1-2 古典概型和几何概型
- 格式:ppt
- 大小:504.00 KB
- 文档页数:16
古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。
若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。
2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。
它是基于长度、面积、体积等几何量与概率的结合。
二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。
2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。
三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。
2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。
而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。
3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。
而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。
4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。
而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。
5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。
而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。
6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。
而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。
7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。
四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。
这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。
古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。
②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。
5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。
古典概型注意:①列举法:适合于较简单得试验。
②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。
2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。
古典概型与几何概型知识点总结古典概型和几何概型是概率论中最基础的概率模型,它们分别适用于简单事件和几何事件的计算。
以下是古典概型和几何概型的知识点总结:一、古典概型:1.古典概型是指事件的样本空间具有有限个数的元素,样本点的概率相等。
2.样本空间是指实验中所有可能的结果的集合,例如掷一枚骰子的样本空间为{1,2,3,4,5,6}。
3.事件是样本空间的子集,例如“掷一枚骰子,出现的点数为偶数”的事件为{2,4,6}。
4.古典概型的概率计算公式为:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A包含的样本点个数,n(S)为样本空间的样本点个数。
5.古典概型的概率计算要求样本点的概率相等,且样本点的个数有限。
二、几何概型:1.几何概型是指事件的样本空间是一个几何图形,而不是有限个元素。
2.在几何概型中,事件的概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
3.几何概型的概率计算需要使用几何图形的面积或体积的计算方法,例如计算矩形的面积为长乘以宽,计算圆的面积为π乘以半径的平方。
4.几何概型可以应用于连续变量的概率计算,例如计算一些范围内的事件发生的概率。
5.几何概型的概率计算要求事件与样本空间之间存在其中一种几何关系,例如事件发生的可能性与事件所占的几何图形的面积或体积成正比。
综上所述,古典概型适用于简单事件且样本空间的样本点个数有限的情况,其概率计算公式为P(A)=n(A)/n(S);几何概型适用于事件的样本空间是一个几何图形的情况,概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
掌握古典概型和几何概型的知识点,能够帮助我们更好地理解和计算事件的概率,为概率论的进一步学习奠定基础。
古典概型与几何概型知识点总结古典概型和几何概型是概率论中的两种常见概型,它们分别基于不同的概率空间的划分方式。
下面将对古典概型和几何概型的知识点进行总结。
古典概型(Classical Probability Model)是指概率实验基本样本点是有限个的概率模型。
在古典概型中,样本空间中的每一个样本点发生的机会相同,且样本空间中所有的样本点构成一个有限集合。
在古典概型中,我们通常会利用排列组合的方法来计算事件的概率。
以下是古典概型的一些重要知识点:1.样本空间和事件:样本空间是指一个概率实验中所有可能结果的集合,用Ω表示。
事件是样本空间的一个子集,表示我们感兴趣的结果。
2.事件的概率:在古典概型中,事件A的概率P(A)等于A中的样本点数目除以样本空间中的样本点总数。
即P(A)=,A,/,Ω。
3.加法法则:如果A和B是两个互不相容的事件(即A∩B=Ø),那么两个事件的并事件A∪B的概率等于事件A和事件B的概率之和。
即P(A∪B)=P(A)+P(B)。
4.乘法法则:如果A和B是两个独立事件,即事件A的发生与事件B的发生无关,那么两个事件的交事件A∩B的概率等于事件A的概率乘以事件B的概率。
即P(A∩B)=P(A)*P(B)。
几何概型(Geometric Probability Model)是指概率实验的样本空间是由几何构造组成的。
在几何概型中,样本空间通常是一个几何形状,概率的计算涉及到几何图形的面积或长度。
以下是几何概型的一些重要知识点:1.区间概率:对于一些连续型随机变量,概率可以通过计算指定区间的长度、面积或体积来求解。
这种类型的概率常常与几何图形的几何属性相关。
例如,对于均匀分布的连续随机变量,一个给定区间[a,b]内事件发生的概率等于区间长度除以总长。
2. 概率密度函数:对于连续型随机变量,其概率密度函数(Probability Density Function,PDF)描述了随机变量的可能取值的相对可能性。
古典概型和几何概型的区别
相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的。
不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关。
(1)试验中所有可能出现的基本事件有无限多个。
(2)每个基本事件出现的可能性相等。
(3)几何概型求事件A的概率公式:
PA=构成事件A的区域长度面积或体积/实验的全部结果所构成的区域长度面积或体积(1)试验中所有可能出现的基本事件是有限的。
(2)每个基本事件出现的可能性相等。
(3)古典概型求事件A的概率公式:
PA=事件A可能发生的结果数/实验发生的所有等可能的结果数
例题:某人午觉醒来发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。
分析:收音机每小时报时一次,某人午觉醒来的时刻在两次整点报时之间都是等可能的,且醒来的时刻有无限多个的,因而适合几何概型。
感谢您的阅读,祝您生活愉快。