三角波发生电路设计之欧阳光明创编
- 格式:doc
- 大小:89.52 KB
- 文档页数:5
西安文理学院物理与机械电子工程学院欧阳歌谷(2021.02.01)课程设计报告专业班级课程电子技术课程设计题目方波三角波波形发生器的设计学号学生姓名指导教师2013年12西安文理学院机械电子工程系课程设计任务书学生姓名专业班级学号指导教师职称教研室自动化课程电子技术课程设计题目方波、三角波波形发生器的设计任务与要求任务:设计能产生方波、三角波波形信号输出的波形发生器。
1.输出的各种波形工作频率范围0.02Hz~10k Hz连续可调;2.方波幅值10V;3.三角波峰-峰值20V;各种输出波形幅值均连续可调;4.设计电路所需的直流电源。
要求:1.根据设计任务和指标,初选电路;2.通过调查研究、设计计算,确定电路方案。
开始日期 2013.12.13 完成日期 2013.12.272013年 12 月 27 日目录设计目的 (4)设计任务和要求 (4)总体设计方案 (5)功能模块设计与分析 (10)电路的安装与调试 (14)实验仪器及元器件清单 (14)心得体会 (16)一、设计目的1.掌握方波—三角波产生电路的设计方法及工作原理;2.掌握电子系统的一般设计方法;3.掌握常用原件的识别和测试;4.掌握模拟电路的安装测量与调试的基本技能;5.培养实事求是,严谨的工作态度和严肃的工作作风。
二、设计任务和要求任务:设计能产生方波、三角波波形信号输出的波形发生器。
1.方波幅值10V;2.输出的各种波形工作频率范围0.02Hz~10k Hz连续可调;3.三角波峰-峰值20;各种输出波形幅值均连续可调;4.设计电路所需的直流电源。
要求:1.根据设计任务和指标,初选电路;2.通过调查研究、设计计算,确定电路方案。
三.总体设计方案方案一,框图如下图1所示:图1 多种波形发生器原理框图(方案一)文氏桥振荡器(RC串-并联正弦振荡器)产生正弦波输出,其主要特点是采用RC串-并联网络作为选频和反馈网络,其振荡频率为f0=1/(2RC),改变RC的值,可得到不同频率的正弦信号输出。
模拟电子技术——课程设计报告题目:函数波形发生器专业:应用电子技术班级:应用电子技术(五)班学号: 0906020129姓名:刘洪小组成员:刘洪阙章明日期:2010-6-24目录(信号发生器)1 函数发生器的总方案及原理框图 (1)1.1电路设计原理框图 (1)1.2 电路设计方案设计 (1)2设计的目的及任务 (2)2.1 课程设计的目的 (2)2.2 课程设计的任务 (2)2.3课程设计的要求及技术指标 (2)3 各部分电路设计 (3)3.1总电路图 (3)3.2正弦波产生电路的工作原理、仿真及结果 (3)3.3 正弦波-方波发生电路的工作原理、仿真及结果 (4)3.4方波-三角波转换电路的工作原理、仿真及结果 (5)3.5电路的参数选择及计算 (5)4 电路的安装与调试 (7)4.1 正弦波发生电路的安装与调试 (7)4.2方波-三角波的安装与调试 (7)4.3总电路的安装与调试 (7)5 电路的实测结果 (8)5.1 正弦波发生电路的实测结果 (8)5.2正弦波-方波转换电路的实测结果 (8)5.3 方波-三角波转换电路的实测结果 (8)5.4 实测电路波形、误差分析及改进方法 (8)5.5 电路安装与调试中遇到的问题及分析解决方法 (8)6 实验总结 (9)7 仪器元件明细清单 (9)8 参考文献 (9)1函数发生器的总方案及原理框图1.1电路设计原理框图正弦波振荡器过零电压比较器积分器图1.1 函数发生器原理框图1.2电路设计方案设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片机函数发生器模块8038、集成运放管ua741)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用集成运算放大器与比较器、积分器共同租成的正弦波——方波——三角波函数发生器的设计方法。
正弦波方波三角波发生电路设计正弦波、方波、三角波是最基本且常见的三种波形,它们在电路设计和信号处理中都扮演着重要的角色。
本文将分别介绍正弦波、方波、三角波的定义和性质,以及各自的发生电路设计。
一、正弦波正弦波又称余弦波,是一种连续的周期波形。
它在医学、物理、工程等领域都有广泛的应用,例如在音频信号、交流电电压、电子设备测试等方面。
正弦波的特点是相邻点之间的函数值呈恒定的周期波动,可以表达为如下形式:s(t) = A*sin(ωt + φ)其中,A是振幅,ϖ是角频率,t是时间,φ是初始位相。
正弦波的发生电路通常采用谐振电路,它的原理是在一个由电感L和电容C构成的电路中,电容C和电感L之间的能量不断地在两者之间转换,从而形成一种振荡现象。
二、方波方波是一种以矩形波形为特点的电压或电流信号。
它的主要特点是周期性变化的幅度在等时刻内有两个值,从而形成了一种方形波形。
方波在数字电路设计、计算机科学等领域中广泛应用。
正如所提到的,方波的每个周期平均而言都是0,并且其平均值为周期内所有0和1的幅度之和的平均值。
方波可以由许多方法生成,其中一个常见的方法是使用555定时器。
三、三角波三角波是一种以三角形形状为特征的波形。
它在音频合成、信号处理、电力电子、仪器仪表等方面有广泛的应用。
三角波的每个周期都包含三种状态,即负斜率、零斜率和正斜率,从而创建了像三角形一样的外观。
三角波的发生电路是使用一个以放大器为基础的单元,该单元包含一个与反馈电容相连接的积分器。
作为输入的脉冲波被转换为三角波,而反馈电容C使输出波形的斜率恒定。
可以通过调整计时常数、放大器增益和电容C的大小来调整三角波的频率和振幅。
高精度三角波发生电路设计及仿真分析1. 引言三角波发生电路广泛应用于信号发生器、频率比较器和功率变换等领域。
本文旨在设计一种高精度的三角波发生电路,并通过仿真分析验证其性能。
2. 设计原理三角波发生电路一般采用积分器和比较器的组合。
其中,积分器用于生成一个随时间线性增加或减小的电压波形,比较器则用于将积分结果与参考电压进行比较,从而产生三角波。
设计一个高精度的三角波发生电路需要考虑以下因素:2.1 选取合适的积分器电路常用的积分器电路有反馈电容式和电压控制电压源(VCCS)等。
反馈电容式积分器简单可靠,但存在漂移和温度敏感性较大的问题。
相比之下,VCCS积分器对漂移和温度的依赖性较小,但在设计和布线上较为复杂。
根据需求选择适合的积分器电路。
2.2 参考电压源的选择参考电压源用于比较器的输入,一般为一个稳定的直流电压。
可选用电阻分压电路、稳压二极管或精度较高的运放电路作为参考电压源。
选取合适的参考电压源可以有效提高发生波形的精度。
2.3 比较器设计比较器用于将积分器输出的波形与参考电压进行比较。
常用的比较器电路有固定阈值比较器、比较器芯片等。
为提高精度,可采用电路补偿技术,并根据需求选择高性能的比较器芯片。
3. 电路图设计基于上述设计原理,我们可以绘制如下的高精度三角波发生电路图:(电路图请自行设计,这里仅提供设计思路)4. 仿真分析使用电子仿真软件对所设计的高精度三角波发生电路进行仿真分析,可以验证其性能和精度。
4.1 建立仿真模型将所设计的电路图导入仿真软件,并设置合适的参数和工作条件。
注意考虑元件的非理想性,如电容的等效串并联电阻、比较器的漂移等。
4.2 验证性能指标根据设计要求,设置仿真测量点并记录三角波的频率、峰峰值、上升时间、下降时间、线性度等指标。
4.3 分析结果根据仿真结果分析电路的性能,如精度、稳定性、非线性失真等。
如有需要,可以对某些参数进行调整和优化,再次进行仿真分析,直至满足设计要求。
波形产生电路实验报告时间:2021.03.09 创作:欧阳法一、实验目的1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法;2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。
二、实验内容1. 正弦振荡电路实验电路图如下图所示,电源电压为。
(1)缓慢调节电位器,观察电路输出波形的变化,解释所观察到的现象。
(2)仔细调节电位器,使电路输出较好的正弦波形,测出振荡频率和幅度以及相对应的之值,分析电路的振荡条件。
(3)将两个二极管断开,观察输出波形有什么变化。
2. 多谐振荡电路(1)按图2 安装实验电路(电源电压为±12V)。
观测、波形的幅度、周期(频率)以及的上升时间和下降时间等参数。
(2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即为矩形波,为锯齿波。
要求锯齿波的逆程(电压下降段)时间大约是正程(电压上升段)时间的 20% 左右。
观测、的波形,记录它们的幅度、周期(频率)等参数。
3. 设计电路测量滞回比较器的电压传输特性。
三、预习计算与仿真 1. 预习计算(1)正弦振荡电路由正反馈的反馈系数为:由此可得RC 串并联选频网络的幅频特性与相频特性分别为易知当RC10==ωω时,•fV 和•o V 同相,满足自激振荡的相位条件。
若此时f3v A >,则可以满足f 1v A F >,电路起振,振荡频率为000111994.7Hz 1.005ms 2216k 10nF f T RC f ππ=====⨯Ω⨯,。
若要满足自激振荡,需要满足f vA F在起振前略大于1,而max 1 3F=,令f3vA=,即满足条件的Rw应略大于10kΩ。
(2)多谐振荡电路对电路的滞回部分,输出电压,当时,可以得到。
由,所以得到:。
2. 仿真分析(1)正弦振荡电路仿真电路图:仿真得到的测量数据总结如下(具体见仿真报告):(1)为0时,无波形产生(2)调节恰好起振时频率峰值/V 仿真值10.15 987.17 1.555 (3)调节使输出电压幅值最大频率峰值/V 仿真值17.81 987.17 10.388 (2)多谐振荡电路仿真电路图:得到的数据整理如下:幅度/V周期/us上升时间/us下降时间/us幅度/V周期/us仿真值6.535 409.09 208.33 204.55 2.907 420.46 (3)矩形波和锯齿波发生电路仿真电路图:仿真结果整理如下:幅度/V周期/ms上升时间/ms下降时间/ms幅度/V周期/ms 仿真值6.539 1.600 1.335 0.265 2.804 1.600 (4)滞回比较器电压传输特性的测量仿真电路图:仿真结果整理如下:仿真值-2.197 2.197 -6.540 6.540四、实验数据记录与处理1. 正弦振荡电路(1)为0时,无波形产生(2)调节恰好起振时频率峰值/V 理论值10.0 994.7 ———仿真值10.15 987.17 1.555实验值10.33 1024.1 0.905相对误差/% 3.3 2.96 -41.8此时的波形:(3)调节使输出电压幅值最大频率峰值/V 理论值———994.7 ———仿真值17.81 987.17 10.388实验值18.52 932.63 10.250相对误差/% 3.99 -6.24 -1.33此时的波形:(4)将两个二极管断开观察从小打大变化时的波形是如何变化的调节电阻使得恰好起振时的波形和继续调大电阻后的输出电压波形依次为:由波形变化可以看出,当调节电阻使得电路刚好出现振荡时输出电压幅值就已经到达最大值,并且有一点的失真现象,当继续调大电阻时,输出电压波形失真更加严重。
三角波发生电路设计由积分回路同向和反向输入端“虚短”“虚断”u p2= u n2=0,从而可知u o =u p2.由于t 0时电容两端电压为了零,所以 u o =0,而u 01=+Uz ,故u p1也为正。
而当u o1=+Uz 时,经反向积分,输出电压u o 将随着时间往负方向线性增长,则u p1将随之逐渐减小,当减小至u p1=u n1=0时,滞回比较器的输出端电压发生跳变,使u o1由+Uz 跳变为-Uz ,此时u p1也将跳变成为一个负值。
当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,u p1将又逐渐增大,当增大至u p1= u n1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。
如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。
滞回比较器和积分电路特性:2)输出幅度: 在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此图3 电路的图 2 电压输时u p1也随着增长,当增长至u p1= u n1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。
将条件u o1=-Uz ,u+=0和u o =Uom 代入上式,可得om )(0212211U R R R Uz R R R ++-+= 可解得三角波的输出幅度为z 21omU R R U = 3)周期频率: 在积分电路对u o1=-Uz 进行积分的半个振荡周期内,输出电压u o 由-Uom 上升至+Uom ,则对积分电路可列出一下表达式:⎰=--203om 2dt )z (1TU U CR 即om 22z 3U T C R U =⋅ 所以三角波的振荡周期为23134z om 4R C R R U CU R T ==三角波震荡频率: 2134R f R R C =三角波的输出幅度与稳压管的Uz 以及电阻值之比R 1/R 2成正比。
波形发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。
指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V(1)方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。
2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。
3、把方波信号通过一个积分器。
转换成三角波。
方案二:1、由滞回比较器和积分器构成方波三角波产生电路。
2、然后通过低通滤波把三角波转换成正弦波信号。
方案三:1、由比较器和积分器构成方波三角波产生电路。
2、用折线法把三角波转换成正弦波。
(2)方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。
当R1=R2、C1=C2。
即f=f0时,F=1/3、Au=3。
然而,起振条件为Au略大于3。
实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。
如果R4/R3大于2时,正弦波信号顶部失真。
调试困难。
RC串、并联选频电路的幅频特性不对称,且选择性较差。
因此放弃方案一。
方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。
比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。
通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。
然而,指标要求输出频率分别为102H Z、103H Z和104Hz。
因此不满足使用低通滤波的条件。
放弃方案二。
方案三:方波、三角波发生器原理如同方案二。
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。
因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。
而且折线法不受频率范围的限制。
三角波发生电路0到5v
三角波发生电路是一种电子电路,它能够生成在0到5伏特之间变化的三角波形信号。
这种电路通常使用高速运算放大器(如OPA357AIDBVR)为核心组件,配合电阻、电容等元件来构成。
电路的基本工作原理是通过同相滞回比较电路和积分电路的组合来实现三角波形的生成。
同相滞回比较电路用于产生方波信号,而积分电路则将方波信号转换为三角波信号。
在电路的设计中,需要考虑到输出信号的幅值和频率等参数。
为了使三角波信号的幅值在0到5伏特之间变化,可以通过调整电阻和参考电压等参数来实现。
例如,可以设定电阻R1和R2的值,以及参考电压Vref,来控制运放的输出范围。
同时,为了使三角波信号的频率达到预期值,可以设定电阻R3和电容C的值,来调整积分电路的时间常数。
需要注意的是,在设计三角波发生电路时,还需要考虑到电路的稳定性和可靠性等因素。
例如,需要选择合适的元件,避免电路出现过载或短路等故障。
此外,还需要进行电路测试和调试,以确保电路的性能和稳定性符合要求。
综上所述,三角波发生电路是一种重要的电子电路,它能够生成在0到5伏特之间变化的三角波形信号。
通过合理的设计和调试,可以实现电路的稳定性和可靠性,从而满足各种应用场景的需求。
正弦波﹑方波﹑三角波的发生电路设计摘要现今世界中电子技术与电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
因此如何根据实际要求设计出简便实用的电子技术物品便显得尤为重要。
灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
能将简单的易获取的信号转换为自己所需的复杂信号是一项必不可少的技术。
我们有必要做好这相关方面的研究,为被测电路提供所需要的信号及各种波形,以便完成各种相关试验。
信号源在各种试验应用和实验测试处理中,仿真各种测试信号,提供给被测电路,用来满足实验的各种要求。
关键词:单片机,信号发生器,波形ABSTRACT:The application of electronic technology and electronic products in today's world increasingly extensive, people also more and more high to the requirement of electronic technology. According to actual requirements so how to design simple and practical electronic technology items, it becomes very important. Flexible, fast, choose different characteristics of the signal source is worth studying deeply the modern measuring technology. Can be simple, easy to obtain signal can be converted into their complex signal is an essential technology. It is necessary for us to do the related research, to provide the required signal circuit under test and various waveform, to complete various related experiment. Signal source in various test application and test processing, simulation of testing signal, provided to the circuit under test, to satisfy the requirements of the experiments.KEY WORDS:Microcontroller, signal generator, waveform毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
课程设计说明书欧阳歌谷(2021.02.01)课程设计名称:模拟电子技术课程设计题目:方波-三角波-正弦波波函数转换器的设计学院名称:信息工程学院专业:电子信息科学与技术班级:100431学号:10043102 姓名:评分:教师:20 12 年 4 月 3 日模拟电子技术课程设计任务书20 11 -20 12年第二学期第一周至第二周摘要信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
常用超低频信号发生器的输出只有几个固定的波形,不能更改。
本设计将介绍由集成运算放大器组成的方波-----三角波----正弦波函数发生器的设计方法,了解多功能集成电路函数信号发生器的功能及特点,进一步掌握波形参数的测试方法。
制作这种低函数信号发生器成本较低,适合学生学习电子技术测量使用。
制作时只需要个别的外部元件就能产生从1—10HZ,10—100HZ的低失真正弦波、三角波、矩形波等脉冲信号。
输出波形的频率和占空比还可以由电流或电阻控制。
其中比较器与积分电路和反馈网络(含有电容元器件)组成振荡器,其中比较器产生的方波通过积分电路变换成了三角波,电容的充,放电时间决定了三角波的频率。
最后利用差分放大器传输特性曲线的非线性特点将三角波转换成正弦波。
通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:KIA324P、电源、波形、比较器、积分器、转换器电路、Multisim、网络、函数发生器的设计目录第一章设计任务1.1设计任务1.2设计要求第二章函数转换器的系统组成2.1原理框图2.2原理分析2.3放大器功能及管脚图第三章系统中各模块设计3.1方波-三角波3.2三角波-正弦波转换电路第四章电路调试4.1安装方波——三角波产生电路4.2调试方波——三角波产生电路4.2调试方波——三角波产生电路第五章系统调试5.1调试工具5.2调试结果六结论及心得体会七参考文献附表:1元器件清单2电路图3仿真图一、设计任务1.1 任务设计制作一个产生方波-三角波-正弦波波函数转换器1.2 要求①输出波形频率范围为0.02Hz~20kHz且连续可调;②正弦波幅值为±2V;③方波幅值为2V;④三角波峰-峰值为2V,占空比可调。
三角波产生电路设计英文回答:Triangle Wave Generator Circuit Design.Triangle wave generator circuits are used in a wide variety of applications, such as signal generators,function generators, and audio synthesizers. They produce a triangular waveform, which is a periodic waveform that has a linear rising edge and a linear falling edge.There are many different ways to design a triangle wave generator circuit. One common design is the integrator-comparator circuit. This circuit uses an integrator to generate a sawtooth waveform, and then a comparator to convert the sawtooth waveform into a triangle waveform.The integrator is a circuit that integrates the input signal. This means that the output of the integrator is proportional to the integral of the input signal. In thecase of a triangle wave generator, the input signal is a square wave. The output of the integrator is a sawtooth waveform.The comparator is a circuit that compares two input signals. In the case of a triangle wave generator, the two input signals are the output of the integrator and a reference voltage. The output of the comparator is a square wave. The square wave is used to reset the integrator.The frequency of the triangle waveform is determined by the values of the resistors and capacitors in theintegrator and comparator circuits. The amplitude of the triangle waveform is determined by the reference voltage.中文回答:三角波发生器电路设计。
三角波发生器电路图如图所示,这是一个具有恒流充电和恒流放电的变形多谐振荡器,恒流源I1由VT1控制。
当VT1导通时3脚呈高电平,VT2导通,I1对C2充电,充电速度为Dv0/Dt=当C2电压达到阕值电平均2/3VDD 时,555被复位,3脚呈低电平,VT1截止,I1=0,C2通过VT3,RP1,D4放电,当放至触发电平1/3V DD 时,555又被置位,输出高电平,开始第二周期的充电。
本电路的振荡频率可达,100KHZ 。
三.实验原理方波、三角波发生器由电压比 C 2较器和基本积分器组成,如图1所示。
u o1 C 1运算放大器A 1与R 1、R 2、R 3 A 1及R w1、D z1、D z2组成电压比较器; R 4 R W A 2 u o2 运算放大器A 2与R 4、R w2、R 5、C 1 R 1 R 3 R W及C 2组成反相积分器,比较器与 R 5积分器首尾相连,形成闭环电路, R 2 D Z1构成能自动产生方波、三角波的发 D Z2生器(请参考基础型实验中的方波、三角波发生电路)。
图1 方波、三角波发生器电路图电路参数:1.方波的幅度: U o1m = U z (1)2.三角波的幅度: z w m o U R R R U 1322+= (2)3.方波、三角波的频率: C R R R R R f w w )(424213++= (3) 其中C 可选择C 1或C 2。
从式(2)和(3)可以看出,调节电位器R w1可改变三角波的幅度,但会影响方波、三角波的频率;调节电位器R w2可改变方波、三角波的频率,但不会影响方波、三角波的幅度。
三角波产生电路,如图所示为通用三角波产生电路,该电路中,运算放大器A1,A2是正负峰值检波积分器,C1为保持电容。
该电路能适应很宽的测试范围,具有很好的线性和振幅稳定性。
振荡频率取决于积分时间常数R3,C2,若VA=8V ,这时的振荡频率为1KHZ 。
电容C1与C2的比值取20:1。
目录1.2.设计要求 (2)3.总体方案 (2)4.设计原理 (3)3.1 总体电路图 (3)3.1.1 硬件电路分析······································· (3)3.1.2 差分式放大电路······································· (4)3.1.3 镜像恒流源电路······································· (4)3.2 设计所用软件简介········································· (5)5.原理分析与计算 (5)6.电路的仿真分析及结果 (6)7.实物连接与调试结果 (8)8.此次设计过程中所遇到的问题及解决措施 (11)9.设计的心得体会 (12)10.参考文献 (12)1.设计要求在研制、生产、使用、测试和维修各种电子元器件、部件以及整机设备时,都需要有信号源,由它产生不同频率、不同波形的电压、电流信号并加到被测器件、设备上,用其他测量仪器观察、测量被测者的输出响应,以分析和确定它们的性能参数。
课程设计(论文)说明书欧阳光明(2021.03.07)题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and throughthe triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NIMultisim, youcan immediately create a complete componentlibrary circuitdiagram, and the use of 0 industry standard SPICEsimulator to mimic circuit behavior. This design is the use of Multisimsoftware in circuit diagram and carry out simulationKey words:power,waveform,comparator,an目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器-------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
电子技术课程设计说明书题目:555定时器构成的方波、三角波、正弦波发生器系部:歌尔科技学院专业:班级:2013级1班学生姓名:学号:指导教师:年月日目录1 设计任务与要求12 设计方案12.1 设计思路12.1.1 方案一原理框图12.1.2 方案二原理框图22.2 函数发生器的选择方案22.3 实验器材33 硬件电路设计43.1 555定时器的介绍43.2 电路组成43.3 引脚的作用53.4 基本功能54 主要参数计算与分析74.1 由555定时器产生方波74.2 由方波输出为三角波94.3 由三角波输出正弦波105 软件设计125.1 系统组成框图125.2 元件清单136 调试过程146.1 方波---三角波发生电路的安装与调试146.1.1 按装方波——三角波产生电路146.1.2 调试方波——三角波产生电路146.2 三角波---正弦波转换电路的安装与调试146.2.1 按装三角波——正弦波变换电路146.2.2 调试三角波——正弦波变换电路146.2.3 总电路的安装与调试156.2.4 调试中遇到的问题及解决的方法157 结论168 附录178.1 用mulstisim 12设计的方波仿真电路图如图8-1178.2 用mulstisim 12设计的三角波仿真电路图如图8-3188.3 用mulstisim 12设计的正弦波仿真电路图如图8-5198.4 电源参考电路图20参考文献211 设计任务与要求(1) 555定时器构成的方波发生器电路输出频率范围:10-1KH可调;占空比0-100%连续可调;输出方波Vp_p<=12v;输出三角波Vp-p>0.2v;输出正弦波Vp-p<1v;(2)写出详细的电路工作原理、参数计算;(3)画出仿真电路图;(4)仿真测试并记录结果:A.输出方波的仿真结果;B.输出三角波的仿真结果;C.输出正弦波的仿真结果;(5)设计以上电路工作电源:A.画出电源电路图;B.写出电源电路工作原理、参数计算;(6)制作实物;2 设计方案2.1 设计思路2.1.1 方案一原理框图图2-1 方波、三角波、正弦波信号发生器的原理框图首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波,但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。
课程设计说明书课程设计名称:模拟电子技术课程设计课程设计题目:正弦波-方波-锯齿波函数转换器学院名称:信息工程学院专业:通信工程班级: 090421学号: 09042134 姓名:赵尚虎评分:教师:2011 年 3 月 16 日任务书题目3:设计制作一个产生正弦波—方波—锯齿波函数转换器。
设计任务和要求①输出波形频率范围为0.02Hz~20KHz且连续可调;②正弦波幅值为±2V;③方波幅值为2 V;④锯齿波峰-峰值为2V,占空比可调;摘要本次课程设计的目的是:应用电路分析低频等所学的知识设计一个正弦波-方波-锯齿波函数发生器。
设计的正弦波-方波-锯齿波函数发生器是由正弦波发生器、过零比较器、积分电路等三大部分组成。
正弦波发生器产生正弦波,正弦波经过过零比较器转变为方波,方波经过积分电路产生锯齿波。
关键字:正弦波、方波、锯齿波目录第一章设计目的及任务1.1 课程设计的目的 (5)1.2 课程设计的任务与要求 (5)1.3 课程设计的技术指标 (5)第二章系统设计方案选择……………………………………………2.1 方案提出 (6)2.2 方案论证和选择 (6)第三章系统组成及工作原理………………………………………………3.1 系统组成 (7)3.2 正弦波发生电路的工作原理 (7)3.3 正弦波转换方波电路的工作原理 (8)3.4 方波转换成锯齿波电路的工作原理 (9)3.5 总电路图 (11)第四章单元电路设计、参数计算、器件选择……………………4.1 正弦波发生电路的设计 (12)4.2 正弦波转换方波电路的设计 (13)4.3 方波转换成锯齿波电路的设计 (14)第五章实验、调试及测试结果与分析……………………………5.1电路总体仿真图如下所示 (17)5.2 调试方法与调试过程 (18)第六章结论 (21)参考文献 (23)附录(元器件清单) (23)第一章设计的目的及任务1.1课程设计的目的1.掌握电子系统的一般设计方法2.掌握模拟器件的应用3.培养综合应用所学知识来指导实践的能力4.掌握常用元器件的识别和测试5.熟悉常用仪表,了解电路调试的基本方法1.2课程设计任务与要求1.设计制作一个正弦波-方波-锯齿波函数转换器2.能同时输出一定频率一定幅度的3种波形:正弦波、方波和锯齿波3.可以用±12V或±15V直流稳压电源供电1.3 课程设计的技术指标1.设计、组装、调试函数发生器2.输出波形:正弦波、方波、锯齿波3.频率范围:在0.02HZ-20KHZ范围内连续可调4.输出电压:正弦波幅值+2V、方波幅值2V,锯齿波峰峰值2V,占空比可调第二章系统设计方案选择2.1 方案提出方案一:RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—锯齿波函数发生器的设计方法。
三角波发生器设计
欧阳光明(2021.03.07)
制作人:朱立超
西安建筑科技大学一、工作原理:
1.基本原理图:
2.工作原理:
1)如图1,三角波发生器电路,有两部分组成。
其中集成运放A1组成滞回比较器,A2组成积分电路。
滞回比较器可以产生稳定的方波信号,再通过积分电路积分产生所需要的三角波。
由积分电路
2
3
1
(z)dt
T
U
R C
--
⎰
可知积分电路输出电压同u o1 反向。
设t=0时积分电路电容上的初始电压为零,而滞回比较器输出端u o1=+Uz。
又有电路图可以看出,两级电路分别都引入了反馈,A1同相输入端的电压up1同时与u o1和u o有关,根据叠加定理
可得
12
1o1o
1212
u u u p
R R
R R R R
=+
++
由积分回路同向和反向输入端“虚短”“虚断”up2= un2=0,从而可知uo =up2.由于t0时电容两端电压为了零,所以u o=0,而u01=+Uz,故up1也为正。
而当u o1=+Uz时,经反向积分,输出电压u o将随着时间往负方向线性增长,则up1将随之逐渐减小,当减小至up1=un1=0时,滞回比较器的输出端电压发生跳变,使u o1由
图1 三角波发生电路图
+Uz 跳变为-Uz ,此时up1也将跳变成为一个负值。
当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,up1将又逐渐增大,当增大至up1= un1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。
如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。
滞回比较器和积分电路特性:
2)输出幅度:
在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此时up1也随着增长,当增长至up1= un1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。
将条件u o1=-Uz ,u+=0和u o =Uom 代入上式,可得
om )(0212211U R R R Uz R R R ++-+= 可解得三角波的输出幅度为
z 21om
U R R U =
3)周期频率: 在积分电路对u o1=-Uz 进行积分的半个振荡周期内,输出电压u o 由-Uom 上升至+Uom ,则对积分电路可列出一下表达式:
⎰=--203om 2dt )z (1T
U U C R 即om 22z 3U T C R U =⋅ 所以三角波的振荡周期为
图3 电路的波形图
图2 电压输出特性
2
3134z om 4R C R R U CU R T ==
三角波震荡频率: 三角波的输出幅度与稳压管的Uz 以及电阻值之比R 1/R 2成正比。
三角波的振荡周期则与积分电路的时间常数R 3C 以及电阻值之比R 1/R 2成正比。
仿真设计时要先确定Uz 值(本设计仿真二极管采用1N5233B 类型经测量和对比规格可知其端电压Uz 为6V ),再调整电阻R 1和R 2,使输出幅度达到规定值,然后再调整R 3和C 使振荡周期满足要求。
二、求解各个元件参数:
当接通电源时,由于电容C 上电压是一个缓慢变化的过程,所以C 上的初始瞬时电压为0。
滞回比较器电路:由于滞回比较器上电阻R2引入的是正反馈,所以当uo1增加时正向输入端up1也随之上升随着时间的增加uo1逐渐增加到UZ.
积分电路反向积分,t↑→ u o ↓,当u o >-U T (阈值电压),u o 1从+Uz 跃变为-Uz 。
积分电路正向积分,t↑→ u o ↑,当u o >+U T ,u o1从-Uz 跃变为+Uz ,返回滞回比较器。
重复上述过程,便产生周期性的变化,即振荡。
由于输入电压为常量:
又有反馈回路可得:
f 2134R f R R C
=
令u o1=u N1=0,当u o1=±Uz 代入,可得:z 21U R R U T ⋅±
=±
()T T U T U C R U -+⋅⋅=+2z 13所以
2314R C R R T = 所以可以求出 ① ② 已知UZ=6V,UOM=6V,
=500HZ;C=0.1uF,将其带入①②式可得12616
R V R ==; ③
64213
440.1105002101/R Cf R R --==⨯⨯⨯=⨯Ω④
联立 ③④可得:
5)选定器件列表:
已知:Uz=6V C=0.1uF , R 1=10KΩ R 2=10KΩ R 4=2KΩ R 3=5KΩ R 5=10KΩ ;
三、Multisim 仿真电路图及仿真结果如下:
由仿真结果可以看到,其基本达到课题要求。
四、误差分析:
实际电路中由于要选择确定各个电阻的阻值,特别是第一个必要电阻的确定因而会相应产生误差
由于是电子仿真,自然也存在误差,误差主要来自电子仿真器件的参数。
五、参考书籍:
《模拟电子技术基础》(第四版)清华大学童诗白著《Multisim 10&Ultiboard 10原理图仿真与PCB设计》。