠2,∴AB∥CD.(内错角相等,两直线平行)故选:C.6.人们去河边打水往往会沿垂直于河边的方向走,是因为()A.过一河有且仅有一条直线与已知直线垂直B.过直线外一点有且仅有一条直线与已知直线平行C.直线外一点与直线上的点连成的所有线段中,垂线段最短D.平行于同一条直线的两条直线相互平行解:人们去河边打水往往会沿垂直于河边的方向走,是因为直线外一点与直线上的点连成的所有线段中,垂线段最短,故选:C.7.如图,直线AB与CD交于点O,OE⊥AB于O,则图中∠1与∠2的关系是()A.对顶角B.互余C.互补D.相等解:∵OE⊥AB,∴∠AOE=90°,又∵∠1+∠AOE+∠2=180°,∴∠1+∠2=90°,即∠1与∠2互为余角.故选:B.8.如图是汽车行驶速度(千米时)和时间(分)的图象,下列说法正确的个数为()(1)汽车行驶时间为40分钟;(2)从5分钟到10分钟这段时间内,汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/小时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个解:读图可得,在x=40时,速度为0,故(1)(4)正确;5﹣10分钟段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;综上可得(1)(2)(4)正确,共3个.故选:C.9.如图,利用同位角相等,两直线平行的原理,我们可以用尺规作图的方法,过∠AOB的边OB上一点C作OA的平行线.以下作图步骤:①作射线CD;②以O为圆心,以任意定长为半径作弧,分别交OA、OB于N、M;③连MN,以P为圆心,MN的长度为半径作弧,交前面的弧于D;④以C为圆心,OC的长度为半径作弧,交OB于P.排序正确的是()A.①②③④B.③②④①C.②④③①D.④③①②解:正确的排序是:②以O为圆心,以任意定长为半径作弧,分别交OA、OB于N、M;④以C为圆心,OC的长度为半径作弧,交OB于P.③连MN,以P为圆心,MN的长度为半径作弧,交前面的弧于D;①作射线CD;故选:C.10.若x+y=3,则代数式x2+2xy+y2﹣6的值为()A.3B.6C.0D.﹣3解:∵x+y=3,∴原式=(x+y)2﹣6=9﹣6=3,故选:A.11.如图,已知a∥b,则∠B、∠C、∠D的数量关系为()A.∠B﹣∠C+∠D=90°B.C=∠B+∠DC.∠C=∠B+∠D﹣180°D.∠B+∠C+∠D=360°解:如右图所示,作CF∥AB,∵CF∥AB,∴∠B+∠BCF=180°,又∵AB∥DE,∴CF∥DE,∴∠D+∠FCD=180°,∴∠B+∠BCF+∠FCD+∠D=360°.故选:D.12.若2m=3,2n=5,2x=135,则x=()A.3m+3n B.3m+n C.m+3n D.m+n 解:∵135=27×5=33×5,∴2x=(2m)3×2n,即2x=23m×2n=23m+n,∴x=3m+n,故选:B.二、填空题.13.计算:(π﹣1)0=1;(−12)﹣3=﹣8;(﹣a2b)2=a4b2.解:(π﹣1)0=1,(−12)﹣3=﹣8;(﹣a2b)2=a4b2,故答案为:1、﹣8、a4b2.14.若平行线a、b被直线l所截,截得的一组同旁内角相等,则a、b与l的位置关系是垂直.解:∵平行线a、b被直线l所截,截得的一组同旁内角互补,∵平行线a、b被直线l所截,截得的一组同旁内角相等,∴这组同旁内角是90°,∴a、b与l的位置关系是垂直,故答案为:垂直15.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=61°,则∠2=58°.解:∵EG平分∠BEF,∠1=61°,∴∠BEF=122°,∵AB∥CD,∴∠3=180°﹣∠BEF=58°,∴∠2=58°,故答案为:58°16.如图,一个大正方形由4个完全一样的长方形和一个小正方形构成,若长方形的长和宽分别为a、b,则图中图形面积间数量关系可用等式4ab=(a+b)2﹣(a﹣b)2表示.解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故答案为:4ab=(a+b)2﹣(a﹣b)2.三、解答题.17.计算:(1)(y+3)(2y﹣1)(2)(2a2b﹣2ab2)÷(ab)(3)−3x2⋅(−x)2+8x⋅(−12 x)3(4)[(2x+y)2+(2x+y)(2x﹣y)]÷(2x)解:(1)原式=2y2﹣y+6y﹣3=2y2+5y﹣3;(2)原式=2a﹣2b;(3)原式=﹣3x2•x2+8x•(−18x 3)=﹣3x4﹣x4=﹣4x4;(4)原式=(4x2+4xy+y2+4x2﹣y2)÷(2x)=(8x2+4xy)÷(2x)=4x+2y.18.已知化简关于x代数式(x+a)(x﹣1)的所得结果中不会有x的一次项,求代数式:(a+19)2+2(a2﹣192)+(a﹣19)2的值.解:(x+a)(x﹣1)=x2+(﹣1+a)x﹣a,∵关于x代数式(x+a)(x﹣1)的所得结果中不会有x的一次项,∴﹣1+a=0,解得:a=1,(a+19)2+2(a2﹣192)+(a﹣19)2=[(a+19)+(a﹣19)]2=(2a)2=4a2=4×12=4.19.请在横线上填空:如图,AB∥DE,∠B=120°,∠D=135°,求∠DCF的大小.解:过B作BG∥CD交DE于G∴∠DCF=∠2(两直线平行,同位角相等)∴∠D=∠3(两直线平行,同位角相等)∵∠D=135°(已知)∴∠3=135°(等量代换)∴∠1+∠3=180°(两直线平行,同旁内角互补)∴∠1=45°(等式的性质)∵∠ABC=120°,∠ABC=∠1+∠2(已知)∴∠2=75°(等式的性质)∴∠DCF=75°(等量代换)解:过B作BG∥CD,交DE于G∴∠DCF=∠2(两直线平行,同位角相等)∴∠D=∠3(两直线平行,同位角相等)∵∠D=135°(已知)∴∠3=135°(等量代换)∵AB∥DE(已知)∴∠1+∠3=180°(两直线平行,同旁内角互补)∴∠1=45°(等式的性质)∵∠ABC=120°,∠ABC=∠1+∠2(已知)∴∠2=75°(等式的性质)∴∠DCF=75°(等量代换)故答案为:∠2,同位角相等,∠1,∠2,75°.20.阅读下列材料,并利用材料中使用的方法解决问题在学习完全平方公式时,老师提出了这样一个头号题:同学们,你们能判断代数式a2﹣2a+2的值和1的大小关系吗?小明作出了如下的回答:在老师所给的代数式中,隐藏着一个完全平方式,我可以把它找出来:a2﹣2a+2=a2﹣2•a•1+12+1=(a﹣1)2+1因为完全平方式是非负的,所以它的值一定大于等于0,余下的1为常数,所以有:a2﹣2a+2=(a﹣1)2+1≥1其中,我们将代数式a2﹣2a+2改写为一个含有完全平方式的代数式的方法称为配方,利用配方求解下列问题:(1)已知a2+b2﹣2a+4b+5=0,求a、b的值;(2)若变量x、y间的关系可用关系式y=x2+4x+5表示,求变量y的最小值;(3)记S=a2﹣2ab+2b2﹣2a+2b+6,求S的最小值.解:(1)∵a2+b2﹣2a+4b+5=(a﹣1)2+(b+2)2=0,∴a﹣1=0,b+2=0,即a=1,b=﹣2;(2)∵y=x2+4x+5=(x+2)2+1,且(x+2)2≥0,∴y≥1,∴变量y的最小值是1;(3)S=a2﹣2ab+2b2﹣2a+2b+6=a2﹣2a(b+1)+(b+1)2+b2+5=(a﹣b﹣1)2+b2+5,∴当a=1,b=0时,S有最小值是5.21.如图,已知AD∥BC,∠A=∠C,你认为直线AB与直线CD满足怎样的位置关系?请写出你的证明过程.解:AB∥CD,理由:∵AD∥BC,∴∠C+∠ADC=180°,∵∠A=∠C,∴∠A+∠ADC=180°,∴AB∥CD.22.如图所示,正方形ABCD的边长为3,点P从A出发按逆时针方向,以每秒3个单位的速度,在正方形的边上运动;点Q从A出发按顺时针的方向,以每秒1个单位的速度在正方形的边上运动,当P、O运动到重合时即停止,则在这个运动的过程中:(1)整个运动过程持续3秒;(2)连PQ,线段PQ将正方形ABCD分成两个部分,记包含点A的部分的面积为S,运动时间为t,则:①写出变量S与t之间的关系式;②求当t为多少时,线段PQ刚好将正方形ABCD分为面积相等的两部分.解:(1)设整个运动过程持续t秒,由题意得:t+3t=3×4,解得:t=3,即整个运动过程持续3秒;故答案为:3;(2)分三种情况:①当0<t≤1时,如图1所示:∵AP=3t,AQ=t,∴S=△APQ的面积=12AP×AQ=12×3t×t=32t2,即S=32t2(0<t≤1);当1<t≤2时,如图2所示:∵AQ=t,BP=3t﹣3,∴S=梯形ABPQ的面积=12(AQ+BP)×AB=12(t+3t﹣3)×3=6t−92,即S=6t−92(1<t≤2);当2<t≤3时,如图3所示:∵AQ=t,DQ=3﹣t,DP=9﹣3t,第 11 页 共 11 页∴S =正方形ABCD 的面积﹣△DPQ 的面积=3×3−12×(3﹣t )(9﹣3t )=−32t 2+9t −92, 即S =−32t 2+9t −92(2<t ≤3);②∵线段PQ 刚好将正方形ABCD 分为面积相等的两部分,∴S =12正方形ABCD 的面积=92,当0<t ≤1时,32t 2=92, 解得:t =±√3,不合题意舍去;当1<t ≤2时,6t −92=92,解得:t =32;当2<t ≤3时,−32t 2+9t −92=92,解得:t =3±3√2,不合题意舍去;综上所述,当t 为32秒时,线段PQ 刚好将正方形ABCD 分为面积相等的两部分.。
2018-2019学年广东省深圳市文汇中学七年级(下)期中数学试卷一、选择题1 .下列各题运算正确的是()A.x5+x5=x10B.x2•x6=x12 C.(2x2)3=6x6D.x5÷x2=x32.下列多项式的乘法中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y) C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)3.下列各式中,计算正确的是()A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y24.如图,由∠1=∠2,则可得出()A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠45.一个锐角为52°,则这个角的余角是()A.52°B.48°C.128°D.38°6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m7.下列说法正确的是()A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等8.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.229.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是()A.72°B.54°C.46°D.115°11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C.46°D.20°二、填空12.计算:()2+(π+2019)0﹣|﹣2|=.13.△ABC中,∠A+∠B=2∠C,则∠C=.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以(只需写出一个).15.若a+b=5,ab=,则a2﹣b2=.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20192﹣2019×2017 (用乘法公式)17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴=(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即=.在△ABC与△DEF中∠B=∠E(已知)=(已证)=(已证)∴△ABC≌△DEF.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN 于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:.2018-2019学年广东省深圳市文汇中学七年级(下)期中数学试卷参考答案与试题解析一、选择题1 .下列各题运算正确的是()A.x5+x5=x10B.x2•x6=x12 C.(2x2)3=6x6D.x5÷x2=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法和除法以及幂的乘方计算即可.【解答】解:A、x5+x5=2x5,错误;B、x2•x6=x8,错误;C、(2x2)3=8x6,错误;D、x5÷x2=x3,正确;故选D【点评】此题考查同类项、同底数幂的乘法和除法以及幂的乘方,关键是根据法则进行计算.2.下列多项式的乘法中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y) C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)【考点】平方差公式.【分析】根据平方差公式的形式:(a+b)(a﹣b)=a2﹣b2,结合各选项进行判断即可.【解答】解:A、不能用平方差公式计算,故本选项正确;B、变换成(y﹣x)(y+x),能用平方差公式计算,故本选项错误;C、变换成﹣(x﹣y)(x+y),能用平方差公式计算,故本选项错误;D、能用平方差公式计算,故本选项错误;故选A.【点评】本题考查了平方差公式,注意掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.3.下列各式中,计算正确的是()A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y2【考点】完全平方公式;平方差公式.【分析】利用完全平方公式化简,即可得到结果.【解答】解:A、(2a+b)2=4a2+4ab+b2,错误;B、(﹣a+b)(a﹣b)=﹣a2+2ab﹣b2,错误;C、(x+1)(﹣x﹣1)=﹣x2﹣x﹣1,错误;D、(﹣x﹣y)2=x2+2xy+y2,正确;故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.如图,由∠1=∠2,则可得出()A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠4【考点】平行线的判定.【分析】∠1与∠2是直线AB、CD被直线AC所截形成的内错角,利用内错角相等,两直线平行求解.【解答】解:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).故选B.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.一个锐角为52°,则这个角的余角是()A.52°B.48°C.128°D.38°【考点】余角和补角.【分析】根据互余的两角之和为90°,可得这个角的余角.【解答】解:90°﹣52°=38°,则这个角的余角是38°.故选D.【点评】本题考查了余角的知识,关键是掌握互余的两角之和为90°.6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 94=9.4×10﹣7.故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.下列说法正确的是()A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等【考点】余角和补角;同位角、内错角、同旁内角;全等三角形的判定.【分析】根据补角、同位角及全等三角形的判定定理,结合选项进行判断即可.【解答】解:A、一个角的补角定是锐角,说法错误,例如30°的补角是150°,为钝角,故本选项错误;B、只有两条平行线被被第三直线所截,同位角相等,故本选项错误;C、SSA不能判定三角形全等,故本选项错误;D、同角的余角相等,说法正确,故本选项正确.故选D.【点评】本题考查了余角和补角的知识,解答本题的关键是掌握同位角、互余和互补的定义.8.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.22【考点】等腰三角形的性质;三角形三边关系.【分析】分5是腰长和底边两种情况讨论求解即可.【解答】解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选D.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线、角平分线、高的定义对四个说法分析判断后利用排除法求解.【解答】解:①三角形的中线、角平分线、高都是线段,说法正确;②三角形的三条高所在的直线交于一点,三条高不一定相交,故三条高必交于一点的说法错误;③三条角平分线必交于一点,说法正确;④锐角三角形的三条高在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故三条高必在三角形内的说法错误;故选:B.【点评】本题考查了三角形的角平分线、中线、高线,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.熟记概念与性质是解题的关键.10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是()A.72°B.54°C.46°D.115°【考点】三角形内角和定理.【分析】由三角形内角和定理求出∠ABC+∠ACB=180°﹣∠A=130°,由角平分线的定义得出∠OBC+∠OCB=65°,再由三角形内角和定理即可求出∠BOC的度数.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵OB、OC分别平分∠ABC、∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°;故选:D.【点评】本题考查了三角形内角和定理、角平分线的定义;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C.46°D.20°【考点】等腰三角形的性质.【分析】根据三角形的内角和和外角的性质得到∠BDC=80°,∠A=54°,通过△ACD≌△BCE,得到∠B=∠A=54°,根据三角形的内角和即可得到结论.【解答】解:∵∠ADC=100°,∠ACD=26°∴∠BDC=80°,∠A=54°,∵AE=BD,∴AD=BE,在△ACD与△BCE中,,∴△ACD≌△BCE,∴∠B=∠A=54°,∴∠BCD=180°﹣∠B﹣∠BDC=46°.故选C.【点评】本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.二、填空12.计算:()2+(π+2019)0﹣|﹣2|=﹣.【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1﹣2=﹣﹣.故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.△ABC中,∠A+∠B=2∠C,则∠C=60°.【考点】三角形内角和定理.【分析】根据三角形的三个内角和是180°,结合已知条件求解.【解答】解:∵∠A+∠B+∠C=180°,∠A+∠B=2∠C,∴3∠C=180°,∠C=60°.故答案为60°.【点评】此题主要是三角形内角和定理的运用,注意整体代入求解.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以AC=DF或∠A=∠D或∠B=∠E(只需写出一个).【考点】全等三角形的判定.【专题】开放型.【分析】若添的条件是AC=DF,利用SAS可得出△ABC≌△DEF;若添的条件是∠A=∠D,利用AAS可得出△ABC≌△DEF;若添的条件是∠B=∠E,利用ASA可得出△ABC≌△DEF.【解答】解:若添的条件为AC=DF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添的条件是∠A=∠D,在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS);若添的条件是∠B=∠E,在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为:AC=DF或∠A=∠D或∠B=∠E.【点评】此题考查了全等三角形的判定,全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法),熟练掌握全等三角形的判定方法是解本题的关键.15.若a+b=5,ab=,则a2﹣b2=±20.【考点】因式分解-运用公式法;完全平方公式.【专题】计算题.【分析】将a+b=5两边平方,把ab=代入求出a2+b2的值,利用完全平方公式求出a﹣b的值,原式利用平方差公式分解,将各自的值代入计算即可求出值.【解答】解:已知等式a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,把ab=代入得:a2+b2=25﹣=,∴(a﹣b)2=a2+b2﹣2ab=﹣=16,即a﹣b=±4,则原式=(a+b)(a﹣b)=±20,故答案为:±20.【点评】此题考查了因式分解﹣运用公式法,以及完全平方公式,熟练掌握公式是解本题的关键.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20192﹣2019×2017 (用乘法公式)【考点】整式的混合运算.【分析】(1)直接利用多项式乘法求出即可;(2)直接利用平方差公式以及完全平方公式化简求出即可;(3)直接利用平方差公式以及完全平方公式化简求出即可;(4)首先利用平方差公式得出即可.【解答】解:(1)(a﹣b)(a+2b)=a2﹣2ab﹣ab﹣2b2=a2﹣2b2﹣3ab;(2)(x﹣y)2﹣(x+y)(x﹣y)=x2+y2﹣xy﹣(x2﹣y2)=x2+y2﹣xy﹣x2+y2=2y2﹣xy;(3)(m+2n﹣3)(m+2n+3)=(m+2n)2﹣9=m2+4n2﹣4mn﹣9;(4)20192﹣2019×2017=20192﹣(2019﹣2)(2019+2)=20192﹣(20192﹣4)=4.【点评】此题主要考查了整式的混合运算,正确利用乘法公式是解题关键.17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据绝对值和偶次方的非负性求出x、y的值,再化简代数式,最后代入求出即可.【解答】解:∵|x+2|+(y﹣1)2=0,∴x+2=0,y﹣1=0,∴x=﹣2,y=1,[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy)=[x2y2﹣4+9x2y2﹣12xy+4]÷(2xy)=(10x2y2﹣12xy)÷(2xy)=5xy﹣6=5×(﹣2)×1﹣6=﹣16.【点评】本题考查了绝对值,偶次方,整式的混合运算和求值的应用,能正确根据整式的运算法则进行计算是解此题的关键,注意:运算顺序.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴∠BCF=∠EFC(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE等式的性质∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即AC=.DF在△ABC与△DEF中∠B=∠E(已知)∠ACB=∠DFE(已证)AC=DF(已证)∴△ABC≌△DEF AAS.【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】首先证明∠ACB=∠DFE,然后根据等式的性质证明AC=DC,则利用AAS即可证得△ABC≌△DEF,从而证明.【解答】解:∵CB∥EF(已知),∴∠BCF=∠EFC(两直线平行,内错角相等),∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义),∴∠ACB=∠DFE 等式的性质,∵AF=DC(已知),∴AF﹣CF=DC﹣CF(等式性质),即AC=DF,在△ABC与△DEF中,∴△ABC≌△DEF (AAS).【点评】本题考查了全等三角形的判定,注意全等三角形的判定条件是三角形中对应相等的边和对应相等的角.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.【考点】全等三角形的判定.【专题】证明题.【分析】根据平行线的性质求出∠A=∠D,∠B=∠C,根据全等三角形的判定定理ASA推出即可.【解答】解:∵AB∥CD,∴∠A=∠D,∠B=∠C,在△ABO和△DCO中∴△ABO≌△DCO.【点评】本题考查了全等三角形的判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL定理.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以有可证△ABC≌△AED (SAS);(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD.在△ABC和△AED中,∴△ABC≌△AED(SAS).(2)∵由(1)知△ABC≌△AED∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE﹣∠ABC=∠AEB﹣∠AED,∴∠OBE=∠OEB.∴OB=OE.【点评】本题考查三角形全等的性质和判定方法,也涉及到等腰三角形的性质,判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN 于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:DE=BE ﹣AD.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;(2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE﹣AD.【解答】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又∵直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE﹣CD=AD﹣BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD﹣CE=BE﹣AD;DE、AD、BE之间的关系为DE=BE﹣AD.【点评】本题考查了三角形全等的判定与性质,关键是利用全等三角形对应线段相等,将有关线段进行转化.。
广东省深圳市文汇中学2015-2016学年七年级数学上学期期中试题说明:1.试题卷共4页,答题卡共4页。
考试时间90分钟,满分100分。
2.请在答题卡上填涂学校、班级、姓名、学号,不得在其它地方作任何标记。
3.答案必须写在答题卡指定位置上,否则不给分。
4、填空题解答题答案用蓝色、黑色钢笔或圆珠笔书写,不能用涂改液涂改带.一、选择题(每小题3分,共36分。
)每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上。
1.21-的相反数是(涂在答题卡上)A.21-B.–2 C.21D.22.下列各数中,是负数的是(涂在答题卡上)A.-(-12) B.-∣-12∣ C.21()2- D.∣-12∣3.某几何体的三视图如右图所示,则这个几何体是:A、圆柱B、正方体C、球D、圆锥4.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学计数法表示为:(涂在答题卡上)A、63.610⨯ B、436010⨯ C、23.610⨯ D、43.610⨯5. 下列计算结果正确的是(涂在答题卡上)A.088=-- B.532-=+-C.94)32(2-=- D.1624-=-6. -0.12(涂在答题卡上)A 是负数,但不是分数B 不是分数,是有理数C 是分数,不是有理数D 是分数,也是负数7.下图中,不是正方体的展开图形的是(涂在答题卡上)8.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是(涂在答题卡上)俯视图左视图主视图A 、a <bB 、0ab> C 、ab >0 D 、-a <-b 9.下列语句:①一个数的绝对值一定是正数; ②a -一定是一个负数;③没有绝对值为3-的数;④若a =a ,则a 是一个非负数;⑤数轴上离原点越远的数就越大;正确的有(涂在答题卡上)个. A 3 B 2 C 1 D 010. 用棋子按下面的规律摆图形,则摆第2015个图形需要围棋子是(涂答题卡)枚A 、6047B 、6044C 、6050D 、605311. 如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是(涂在答题卡上)A 、92cm B 、9π2cm C 、218cm π D 、218cm12.如果x 是一个两位数,现在把数字1放在它的右边,得到一个三位数,这个三位数是(涂在答题卡上)A 、1x +B 、101x +C 、1001x +D 、x+100二、填空题(每小题3分,共18分。
人教版七年级第二学期下册期中模拟数学试卷(含答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.(3分)下列实数中,无理数是()A.﹣2B.0C.πD.2.(3分)下列运算中错误的是()A.x2•x3=x5 B.x3•x3=2x3C.(﹣x)4•(﹣x)4=x8D.x•x3=x43.(3分)下列说法正确的是()A.1的平方根是1B.﹣49的平方根是±7C.的平方根是﹣2D.4是(﹣4)2的算术平方根4.(3分)已知x<y,则下列不等式一定成立的是()A.﹣x>﹣y B.1+x>1+y C.D.3x﹣3y>0 5.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣6.(3分)3﹣2可表示为()A.2B.﹣2C.D.7.(3分)下列各组数中,互为相反数的是()A.﹣2与﹣1B.﹣2与C.|﹣3|与3D.﹣3与8.(3分)一个长方形的长、宽分别是2x﹣3、x,则这个长方形的面积为()A.2x﹣3B.2x2﹣3C.2x2﹣3x D.3x﹣39.(3分)不等式3x﹣1<x+3的解集在数轴上表示正确的是()A.B.C.D.10.(3分)﹣27的立方根与的平方根之和为()A.0B.6C.0或﹣6D.﹣12或6 11.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.612.(3分)若不等式组无解,那么m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上.)13.(3分)9的平方根是.14.(3分)据统计,2017年全国普通高考报考人数约为9400000人,数据9400000用科学记数法表示为.15.(3分)若>5是关于x的一元一次不等式,则m=.16.(3分)计算:﹣|﹣2|=.17.(3分)不等式组的最大整数解为.18.(3分)对实数a、b,定义运算☆如下:a☆b.例如2☆3=2﹣3=.计算[2☆(﹣4)]×[(﹣3)☆(﹣2)]=.三、解答题:(本大题共8小题,共计66分.)19.(6分)计算:(π﹣3.14)0+++|﹣3|.20.(6分)解不等式:21.(8分)先化简,再求值:a2•a4﹣a8÷a2+(﹣a3)2÷(a6﹣2)0,其中a=﹣1.22.(8分)解不等式组:,并把解集在数轴上表示出来.23.(8分)先阅读下面的内容,再解决问题:例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.解:因为a2﹣2ab+2b2+6b+9=0所以a2﹣2ab+b2+b2+6b+9=0所以(a﹣b2)+(b+3)2=0所以a﹣b=0,b+3=0所以a=﹣3.b=﹣3根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求x y的值.24.(8分)化简求值:,其中x=﹣1,y=1.25.(10分)已知a、b为实数,且满足关系式|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a、b的值;(2)求+12的值.26.(12分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.2017-2018学年广西贺州市昭平县七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.(3分)下列实数中,无理数是()A.﹣2B.0C.πD.【分析】根据无理数的定义进行解答即可.【解答】解:∵=2是整数,∴﹣2、0、2是整数,故是有理数;π是无理数.故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)下列运算中错误的是()A.x2•x3=x5 B.x3•x3=2x3C.(﹣x)4•(﹣x)4=x8D.x•x3=x4【分析】直接利用同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、x2•x3=x5 ,正确,不合题意;B、x3•x3=x6,原式计算错误,符合题意;C、(﹣x)4•(﹣x)4=x8,正确,不合题意;D、x•x3=x4,正确,不合题意.故选:B.【点评】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3分)下列说法正确的是()A.1的平方根是1B.﹣49的平方根是±7C.的平方根是﹣2D.4是(﹣4)2的算术平方根【分析】根据平方根、算术平方根的性质和应用,逐项判定即可.【解答】解:∵1的平方根是±1,∴选项A不符合题意;∵﹣49<0,﹣49没有平方根,∴选项B不符合题意;∵的平方根是±2,∴选项C不符合题意;∵4是(﹣4)2的算术平方根,∴选项D符合题意.故选:D.【点评】此题主要考查了平方根、算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.(3分)已知x<y,则下列不等式一定成立的是()A.﹣x>﹣y B.1+x>1+y C.D.3x﹣3y>0【分析】直接根据不等式的性质判断即可.【解答】解:A、∵x<y,∴﹣x>﹣y,故本选项符合题意;B、∵x<y,∴1+x<1+y,故本选项不符合题意;C、∵x<y,∴,故本选项不符合题意;D、∵x<y,∴﹣3x﹣3y<0,故本选项不符合题意;故选:A.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣【分析】直接利用立方根的定义分析求出答案.【解答】解:﹣8的立方根是:=﹣2.故选:B.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.6.(3分)3﹣2可表示为()A.2B.﹣2C.D.【分析】直接利用负指数幂的性质计算得出答案.【解答】解:3﹣2==.故选:C.【点评】此题主要考查了负指数幂的性质,正确把握负指数幂的性质是解题关键.7.(3分)下列各组数中,互为相反数的是()A.﹣2与﹣1B.﹣2与C.|﹣3|与3D.﹣3与【分析】利用相反数的定义判断即可.【解答】解:﹣3和=|﹣3|=3,互为相反数,故选:D.【点评】此题考查了实数的性质,相反数,绝对值,以及立方根,熟练掌握相反数的定义是解本题的关键.8.(3分)一个长方形的长、宽分别是2x﹣3、x,则这个长方形的面积为()A.2x﹣3B.2x2﹣3C.2x2﹣3x D.3x﹣3【分析】根据长方形的面积公式即可求出答案.【解答】解:这个长方形的面积为:x(2x﹣3)=2x2﹣3x,故选:C.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.9.(3分)不等式3x﹣1<x+3的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式3x﹣1<x+3得,x<2,在数轴上表示为:.故选:D.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.10.(3分)﹣27的立方根与的平方根之和为()A.0B.6C.0或﹣6D.﹣12或6【分析】求出﹣27的立方根与的平方根,相加即可得到结果.【解答】解:∵﹣27的立方根为﹣3,的平方根±3,∴﹣27的立方根与的平方根之和为0或﹣6.故选:C.【点评】此题考查了实数的运算,涉及的知识有:平方根、立方根的定义,熟练掌握定义是解本题的关键.11.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.12.(3分)若不等式组无解,那么m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【解答】解:由①得,x<m,由②得,x>2,又因为不等式组无解,所以m≤2.故选:A.【点评】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上.)13.(3分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.14.(3分)据统计,2017年全国普通高考报考人数约为9400000人,数据9400000用科学记数法表示为9.4×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9400000=9.4×106,故答案为:9.4×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(3分)若>5是关于x的一元一次不等式,则m=0.【分析】运用一元一次不等式的定义直接可得.【解答】解:∵>5是关于x的一元一次不等式,∴2m+1=1∴m=0故答案为:0【点评】本题考查了一元一次不等式的定义,熟练运用不等式的定义解决问题是本题的关键.16.(3分)计算:﹣|﹣2|=0.【分析】直接利用立方根的性质以及绝对值的性质化简得出答案.【解答】解:原式=2﹣2=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(3分)不等式组的最大整数解为x=5.【分析】分别求出两个不等式的解集,可得不等式组的解集,即可求最大整数解.【解答】解:解x+1≥﹣3,解得:x≥﹣8,解x﹣2(x﹣3)>0,解得:x<6,∴不等式的解集为:﹣8<x<6∴最大整数解为:x=5故答案为:x=5,【点评】本题考查了一元一次不等式组的整数解,解答本题的关键是掌握一元一次不等式组的解法.18.(3分)对实数a、b,定义运算☆如下:a☆b.例如2☆3=2﹣3=.计算[2☆(﹣4)]×[(﹣3)☆(﹣2)]=.【分析】根据负整数指数幂a﹣p=计算即可.【解答】解:[2☆(﹣4)]×[(﹣3)☆(﹣2)]=2﹣4×(﹣3)2=×9=【点评】本题考查了实数的运算,熟练运用负指数幂运算是解题的关键.三、解答题:(本大题共8小题,共计66分.)19.(6分)计算:(π﹣3.14)0+++|﹣3|.【分析】直接利用负指数幂的性质以及立方根的性质和绝对值的性质分别化简得出答案.【解答】解:原式=1﹣3+4+3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)解不等式:【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:2x﹣3≥3x+15,2x﹣3x≥15+3,﹣x≥18,x≤﹣18.【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.21.(8分)先化简,再求值:a2•a4﹣a8÷a2+(﹣a3)2÷(a6﹣2)0,其中a=﹣1.【分析】原式利用同底数幂的乘除法则,以及积的乘方与幂的乘方运算法则计算,合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;【解答】解:解不等式①,得x<﹣3;解不等式②,得x≥﹣4;原不等式组的解集为﹣4≤x<﹣3,不等式组的解集在数轴上表示出来为:.【点评】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.(8分)先阅读下面的内容,再解决问题:例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.解:因为a2﹣2ab+2b2+6b+9=0所以a2﹣2ab+b2+b2+6b+9=0所以(a﹣b2)+(b+3)2=0所以a﹣b=0,b+3=0所以a=﹣3.b=﹣3根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求x y的值.【分析】已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出x y的值.【解答】解:∵x2+2y2+2xy﹣4y+4=0,∴(x+2)2+(y﹣2)2=0∴x=﹣2,y=2,∴x y=(﹣2)2=4.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.24.(8分)化简求值:,其中x=﹣1,y=1.【分析】根据积的乘方、同底数幂的乘除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:=[(﹣)+]=(﹣+)=x6y6﹣,当x=﹣1,y=1时,原式=(﹣1)6×16﹣=1﹣=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.25.(10分)已知a、b为实数,且满足关系式|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a、b的值;(2)求+12的值.【分析】(1)利用非负数的性质列出方程组,求出方程组的解即可得到a,b的值;(2)把a与b的值代入原式计算即可求出值.【解答】解:(1)∵|a﹣2b|+(3a﹣b﹣10)2=0,∴,解得:,则a,b的值分别为4,2;(2)当a=4,b=2时,原式=6﹣2+12=16.【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.26.(12分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【分析】(1)设每本文学名著x元,动漫书y元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著a本,动漫书为(a+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【点评】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.七年级下册数学期中考试题(含答案)一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.(3分)在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2B.3C.4D.53.(3分)下列运算正确的是()A.B.(﹣3)3=27C.=2D.=34.(3分)下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个B.1个C.2个D.3个5.(3分)点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)6.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1B.3C.4D.97.(3分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,﹣2)8.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°二、填空题.(每小题3分,共24分)9.(3分)的平方根为.10.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.11.(3分)已知x、y为实数,且+(y+2)2=0,则y x=.12.(3分)平方根等于它本身的数是.13.(3分)如图,直线l1,l2被直线l3所截,则图中同位角有对.14.(3分)在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为.15.(3分)若=1﹣x2,则x的值为.16.(3分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.三、解答题(共72分)17.(8分)计算(1)﹣+﹣;(2)|﹣|﹣(﹣)﹣|﹣2|.18.(8分)解下列方程(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.19.(8分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.20.(8分)已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.21.(8分)已知x+12的算术平方根是,2x+y﹣6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.22.(10分)如图,已知AB∥CD,AC平分∠DAB,且∠DCA=28°,∠B=96°.(1)求∠DCE的度数;(2)求∠D的度数.23.(10分)如图(a),已知∠BAG+∠AGD=180°,AE、EF、EG是三条折线段.(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.24.(12分)在直角坐标系中,已知线段AB ,点A 的坐标为(1,﹣2),点B 的坐标为(3,0),如图1所示.(1)平移线段AB 到线段CD ,使点A 的对应点为D ,点B 的对应点为C ,若点C 的坐标为(﹣2,4),求点D 的坐标;(2)平移线段AB 到线段CD ,使点C 在y 轴的正半轴上,点D 在第二象限内,连接BC ,BD ,如图2所示.若S △BCD =7(S △BCD 表示三角形BCD 的面积),求点C 、D 的坐标. (3)在(2)的条件下,在y 轴上是否存在一点P ,使=(S △PCD 表示三角形PCD 的面积)?若存在,求出点P 的坐标;若不存在,请说明理由.2017-2018学年湖北省黄冈市七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选:B.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.2.(3分)在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2B.3C.4D.5【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数.【解答】解:无理数有﹣π,,共3个.故选:B.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.3.(3分)下列运算正确的是()A.B.(﹣3)3=27C.=2D.=3【分析】根据算术平方根、立方根计算即可.【解答】解:A、,错误;B、(﹣3)3=﹣27,错误;C、,正确;D、,错误;故选:C.【点评】此题考查算术平方根、立方根,关键是根据算术平方根、立方根的定义计算.4.(3分)下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个B.1个C.2个D.3个【分析】根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(3分)点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.6.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1B.3C.4D.9【分析】依据平方根的性质列方出求解即可.【解答】解:∵一个正数的平方根是2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0.解得:a=﹣1.∴2a﹣1=﹣3.∴这个正数是9.故选:D.【点评】本题主要考查的是平方根的定义和性质,依据平方根的性质列出关于a的方程是解题的关键.7.(3分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,﹣2)【分析】可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【解答】解:∵M到x轴的距离为1,到y轴的距离为2,∴M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,﹣1).故选:C.【点评】考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.8.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A.【点评】本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.二、填空题.(每小题3分,共24分)9.(3分)的平方根为±3.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.10.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.11.(3分)已知x、y为实数,且+(y+2)2=0,则y x=﹣8.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.(3分)平方根等于它本身的数是0.【分析】根据平方根的定义即可求出平方根等于它本身的数.【解答】解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故填0.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.(3分)如图,直线l1,l2被直线l3所截,则图中同位角有4对.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:如图所示:∠1和∠3,∠2和∠4,∠8和∠6,∠7和∠5,都是同位角,一共有4对.故答案为:4.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.14.(3分)在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为(﹣2,6)或(﹣2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【解答】解:由点P(﹣2,3),PA∥y轴,PA=3,得在P点上方的A点坐标(﹣2,6),在P点下方的A点坐标(﹣2,0),故答案为:(﹣2,6)或(﹣2,0).【点评】本题考查了点的坐标,利用平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.15.(3分)若=1﹣x2,则x的值为±1或±或0.【分析】根据立方根,即可解答.【解答】解:∵=1﹣x2,∴1﹣x2=0或1﹣x2=﹣1或1﹣x2=1,∴x=±1或x=或x=0,故答案为:±1或±或0.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.16.(3分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.三、解答题(共72分)17.(8分)计算(1)﹣+﹣;(2)|﹣|﹣(﹣)﹣|﹣2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)﹣+﹣=2﹣﹣+1=1;(2)|﹣|﹣(﹣)﹣|﹣2|=﹣+﹣(2﹣)=2﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)解下列方程(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.【分析】(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可.【解答】解:(1)4x2=16,x2=4,x=±2;(2)x﹣1=﹣5,x=﹣4.【点评】本题考查了平方根和立方根,掌握它们的定义是解题的关键.19.(8分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′、B′、C′的坐标;(3)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【解答】解:(1)A(﹣2,﹣2),B(3,1),C(0,2);(2)△A′B′C′如图所示,A′(﹣3,0)、B′(2,3),C′(﹣1,4);(3)△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣7.5﹣1.5,=20﹣13,=7.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(8分)已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.【分析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴DG∥AB,∴∠DGC=∠BAC.【点评】本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.21.(8分)已知x+12的算术平方根是,2x+y﹣6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.【分析】(1)根据平方根、立方根,即可解答;(2)根据平方根,即可解答.【解答】解:(1)∵x+12的算术平方根是,2x+y﹣6的立方根是2.∴x+12==13,2x+y﹣6=23=8,∴x=1,y=12,(2)当x=1,y=12时,3xy=3×1×12=36,∵36的平方根是±6,∴3xy的平方根±6.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根.22.(10分)如图,已知AB∥CD,AC平分∠DAB,且∠DCA=28°,∠B=96°.(1)求∠DCE的度数;(2)求∠D的度数.【分析】(1)由平行线的性质得出同位角相等即可;(2)由平行线的性质得出∠BAC=∠DCA=28°,由角平分线得出∠DAB=2∠BAC=56°,再由平行线的性质得出同旁内角互补,即可得出结果.【解答】解:(1)∵AB∥CD,∴∠DCE=∠B=96°;(2)∵AB∥CD,∴∠BAC=∠DCA=28°,∵AC平分∠DAB,∴∠DAB=2∠BAC=56°,∵AB∥CD,∴∠D+∠BAD=180°,∴∠D=180°﹣56°=124°.【点评】本题考查了平行线的性质、角平分线的定义;熟记平行线的性质是解决问题的关键.23.(10分)如图(a),已知∠BAG+∠AGD=180°,AE、EF、EG是三条折线段.(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.【分析】(1)由∠E=∠F可知AF∥EG,又因为∠BAG+∠AGD=180°,所以AB∥CD,利用内错角相等即可求证;。
2014-2015学年广东省深圳市文汇中学七年级(下)期中数学试卷一、选择题(每小题3分,共36分,)1.下列各题运算正确的是( )A.x5+x5=x10B.x2•x6=x12C.(2x2)3=6x6D.x5÷x2=x32.下列多项式的乘法中,不能用平方差公式计算的是( )A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y)C.(x﹣y)(﹣x﹣y) D.(x﹣y)(y+x)3.下列各式中,计算正确的是( )A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y24.如图,由∠1=∠2,则可得出( )A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠45.一个锐角为52°,则这个角的余角是( )A.52°B.48°C.128°D.38°6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是( ) A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m7.下列说法正确的是( )A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等8.等腰三角形的一边长为4,另一边长为9,则它的周长为( )A.13 B.17 C.17或者22 D.229.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是( )A.①②B.①③C.②④D.③④10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是( )A.72°B.54°C.46°D.115°11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是( )A.72°B.54°C.46°D.20°二、填空(每小题3分,共12分)12.计算:()2+(π+2015)0﹣|﹣2|=__________.13.△ABC中,∠A+∠B=2∠C,则∠C=__________.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以__________(只需写出一个).15.若a+b=5,ab=,则a2﹣b2=__________.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20152﹣2013×2017 (用乘法公式)17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴__________=__________(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE__________∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即__________=.__________在△ABC与△DEF中∠B=∠E(已知)__________=__________(已证)__________=__________(已证)∴△ABC≌△DEF__________.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答__________;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:__________.2014-2015学年广东省深圳市文汇中学七年级(下)期中数学试卷一、选择题(每小题3分,共36分,)1.下列各题运算正确的是( )A.x5+x5=x10B.x2•x6=x12C.(2x2)3=6x6D.x5÷x2=x3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同类项、同底数幂的乘法和除法以及幂的乘方计算即可.解答:解:A、x5+x5=2x5,错误;B、x2•x6=x8,错误;C、(2x2)3=8x6,错误;D、x5÷x2=x3,正确;故选D点评:此题考查同类项、同底数幂的乘法和除法以及幂的乘方,关键是根据法则进行计算.2.下列多项式的乘法中,不能用平方差公式计算的是( )A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y)C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)考点:平方差公式.分析:根据平方差公式的形式:(a+b)(a﹣b)=a2﹣b2,结合各选项进行判断即可.解答:解:A、不能用平方差公式计算,故本选项正确;B、变换成(y﹣x)(y+x),能用平方差公式计算,故本选项错误;C、变换成﹣(x﹣y)(x+y),能用平方差公式计算,故本选项错误;D、能用平方差公式计算,故本选项错误;故选A.点评:本题考查了平方差公式,注意掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.3.下列各式中,计算正确的是( )A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y2考点:完全平方公式;平方差公式.分析:利用完全平方公式化简,即可得到结果.解答:解:A、(2a+b)2=4a2+4ab+b2,错误;B、(﹣a+b)(a﹣b)=﹣a2+2ab﹣b2,错误;C、(x+1)(﹣x﹣1)=﹣x2﹣x﹣1,错误;D、(﹣x﹣y)2=x2+2xy+y2,正确;故选D点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.如图,由∠1=∠2,则可得出( )A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠4考点:平行线的判定.分析:∠1与∠2是直线AB、CD被直线AC所截形成的内错角,利用内错角相等,两直线平行求解.解答:解:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).故选B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.一个锐角为52°,则这个角的余角是( )A.52°B.48°C.128°D.38°考点:余角和补角.分析:根据互余的两角之和为90°,可得这个角的余角.解答:解:90°﹣52°=38°,则这个角的余角是38°.故选D.点评:本题考查了余角的知识,关键是掌握互余的两角之和为90°.6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是( ) A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.下列说法正确的是( )A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等考点:余角和补角;同位角、内错角、同旁内角;全等三角形的判定.分析:根据补角、同位角及全等三角形的判定定理,结合选项进行判断即可.解答:解:A、一个角的补角定是锐角,说法错误,例如30°的补角是150°,为钝角,故本选项错误;B、只有两条平行线被被第三直线所截,同位角相等,故本选项错误;C、SSA不能判定三角形全等,故本选项错误;D、同角的余角相等,说法正确,故本选项正确.故选D.点评:本题考查了余角和补角的知识,解答本题的关键是掌握同位角、互余和互补的定义.8.等腰三角形的一边长为4,另一边长为9,则它的周长为( )A.13 B.17 C.17或者22 D.22考点:等腰三角形的性质;三角形三边关系.分析:分5是腰长和底边两种情况讨论求解即可.解答:解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选D.点评:本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是( )A.①②B.①③C.②④D.③④考点:三角形的角平分线、中线和高.分析:根据三角形的中线、角平分线、高的定义对四个说法分析判断后利用排除法求解.解答:解:①三角形的中线、角平分线、高都是线段,说法正确;②三角形的三条高所在的直线交于一点,三条高不一定相交,故三条高必交于一点的说法错误;③三条角平分线必交于一点,说法正确;④锐角三角形的三条高在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故三条高必在三角形内的说法错误;故选:B.点评:本题考查了三角形的角平分线、中线、高线,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.熟记概念与性质是解题的关键.10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是( )A.72°B.54°C.46°D.115°考点:三角形内角和定理.分析:由三角形内角和定理求出∠ABC+∠ACB=180°﹣∠A=130°,由角平分线的定义得出∠OBC+∠OCB=65°,再由三角形内角和定理即可求出∠BOC的度数.解答:解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵OB、OC分别平分∠ABC、∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°;故选:D.点评:本题考查了三角形内角和定理、角平分线的定义;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是( )A.72°B.54°C.46°D.20°考点:等腰三角形的性质.分析:根据三角形的内角和和外角的性质得到∠BDC=80°,∠A=54°,通过△ACD≌△BCE,得到∠B=∠A=54°,根据三角形的内角和即可得到结论.解答:解:∵∠ADC=100°,∠ACD=26°∴∠BDC=80°,∠A=54°,∵AE=BD,∴AD=BE,在△ACD与△BCE中,,∴△ACD≌△BCE,∴∠B=∠A=54°,∴∠BCD=180°﹣∠B﹣∠BDC=46°.故选C.点评:本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.二、填空(每小题3分,共12分)12.计算:()2+(π+2015)0﹣|﹣2|=.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=+1﹣2=﹣.故答案为:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.△ABC中,∠A+∠B=2∠C,则∠C=60°.考点:三角形内角和定理.分析:根据三角形的三个内角和是180°,结合已知条件求解.解答:解:∵∠A+∠B+∠C=180°,∠A+∠B=2∠C,∴3∠C=180°,∠C=60°.故答案为60°.点评:此题主要是三角形内角和定理的运用,注意整体代入求解.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以AC=DF或∠A=∠D或∠B=∠E(只需写出一个).考点:全等三角形的判定.专题:开放型.分析:若添的条件是AC=DF,利用SAS可得出△ABC≌△DEF;若添的条件是∠A=∠D,利用AAS可得出△ABC≌△DEF;若添的条件是∠B=∠E,利用ASA可得出△ABC≌△DEF.解答:解:若添的条件为AC=DF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添的条件是∠A=∠D,在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS);若添的条件是∠B=∠E,在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为:AC=DF或∠A=∠D或∠B=∠E.点评:此题考查了全等三角形的判定,全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法),熟练掌握全等三角形的判定方法是解本题的关键.15.若a+b=5,ab=,则a2﹣b2=±20.考点:因式分解-运用公式法;完全平方公式.专题:计算题.分析:将a+b=5两边平方,把ab=代入求出a2+b2的值,利用完全平方公式求出a﹣b的值,原式利用平方差公式分解,将各自的值代入计算即可求出值.解答:解:已知等式a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,把ab=代入得:a2+b2=25﹣=,∴(a﹣b)2=a2+b2﹣2ab=﹣=16,即a﹣b=±4,则原式=(a+b)(a﹣b)=±20,故答案为:±20.点评:此题考查了因式分解﹣运用公式法,以及完全平方公式,熟练掌握公式是解本题的关键.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20152﹣2013×2017 (用乘法公式)考点:整式的混合运算.分析:(1)直接利用多项式乘法求出即可;(2)直接利用平方差公式以及完全平方公式化简求出即可;(3)直接利用平方差公式以及完全平方公式化简求出即可;(4)首先利用平方差公式得出即可.解答:解:(1)(a﹣b)(a+2b)=a2﹣2ab﹣ab﹣2b2=a2﹣2b2﹣3ab;(2)(x﹣y)2﹣(x+y)(x﹣y)=x2+y2﹣xy﹣(x2﹣y2)=x2+y2﹣xy﹣x2+y2=2y2﹣xy;(3)(m+2n﹣3)(m+2n+3)=(m+2n)2﹣9=m2+4n2﹣4mn﹣9;(4)20152﹣2013×2017=20152﹣=20152﹣=4.点评:此题主要考查了整式的混合运算,正确利用乘法公式是解题关键.17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.考点:整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据绝对值和偶次方的非负性求出x、y的值,再化简代数式,最后代入求出即可.解答:解:∵|x+2|+(y﹣1)2=0,∴x+2=0,y﹣1=0,∴x=﹣2,y=1,[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy)=[x2y2﹣4+9x2y2﹣12xy+4]÷(2xy)=(10x2y2﹣12xy)÷(2xy)=5xy﹣6=5×(﹣2)×1﹣6=﹣16.点评:本题考查了绝对值,偶次方,整式的混合运算和求值的应用,能正确根据整式的运算法则进行计算是解此题的关键,注意:运算顺序.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴∠BCF=∠EFC(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE等式的性质∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即AC=.DF在△ABC与△DEF中∠B=∠E(已知)∠ACB=∠DFE(已证)AC=DF(已证)∴△ABC≌△DEFAAS.考点:全等三角形的判定与性质.专题:推理填空题.分析:首先证明∠ACB=∠DFE,然后根据等式的性质证明AC=DC,则利用AAS即可证得△ABC≌△DEF,从而证明.解答:解:∵CB∥EF(已知),∴∠BCF=∠EFC(两直线平行,内错角相等),∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义),∴∠ACB=∠DFE 等式的性质,∵AF=DC(已知),∴AF﹣CF=DC﹣CF(等式性质),即AC=DF,在△ABC与△DEF中,∴△ABC≌△DEF (AAS).点评:本题考查了全等三角形的判定,注意全等三角形的判定条件是三角形中对应相等的边和对应相等的角.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质求出∠A=∠D,∠B=∠C,根据全等三角形的判定定理ASA推出即可.解答:解:∵AB∥CD,∴∠A=∠D,∠B=∠C,在△ABO和△DCO中∴△ABO≌△DCO.点评:本题考查了全等三角形的判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL定理.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.考点:全等三角形的判定与性质.专题:证明题.分析:(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以有可证△ABC≌△AED(SAS);(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.解答:证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD.在△ABC和△AED中,∴△ABC≌△AED(SAS).(2)∵由(1)知△ABC≌△AED∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE﹣∠ABC=∠AEB﹣∠AED,∴∠OBE=∠OEB.∴OB=OE.点评:本题考查三角形全等的性质和判定方法,也涉及到等腰三角形的性质,判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:DE=BE﹣AD.考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;(2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE﹣AD.解答:解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又∵直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE﹣CD=AD﹣BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD﹣CE=BE﹣AD;DE、AD、BE之间的关系为DE=BE﹣AD.点评:本题考查了三角形全等的判定与性质,关键是利用全等三角形对应线段相等,将有关线段进行转化.。