2018年四川省成都市中考数学试卷
- 格式:docx
- 大小:149.91 KB
- 文档页数:7
(2018年四川省成都市青羊区中考数学二诊试卷)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分)1. 在算式(-2)□(-3),□的中填上运算符号,使结果最小,运算符号是( )A. 加号B. 减号C. 乘号D. 除号2. 国家卫生和计划生育委员会公布H 7N 9禽流感病毒直径约为0.00000012米,这一直径用科学计数法表示为( )A. 1.2×10-9米B. 12×10-8米C. 1.2×10-8米D. 1.2×10-7米3. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A B C D4. 下列计算正确的是( )A. x x x 25332-=-B.x x x 32623=÷C.623)31(x x = D.126)42(3--=--x x 5. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( )A. 21B.23C.22D.336. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=( )A. 55°B. 30°C. 50°D. 60°7. 如图,△DEF 经过怎样的平移得到△ABC ( )A. 把△DEF 向左平移4个单位,再向下平移2个单位B. 把△DEF 向右平移4个单位,再向下平移2个单位C. 把△DEF 向右平移4个单位,再向上平移2个单位D. 把△DEF 向左平移4个单位,再向上平移2个单位8. 将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )A. 9倍B. 3倍C. 81倍D. 18倍9. 某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是( )A. 6,6.5B. 6,7C. 6,7.5D. 7,7.510. 某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,第小题4分,共16分)11. 分解因式:=-+-x x x 1212323 .12. 如图,已知⊙O 的半径为30mm ,先AB=36mm ,则点O 到AB 的距离为 mm.13. 如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下72米,那么他下降的高度为 米.14. 关于x 的方程012)2(2=++-x x m 有实数根,则偶数m 的最大值为 .三、解答题(本大题共6个小题,共54分)15.(每小题6分,共12分)(1)计算:︒-+-︒++--60sin 23)376(cos )21()1(032017π(2)解方程:01322=-+x x16、(本小题满分6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E.(1)求证:△ABD ∽△CBE ;(2)若BD=3,BE=2,求AC 的值.第16题图如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1m)(参考数据:2≈1.414,3≈1.732)第17题图18.(本小题满分8分)某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.如图,一次函数b kx y +=的图象与反比例函数xm y =(x >0)的图象交于点P(n ,2),与x 轴交于点A ,与y 轴交于点C ,PB ⊥x 轴于点B ,且AC=BC ,S △PBC =4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第19题图如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连接FN.(1)求证:AC 是⊙O 的切线;(2)若AF=1,tan ∠N=34,求⊙O 的半径r 的长; (3)在(2)的条件下,求BE 的长.B 卷(满分50分)一、填空题(本大题共5小题,每小题4分,共20分)21.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB=x m ,矩形的面积为y m 2,则y 的最大值为 .22.有五张正面分别标有数20,1,3,4的不透明卡片,它们除了数字不同外其余全部相同。
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
一、单选题1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A. 35°B. 45°C. 55°D. 65°【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.2.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【来源】广东省深圳市2018年中考数学试题【答案】D【解析】【分析】设光盘圆心为O,连接OC,OA,OB,由AC、AB都与圆O相切,利用切线长定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.【详解】如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选D.【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.3.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C【解析】分析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.详解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选C.点睛:本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.学科&网4.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B. C. 34 D. 10【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.详解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN-MP=EF-MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.点睛:本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.5.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】C点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.6.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【解析】【分析】连接CD,根据圆周角定理可知∠OBD=∠OCD,根据锐角三角形函数即可求出∠OCD的度数.【解答】连接CD,∵∠OBD与∠OCD是同弧所对的圆周角,∴∠OBD=∠OCD.∵∴故选B.【点评】考查圆周角定理,解直角三角形,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.7.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【来源】2018年浙江省舟山市中考数学试题【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.8.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.9.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【来源】山东省泰安市2018年中考数学试题【答案】C点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.10.如图,与相切于点,若,则的度数为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.点睛:本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.11.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】A【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO的长,由PA=PO-AO即可得.【详解】连接OD,∵PD与⊙O相切于点D,∴OD⊥PD,∴∠PDO=90°,∵∠BCP=90°,∴∠PDO=∠PCB,∵∠P=∠P,∴△POD∽△PBC,∴PO:PB=OD:BC,即PO:(PO+4)=4:6,∴PO=8,∴PA=PO-OA=8-4=4,故选A.【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键. 12.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【来源】浙江省衢州市2018年中考数学试卷【答案】B【解析】分析:直接根据圆周角定理求解.详解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.学科&网13.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【来源】浙江省衢州市2018年中考数学试卷【答案】D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.二、填空题14.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.【来源】江苏省连云港市2018年中考数学试题【答案】44°【解析】分析:首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.详解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为:44°点睛:此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【来源】江苏省宿迁市2018年中考数学试卷【答案】+π【解析】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.【详解】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°,∴cos60°=,∴AB=2,OB=,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积:S==π,故答案为:π.【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.16.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.【来源】江苏省连云港市2018年中考数学试题【答案】2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.【来源】江苏省宿迁市2018年中考数学试卷【答案】15π【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA=2cm,∠AOB=120°.则右图的周长为________cm(结果保留π).【来源】江苏省盐城市2018年中考数学试题【答案】【解析】分析:先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.详解:由图1得:的长+的长=的长,∵半径OA=2cm,∠AOB=120°则图2的周长为:.故答案为:.点睛:本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.19.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.【来源】浙江省温州市2018年中考数学试卷【答案】8.【解析】分析: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG中,根据勾股定理得OP的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.详解: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=,在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2,∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即;解得:x1=8,x2=-3(舍)故该圆的半径为8cm.故答案为:8.点睛:本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力。
2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。
选择题和填空题共计65分,解答题共计85分。
试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。
二、选择题分析选择题共计15道,每道2分,共计30分。
选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。
如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。
A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。
解答题部分难度适中,考查了学生的运算能力和理解能力。
基础题型占多数,部分题目需要思维拓展,需要学生多加思考。
如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。
2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。
如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。
2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
2018年成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5) D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃ C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k >0)的眸径为6时,k的值为.二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ABC=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m 于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案与解析一、选择题(每小题3分,共30分)1.【解答】解:由数轴可得:a<b<c<d,故选:D.2.【解答】解:40万=4×105,故选:B.3.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.4.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.5.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.6.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA定理,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;故选:C.7.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误,故选:B.8.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.9.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.10.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二、填空题(每小题4分,共16分)11.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80.12.【解答】解:∵装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.13.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.14.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.三、解答题(本大题共6个小题,共54分)15.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣116.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.17.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为120.45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980人游客的肯定.18.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.19.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).20.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.一、填空题(每小题4分,共20分)21.【解答】解:∵x +y=0.2,x +3y=1,∴2x +4y=1.2,即x +2y=0.6,则原式=(x +2y )2=0.36.故答案为:0.3622.【解答】解:设两直角边分别是2x ,3x ,则斜边即大正方形的边长为x ,小正方形边长为x , 所以S 大正方形=13x 2,S 小正方形=x 2,S 阴影=12x 2, 则针尖落在阴影区域的概率为=. 故答案为:.23.【解答】解:S 1=,S 2=﹣S 1﹣1=﹣﹣1=﹣,S 3==﹣,S 4=﹣S 3﹣1=﹣1=﹣,S 5==﹣(a +1),S 6=﹣S 5﹣1=(a +1)﹣1=a ,S 7==,…, ∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=﹣. 故答案为:﹣.24.【解答】解:延长NF 与DC 交于点H ,∵∠ADF=90°,∴∠A +∠FDH=90°,∵∠DFN +∠DFH=180°,∠A +∠B=180°,∠B=∠DFN ,∴∠A=∠DFH ,∴∠FDH +∠DFH=90°,∴NH ⊥DC ,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k﹣k=k,∵cosC=cosA==,∴CN=CH=7k,∴BN=2k,∴=.25.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.二、解答题(本大题共3小题,共30分)26.【解答】解:(1)y=(2)设甲种花卉种植为a m2,则乙种花卉种植(12000﹣a)m2.∴,∴200≤a≤800当200≤a<300时,W1=130a+100(1200﹣a)=30a+12000.当a=200 时.W min=126000 元当300≤a≤800时,W2=80a+15000+100(1200﹣a)=135000﹣20a.当a=800时,W min=119000 元∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.27.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q =S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形PA'B′Q 最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣.28.【解答】解:(1)由题意可得,,解得,a=1,b=﹣5,c=5;∴二次函数的解析式为:y=x2﹣5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则,∵MQ=,∴NQ=2,B (,); ∴, 解得,, ∴,D (0,), 同理可求,, ∵S △BCD =S △BCG ,∴①DG ∥BC (G 在BC 下方),, ∴=x 2﹣5x +5, 解得,,x 2=3, ∵x >,∴x=3,∴G (3,﹣1).②G 在BC 上方时,直线G 2G 3与DG 1关于BC 对称, ∴=, ∴=x 2﹣5x +5, 解得,,, ∵x >,∴x=, ∴G (,),综上所述点G 的坐标为G (3,﹣1),G (,). (3)由题意可知:k +m=1,∴m=1﹣k,∴y l=kx+1﹣k,∴kx+1﹣k=x2﹣5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P (,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4﹣)(),∵k>0,∴k==﹣1+.第1页(共1页)。
有理数一、单选题1.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.【答案】C2.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D8.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣【答案】A14.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市2018年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B 两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B17.【江苏省连云港市2018年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市2018年中考数学试题】-2018的相反数是()A. 2018B. -2018C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市2018年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.。
初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。
2018年中考四川省成都市中考数学试题A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD Y 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 .13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G . (1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.ADB 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x +-+-=⨯+()()111x x x x x+-=⨯+1x =- 16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.Q 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里.19.解:(1)Q 一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. Q 一次函数与反比例函数()0k y x x =>交于(),4B a .24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷 21.0.36 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-. 当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒Q ,//m AC ,'90A BC ∠=︒∴,cos ''BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M Q 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB ==∴. tan tan 2Q PCA ∠=∠=Q,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=Q ''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =Q ,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q , ∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >Q ,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >Q,x =∴96748G ⎛+- ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点. OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫⎪⎝⎭∴. AMP PNB ∆∆Q ∽,AM PN PM BN =∴,AM BN PN PM •=•∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >Q ,6163k -+==-+∴.。
成都市2018年中考数学试题及答案A 卷(共 100 分) 第Ⅰ卷(共 30分)一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.实数 a ,b ,c ,d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A . aB .bC . cD . d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近 地点高度为 200 公里、远地点高度为 40万公里的预定轨道.将数据40 万用科学记数法表示为( ) A .0.4106B . 4105C . 4106D .0.41063. 如图所示的正六棱柱的主视图是( )4. 在平面直角坐标系中,点 P (-3,-5)关于原点对称的点的坐标是( )5. 下列计算正确的是(C . A .(3,-5)B . (-3,5) C.(3,5) D .(-3,-5)A . x 2 +x 2 =x 4B .(x - y )22= x 2- y 2C.(x 2y ) = x 6yD .(-x 2)•x 3 = x 56.如图,已知ABC = DCB ,添加以下条件,A =DACB =DBC不能判定ABC ≌DCB 的是( )C. AC = DB D . AB = DC)x + 118.分式方程 x +1+1=1的解是( )xx -2A . yB . x =-1 C. x = 3 D . x =-3A .B . D .9.如图,在Y ABCD 中,B =60,⊙C 的半径为 3,则图中阴影部分的面积是( )C.当 x0 时, y 的值随 x 值的增大而减小D . y 的最小值为-3第Ⅱ卷(共 70分)二、填空题(每题 4分,满分16分,将答案填在答题纸上) 11.等腰三角形的一个底角为50 ,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共 16 个,从中随机摸出一个乒乓球,若摸到3黄色乒乓球的概率为3 ,则该盒子中装有黄色兵乓球的个数是 .8abc13.已知 ==,且 a + b - 2c = 6,则 a 的值为 .b 5414.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于1 AC 的长为半径作弧,2两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE =2,CE =3,则矩形的对角线AC 的长 为 . 三、解答题 (本大题共 6 小题,共 54分.解答应写出文字说明、证明过程或演算步骤.)15. (1) 22 + 3 8 - 2sin 60+ - 3.16. 若关于x 的一元二次方程 x 2-(2a +1)x +a 2= 0有两个不相等的实数根,求a 的取值范围.17. 为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并 根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题: (1)本次调查的总人数为 ,表中m 的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约 3600 人,若将“非常满意”和“满意”作为游客对景区服务工 作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于 2018年 5 月成功完成第一次海上试验任务.如图,A .B . 2 C.3D .610.关于二次函数y =2x 2 +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧 2)化简1-x + 1 x 2 -1航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70方向,且于航母相距 80 海里,再航行一段时间后到达处,测得小岛C位于它的北偏东37方向.如果航母继续航行至小岛C的正南方向的D 处,求还需航行的距离BD的长.(参考数据:sin 700.94 ,cos700.34,tan 70 2.75 ,sin370.6 ,cos370.80,tan370.75 )19. 如图,在平面直角坐标系xOy中,一次函数y = x + b的图象经过点A(-2, 0),与反比例函数y = k(x0)的图象交于B(a,4).x(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN / /x轴,交反比例函数y = k(x0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.如图,在Rt ABC中,C =90,AD平分BAC交BC于点D,O为AB上一点,经过点A,D 的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB = x,AF = y,试用含x, y的代数式表示线段AD的长;(3)若BE = 8,sin B = 5,求DG的长.13B 卷(共 50 分)一、填空题(每题 4分,满分20分,将答案填在答题纸上)21.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .S 2 =-S 1 -1,S 3 = 1 ,S 4=-S 3-1,S 5 = 1 ,…(即当n 为大于1的奇数时,S n = 1 ;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2018 = S n -124.如图,在菱形ABCD 中,tan A = 4 ,M , N 分别在边AD , BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥ AD 时, BN 的值为CN25.设双曲线y = k (k0)与直线y = x 交于A , B 两点(点A 在第三象限),将双曲线在第一象限的一 支沿射线BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过 点B ,平移后的两条曲线相交于点P , Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分) 为双曲线的“眸”, PQ 为双曲线的“眸径”当双曲线y = k (k0)的眸径为6时, k 的值为二、解答题 (本大题共 3 小题,共 30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的 种植费用 y (元)与种植面积x(m 2 )之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0x 300和x 300时, y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2 ,且不超过乙 种花卉种植面积的 2 倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用 为多少元?23.已知 a0 , S =27.在Rt ABC中,ABC = 90,AB = 7 ,AC = 2 ,过点B作直线m / / AC ,将ABC绕点C 顺时针得到A′B′C(点A,B的对应点分别为A′,B′)射线CA′,CB′分别交直线m于点P,Q.1)如图1,当P与A′重合时,求ACA′的度数;2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;3)在旋转过程时,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy中,以直线x = 5为对称轴的抛物线y = ax2+bx +c与直线l:y=kx+m (k 0 )交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于D点.(1)求抛物线的函数表达式;AF 3 (2)设直线l与抛物线的对称轴的交点为F、G是抛物线上位于对称轴右侧的一点,若AF = 3,且FB 4 BCG与BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P ,使APB = 90,求k的值.试卷答案A卷一、选择题1-5: DBACD6-10:CBACD二、填空题11.80三、解答题12.6 13.12 14. 3015.(1)解:原式 = + 2 - 2 + 342= + 2- 3 + 349 4(2)解:原式=x +1-1(x +x(x +1)(x -1) x + 1 x=x -116.解:由题知:= ( 2a +1) - 4a = 4a + 4a +1 - 4a = 4a +1.Q 原方程有两个不相等的实数根,∴4a +10,∴a-1.17.解:(1)120,45%; (2)比较满意;12040%=48(人)图略;12+54 (3)360012+54=1980 (人).120答:该景区服务工作平均每天得到 1980人的肯定.18.解:由题知: ACD = 70 , BCD = 37 , AC = 80 .cos ACD =CD ,∴0.34= CDAC 80在RtBCD 中,tanBCD = C B D D ,∴0.75 =2B 7D .2答:还需要航行的距离BD 的长为 20.4海里.19. 解:(1)Q 一次函数的图象经过点 A (-2,0),∴-2+b =0,∴b =2,∴y =x +1. Q 一次函数与反比例函数 y =k (x0) 交于 B (a ,4) . x8∴a +2=4,∴a = 2 ,∴B (2,4),∴y = (x 0) .x(2)设M (m -2,m ),N8,m.当MN //AO 且MN = AO 时,四边形AOMN 是平行四边形. 即: 8 -(m -2) =2且m0,解得:m =22或m =2 3+2, m∴M 的坐标为(2 2 -2,2 2)或(2 3,2 3+2).x + 1x在 Rt ACD 中, ∴CD = 27.2 (海里). ∴BD = 20.4 (海里).1323.2 24.7 25.220.B 卷21.0.36 22.12a + 1 a 3130x ,(0 x 300) 26.解:(1) y =80x +15000.(x 300)(2)设甲种花卉种植为am 2 ,则乙种花卉种植(1200-a )m 2.a 200, ∴ ∴200a 800 .a 2(1200 - a )当200a300时,W =130a +100(1200-a )=30a +120000.当a = 200时,W = 126000元. 当300a800时,W = 80a +15000 +100 (200 - a ) = 135000 - 20a .当a = 800时,W = 119000元.Q119000126000,∴当a = 800时,总费用最低,最低为 119000 元. 此时乙种花卉种植面积为1200 -800 = 400m 2 .答:应分配甲种花卉种植面积为800m 2,乙种花卉种植面积为400m 2 ,才能使种植总费用最少,最少总 费用为 119000 元.27.解:(1)由旋转的性质得: AC = A ' C = 2 .Q ACB = 90 , m / / AC ,∴A ' BC =90,∴cosA 'CB = BC = 3 ,∴A 'CB =30, A 'C2∴ACA ' =60.(2)Q M 为A ' B '的中点,∴ A 'CM =MA 'C . 由旋转的性质得:MA 'C =A ,∴A =A 'CM . ∴tanPCB = tanA = 3 ,∴PB = 3BC =3.2 22∴BQ = BC2= 32 = 2 ,∴PQ = PB + BQ = 7 .= SPCQ - 3 ,∴SPA 'B 'Q 最小, SPCQ即最小,∴S PCQ =1PQBC = 3PQ .法一:(几何法)取PQ 中点G ,则PCQ = 90. ∴CG = 1 PQ .2当CG 最小时, PQ 最小,∴CG ⊥ PQ ,即CG 与CB 重合时,CG 最小. ∴CG min = 3 , PQ min =2 3,∴(SPCQ) =3,SPA 'B 'Q =3-3.Q tanQ = tanPCA = 3 , 3)Q SPA 'B 'Q = SPCQ- SA 'CB '∴①DG //BC (G 在BC 下方),y =-1x +1,11 3∴- x + = x - 5x + 5,即 2x - 9x + 9 = 0 ,∴x =,x =3.22 12 2Q x5 ,∴x = 3 ,∴G (3, -1) .② G 在BC 上方时,直线G G 与DG 关于BC 对称.1 19 1 19- x + ,∴- x + = x - 5x + 5,∴2x - 9 x - 9 = 0 . 22 223)由题意可得: k + m = 1.法二:(代数法)设PB = x , BQ = y . 由射影定理得: xy = 3 ,∴当PQ 最小,即x + y 最小, ∴(x + y ) =x 2 +y 2 +2xy = x 2+ y 2 +62xy +6=12. 当x = y = 3时,“ =”成立,∴PQ = 3+ 3=2 3. 28.解:(1)由题可得: b 5 -2a =2, c =5, 解得a =1, a + b + c = 1.b =-5,c =5. ∴二次函数解析式为: y = x 2 -5x +5. (2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,则 A F F B =Q M N Q =43. 3 9 11Q MQ = 3,∴NQ =2,B 9,11, k +m =1, ∴ 91 k +m =24 ,解得 同理, y BC = - x + 5. k =11 =x +, 22 D Q x , 2∴x = 9 + 3 174 ∴G 9+3 17 67 4,综上所述,点G 坐标为G 1(3,-1);G 2 9+3 17 67-3 17∴m =1- k,∴y =kx+1-k,∴kx+1-k = x2-5x+5,即x2-(k+5)x+k+4=0.∴x =1,x=k+4,∴B(k + 4,k +3k +1).设AB的中点为O' ,Q P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点. ∴OP⊥x 轴,∴P为MN的中点,∴P k+5,0.Q AMP ∽PNB,∴PM = BN,∴AM•BN =PN•PM,+ 3k + 1) = k k+5k+5-1,即3k2+6k-5=0,=960.。
2018年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.(2018四川省成都市,1,3)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【答案】D【解析】解:数轴上表示的实数,右边的数总比左边的大,d在最右边,所以d最大,故选择D.【知识点】数轴;2.(2018四川省成都市,2,3)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【答案】B【解析】解:40万=400000=4×105.故选择B.【知识点】科学计数法3.(2018四川省成都市,3,3)如图所示的正六棱柱的主视图是()【答案】A【解析】解:因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.【知识点】三视图;主视图4.(2018四川省成都市,4,3)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)【答案】C【解析】解:因为关于原点对称的点的坐标特点是横纵坐标均为互为相反数,即P(x,y)关于原点对称的点P’(-x,-y),所以P(-3,-5)关于原点对称的点坐标为(3,5),故选择C.【知识点】中心对称;关于原点对称的点的坐标5.(2018四川省成都市,5,3)下列计算正确的是()A.2x+2x=4x B.()2x y-=2x-2y C.()32x y=6x y D.()23x x-g=5x【答案】D【解析】解:因为2x+2x=22x,故A错误;()2x y-=2x-2xy+2y,故B错误;()32x y=63x y,故C错误;()23x x-g=5x,D正确.故选择D.【知识点】整式乘法;乘法公式;合并同类项6.(2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;7.(2018四川省城都市,7,3)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】解:∵由图象提供的信息可知最高气温为30℃,最低气温为20℃,温差为10℃,A错误;一周中有两天日最高气温都是28℃,出现次数最多,所以众数是28℃,B正确;将20℃,28℃,28℃,24℃,26℃,30℃,22℃按从小到大排列后,居中的是26℃,所以中位数是26℃,C错误;七个数据的平均数是(20+28+28+24+26+30+22)÷7≈25.4℃,D错误.故选择B.【知识点】众数;中位数;极差;平均数8.(2018四川省成都市,8,3)分式方程1xx++12x-=1的解是()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A【解题过程】解:1x x ++12x -=1,去分母(x -2)(x +1)+x =x (x -2),解得x =1,检验:把x =1代入x (x -2)≠0,∴x =1是原方程的解.故选择A .【知识点】分式方程;分式方程的解法 9.(2018四川省成都市,9,3)如图,在 ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( ) A .π B .2π C .3π D .6π【答案】C【解题过程】解:∵四边形ABCD 为平行四边形,AB ∥CD ,∴∠B +∠C =180°,∵∠B =60°,∴∠C =120°,∴阴影部分的面积=21203360π⨯=3π.故选择C .【知识点】平行四边形的性质;扇形面积10.(2018四川省成都市,10,3)关于二次函数y =22x +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解题过程】解:因为当x =0时,y =-1,所以图像与y 轴的交点坐标为(0,-1),故A 错误;图像的对称轴为x =2ba-=-1,在y 轴的左侧,故B 错误;因为-1<x <0时,在对称轴的右侧,开口向上,y 的值随x 值的增大而增大,故C 错误;y =22x +4x -1=()221x +-3,开口向上,所以有最小值-3,D 正确.故此选择D . 【知识点】二次函数的性质第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分) 11.(2018四川省成都市,11,4)等腰三角形的一个底角为50° ,则它的顶角的度数为 . 【答案】80° 【解析】解:∵等腰三角形的一个底角为50° ,且两个底角相等,∴顶角为180°-2×50°=80°. 【知识点】等腰三角形性质,三角形的内角和 12.(2018四川省成都市,12,4)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .【答案】6【解析】解:设盒子中装有黄色乒乓球的个数为a 个,因为摸到黄色乒乓球的概率为38,所以16a =38,得a =6.【知识点】概率13.(2018四川省成都市,13,4)已知6a =5b =4c,且a +b -2c =6.则a 的值为 . 【答案】12 【解析】解:设6a =5b =4c=k ,则a =6k ,b =5k ,c =4k ,∵a +b -2c =6,∴6k +5k -8k =6,3k =6,解得k=2,∴a =6k =12.【知识点】比例;一元一次方程 14.(2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【答案】30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理三、解答题(本大题共6个小题,满分54分,解答应写出文字说明、证明过程或演算步骤) 15.(2018四川省成都市,15,6)(1)22-+38-2sin60°+|-3|【思路分析】结合负整数指数幂的运算法则、立方根、特殊角的三角形函数值,以及绝对值的性质进行运算, 【解析】解:22-+38-2sin60°+|-3|=14+2-2×32+3=94【知识点】幂的运算;立方根;特殊角三角形函数值;绝对值;15.(2018四川省成都市,15,6)(2)(1-11x +)÷21x x - 【思路分析】根据运算法则,先算括号内的,通分变成同分母的分式进行加减运算,然后再算乘除法.最后利用因式分解进行约分化成最简的形式.【解题过程】解:(1-11x +)÷21x x -=(111x x +-+)×21x x -=1xx +×()()11x x x +-=x -1. 【知识点】;分式的通分和约分; 因式分解;分式的混合运算;16.(2018四川省成都市,16,6)若关于x 的一元二次方程:2x -(2a +1)x +2a =0有两个不相等的实数根, 求a 的取值范围.【思路分析】利用根的判别式△=24b ac -,当△>0时方程有两个不相等的实数根,代入得到关于a 的不等式,解这个不等式便可求出a 的取值范围.【解题过程】解:由题意可知,△=()221a -+⎡⎤⎣⎦-4×1×2a =()221a +-42a =4a +1.∵方程有两个不相等的实数根,∴△>0,即4a +1>0,解得a >-14. 【知识点】一元二次方程;根的判别式; 17.(2018四川省成都市,17,8)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.6541260544842363024181260人数满意度不满意比较满意满意非常满意n m 5%40%10%65412不满意比较满意满意非常满意人数满意度所占百分比根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值为 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 【思路分析】(1)根据非常满意的人数和它所占的百分比,就可以求出调查的总人数;用满意的人数除以总人数就可以求出所占的百分比;(2)用总人数减去表中已知的数据,就可以得出比较满意的人数;或者用比较满意人数所占的百分比乘以总人数也可以得出比较满意的人数,然后在图中画出即可;(3)根据表格信息,能够知道“非常满意”和“满意”的人数之和,用它去除以总人数便可以得出所占的百分比,然后用每天接待的游客数乘以这个百分比,就可以知道每天得到多少游客的肯定了. 【解题过程】解:(1)∵12÷总人数×100%=10%,∴总人数=120(人);m =54÷120×100%=45%.(2)比较满意人数为:120×40%=48(人),图如下.486541260544842363024181260人数满意度不满意比较满意满意非常满意(3)3600×12+54120=1980(人). 答:该景区服务工作平均每天得到1980人的肯定. 【知识点】条形统计图 18.(2018四川省成都市,18,8)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务,如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向,如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 东北37°70°CDBA【思路分析】在Rt ΔADC 中已知一个锐角和斜边,可以利用锐角三角函数中的余弦函数求出CD 的长,然后在Rt ΔBDC 中,已知直角边CD 和锐角∠BCD ,利用三角形函数中的正切函数求出BD 的长. 【解题过程】解:由题意得,∠ACD =70°,∠BCD =37°,AC =80.在Rt ΔADC 中,cos ∠ACD =CDAC,∴CD =AC ·cos70°≈80×0.34=27.2(海里).在Rt ΔBDC 中,tan ∠BCD =BDCD,∴BD =CD ·tan37°≈27.2×0.75=20.4(海里).答:还需航行的距离BD 的长为20.4海里. 【知识点】方向角;锐角三角函数; 19.(2018四川省成都市,19,10)如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A (-2,0),与反比例函数y =kx(x >0)的图象交于B (a ,4). (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数y =kx(x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.yxO BA【思路分析】(1)因为一次函数y =x +b 的图象经过点A (-2,0),所以把A 点坐标代入就可求出b ,即可得到一次函数解析式,因为B (a ,4)是一次函数和反比例函数y =kx (x >0)的交点,所以把y =4代入一次函数中可以求B 点坐标,代入到y =kx求出k 得到反比例函数解析式;(2)因为MN ∥x 轴,A ,O ,M ,N 为顶点的四边形为平行四边形,则有MN =AO =2,又M 在直线AB 上,所以可以设M 的横坐标为m ,纵坐标用m 的代数式表示出来,由MN ∥x 轴可知M 与N 的纵坐标相等,代入y =kx,又可以将N 的横坐标也用m 的代数式表示出来,然后|M N x x -|=2,可以求出m 的值,即可求出M 的坐标. 【解题过程】解:设M (m ,m +2),N (82m +,m +2),∵MN ∥x 轴,∴当MN =OA 时,A ,O ,M ,N 为顶点的四边形为平行四边形.∵MN =|M N x x -|,∴|m -82m +|=2,当m -82m +=2时,解得1m =23,2m =-23,经检验都是方程的根,因为m >0,∴m =23;当m -82m +=-2时,解得1m =-2+22,2m =-2-22,经检验都是方程的根,因为m >0,∴m =-2+22,∴M 的坐标为(23,23+2)或(-2+22,22).NMNMyxO BA【知识点】一次函数;反比例函数;平行四边形的性质 20.(2018四川省成都市,21,10)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.F ABCDEGO【思路分析】(1)连接OD ,根据同圆半径相等,及角平分线条件得到∠DAC =∠ODA ,得OD ∥AC ,切线得证;(2)连接EF ,DF ,根据直径所对圆周角为直角,证明∠AFE =90°,可得EF ∥BC ,因此∠B =∠AEF ,再利用同弧所对圆周角相等可得∠B =∠ADF ,从而证明△ABD ∽△ADF ,可得AD 与AB 、AF 关系;(3)根据∠AEF =∠B ,利用三角函数,分别在Rt △DOB 和Rt △AFE 中求出半径和AF ,代入(2)的结论中,求出AD ,在利用两角对应相等,证明△OGD ∽△FGA ,再利用对应边成比例,求出DG :AG 的值,即可求得DG 的长. 【解题过程】解:(1)连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∵OD 为⊙O 半径,BC 是⊙O 的切线. (2)连接EF ,DF .∵AE 为⊙O 直径,∴∠AFE =90°,∴∠AFE =∠C =90°,∴EF ∥BC ,∴∠B =∠AEF ,又∵∠ADF =∠AEF ,∴∠B =∠ADF ,又∠OAD =∠DAC ,∴△ABD ∽△ADF ,∴AB AD =ADAF,∴AD 2=AB ·AF ,∴AD =xy .(3)设⊙O 半径为r ,在Rt △DOB 中sin B =OD OB =513,∴8r r +=513,解得r =5,∴AE =10,在Rt △AFE 中sin ∠AEF =sin B =AF AE,∴AF =10×513=5013,∴AD =xy =501813⨯=301313.∵∠ODA =∠DAC ,∠DGO =∠AGF ,∴△OGD ∽△FGA ,∴DG AG =OD AF =1310,∴DG =301323.OGEDCBAF【知识点】切线的判定;相似三角形;圆的有关性质;锐角三角函数B 卷(共50分)四、填空题(本大题共4小题,每小题6分,共24分) 21.(2018四川省成都市,21,4)x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为 . 【答案】0.36【思路分析】将已知x +y =0.2,x +3y =1,相加化简求出x +2y 的值,利用完全平方公式即可求值.【解题过程】解:∵x +y =0.2①,x +3y =1②,①+②得:2x +4y =1.2,∴x +2y =0.6,∴x 2+4xy +4y 2=(x +2y )2=0.36.【知识点】完全平方公式;整式加减 22.(2018四川省成都市,22,4)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .【答案】1213【思路分析】利用四个直角三角形面积的和除以正方形面积即可求解.【解题过程】解:∵两直角边之比均为2:3,∴直角三角形的斜边平方=正方形的面积=22+32=13,∵四个直 角三角形面积和=4×12×2×3=12,∴针尖落在阴影区域的概率=1213. 【知识点】概率23.(2018四川省成都市,23,4)已知a >0,S 1=1a,S 2=-S 1-1,S 3=21S ,S 4=-S 3-1,S 5=41S ,…(即当n 为大于1的奇数时,S n =11n S -;当n 为大于1的偶数时,S n =-S n -1-1),按此规律S 2018= .(用含a 的代数式表示 )【答案】-1aa+ 【思路分析】分别用a 表示出S 1、S 2、S 3、…、直到发现循环规律,即可求解.【解题过程】解:∵S 1=1a ,∴S 2=-S 1-1=-1a -1=-1aa +,∴S 3=21S =-1a a +,∴S 4=-S 3-1=1a a+-1=-11a +,∴S 5=41S =-1-a ,∴S 6=-S 5-1=a ,∴S 7=61S =1a =S 1,故此规律为7个一循环,∵2018÷7=336余2,∴S 2018=-1aa+. 【知识点】整式运算;规律题 24.(2018四川省成都市,24,4) 如图,在菱形ABCD 的中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段AB 的对应线段EF 经过顶点D .当EF ⊥AD 时,BNCN的值为 .M NCF DB EA A EBDF CNHM【答案】27【思路分析】延长NF 交DC 于H .根据翻折得∠A =∠E ,∠B =∠DFN ,利用菱形中邻角互补,可得到∠A =∠DFH ,且∠DHF =90°,在Rt △EDM 中,根据tan A =tan E =43,得到△EDM 三边的关系,求出菱形边长,在解Rt △DHF 和Rt △NHC ,求出CN ,BN ,即可求出BNCN的值. 【解题过程】解:∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠A +∠B =180°,∵∠DFN +∠DFH =180°,又∵∠B =∠DFN ,∴∠A =∠DFH ,∵AB ∥CD ,∴∠A +∠ADC =180°,又∵∠ADF =90°,∴∠A +∠FDC =90°,∴∠DFH +∠FDC =90°,∴∠DHF =90°,∵∠A =∠E ,∴tan A =tan E =DM DE=43,设DM =4x ,DE =3x ,∴EM =22DE DM =5x ,∴AM =5x ,∴AD =AM +DM =9x ,∵EF =AB =AD =9x ,∴DF =EF -DE =6x ,在Rt △DFH 中∠A =∠DFH ,∴tan A =tan ∠DFH =DH FH =43,∴DH =45DF =245x ,∴CH =DC -DH =215x ,在Rt △CHN 中∠A =∠C ,∴tan A =tan C =HN HC =43,∴CN =53CH =7x ,∴BN =BC -CN =2x ,∴BNCN =27. 【知识点】菱形性质;锐角三角函数;翻折变换25.(2018四川省成都市,25,4) 设双曲线y =kx(k >0)与直线y =x 交于A 、B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于P 、Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线y =kx(k >0)的眸径为6时,k 的值为 . xyOQPBA【答案】32【思路分析】由眸径为6得OP =3,求得P 点坐标,根据y =kx与直线y =x 交于A 、B 两点,求出A 、B 两点坐标根据平移规律得到P 的对应点坐标,代入双曲线y =kx解析式中,即可求得k 的值. 【解题过程】解:连接P A ,作BP ´∥AP .则四边形P ABP ´为平行四边形,且P ´在双曲线y =k x 上.∵y =k x与直线y =x 交于A 、B 两点,∴x =kx,解得x =±k ,∴A (-k ,-k ),B (k ,k ),根据题意可得OP =3,∴P (-322,322),∵四边形P ABP ´为平行四边形,∴PP ´∥AB ,PP ´=AB ,∴P ´(-322+2k ,322+2k ),代入y =kx 中,得(-322+2k )(322+2k )=k ,解得k =32.yP´xO QPBA【知识点】反比例函数;平移;五、解答题(本大题共3小题,共30分) 26.(2018四川省成都市,26,8)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植面积总费用最少?最少费用为多少元?5500039000500300O (m 2)(元)y x【思路分析】(1)根据函数图象把(300,39000),(500,55000)分别代入y =k 1x 与y =k 2x +b 中即可求得解析式.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2,结合(1)中的函数关系式,分别求出甲、乙两种花卉的费用求和,再结合函数的增减性进行讨论,即可求出最小值. 【解题过程】解:(1)当0≤x ≤300时,设函数关系式为y =k 1x ,过(300,39000),则39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x ,当x >300时,设函数关系式为y =k 2x +b ,过(300,39000)和(500,55000)两点,∴223900030055000500k b k b =+⎧⎨=+⎩,解得2801500k b =⎧⎨=⎩,y =80x +1500.综上y =130(0300)801500(300)x x x x ⎧⎨+⎩≤≤>.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2. 根据题意得2002(1200)a a a ⎧⎨-⎩≥≤,解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少为W min =30×200+120000=126000(元); 当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少为W min =-20×800+135000=119000,∵119000<126000,∴当a =800时,总费用最少为119000,此时1200-a =400, ∴当甲种、乙两种花卉面积分别为800 m 2和400 m 2时,种植面积总费用最少,最少费用为119000元. 【知识点】解不等式组;一次函数;一次函数图象的性质;27.(2018四川省成都市,27,10)在Rt △ABC 中,∠ACB =90°,AB =7,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ´B ´C ´(点A 、B 的对应点分别为A ´、B ´),射线CA ´、CB ´分别交直线m 于点P ,Q .(1)如图1,当P 与A ´重合时,求∠ACA ´的度数;(2)如图2,设A ´B ´与BC 的交点为M ,当M 为A ´B ´的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA ´,CB ´的延长线上时,试探究四边形P A ´B ´Q 的面积是否存在最小值.若存在,求出四边形P A ´B ´Q 的最小面积;若不存在,请说明理由. 【思路分析】(1)当P 与A ´重合时,解Rt △A ´BC ,求出∠BA ´C 的度数,即为∠ACA ´的度数;(2)当M 为A ´B ´的中点时,利用直角三角形斜边中线等于斜边一半,得∠MA ´C =∠BCA ,解Rt △PBC 求出PB ,利用同角余角相等,得∠BQC =∠PCB ,解Rt △CBQ 求出BQ ,根据PQ =PB +BQ 即可求得PQ ;(3)作Rt △PCQ 斜边中线CM ,由S 四边形P A ´B ´Q =S △PCQ -S △P A ´B ´=12PQ ·BC -S △P A ´B ´=CM ·BC -S △P A ´B ´,根据垂线段最短,当CM ⊥PQ 时,S 四边形P A ´B ´Q 最小,求出其最小值即可. C 备用图mABBQAP A´m 图2B´C C B´图1MmA´(P )AQB【解题过程】解:(1)∵∠ACB =90°,AB =7,AC =2,∴BC =22AB AC -=3,当P 与A ´重合时,A ´C =AC =2,在Rt △A ´BC 中,sin ∠BA ´C =BCA C'=32,∴∠BA ´C =60°,∵m ∥AC ,∴∠ACA ´=∠BA ´C =60°.(2)∵∠A ´CB ´=90°,M 为A ´B ´的中点时,∴A ´M =CM ,∴∠MA ´C =∠A ´CM =∠A ,∵在Rt △ABC 中,tan ∠A =BC AC =32,∴在Rt △PBC 中,tan ∠A ´CB =PB BC =32,∴PB =32.∵∠PCB +∠BCQ =∠BCQ+∠BQC =90°,∴∠BQC =∠PCB ,∴tan ∠BQC =tan ∠A ´CB =32,∴BQ =tan BC BQC ∠=2,∴PQ =PB+BQ =72. (3)取PQ 的中点M ,连接CM .∵S △CA ´B ´=12A ´C ·B ´C =12×2×3=3,S △PCQ =12PQ ·BC =32PQ ,∴S 四边形P A ´B ´Q =S △PCQ -S △CA ´B ´=32PQ -3,∵M 为PQ 的中点,∠PCQ =90°,∴PQ =2CM ,∴S 四边形P A ´B ´Q=S △PCQ -Q -S △CA ´B ´=3CM -3,当CM 最小时,S 四边形P A ´B ´Q 最小.∵CM ≤BC =3,∴当CM =3时,S 四边形P A ´B ´Q 的最小值= 3CM -3=3-3.P Q M A´B´CmA B【知识点】解直角三角形;直角三角形斜边中线等于斜边一半;旋转28.(2018四川省成都市,28,12)如图,在平面直角坐标系中xOy 中,以直线x =52为对称轴的抛物线y =ax 2+bx +c 与直线l :y =kx +m (k >0)交于A (1,1),B 两点,与y 轴交于点C (0,5),直线l 交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG 与△BCD 的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使∠APB =90°,求k 的值.备用图lOCD BAx yFFyx ABD COl【思路分析】(1)设抛物线解析式为y =ax 2+bx +c ,结合对称轴,及A (1,1), C (0,5),即可求得抛物线解析式;(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.利用△AEN ∽△ABM ,求出B 的坐标,求出直线AB 、BC 的解析式,可求出S △BCD ,设 G (p ,p 2-5p +5) ,再利用铅锤底水平宽表示S △BCG ,根据S △BCG =S △BCD ,列出关于p 的一元二次方程,求解即可;(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .设P (x ,0),根据直线AB 过点A (1,1),求出直线AB 的解析式y =kx +1-k ,根据∠APB =∠AEP =∠PTB =90°,通过证明△AEP ∽△PTB ,∴AEPT=EPBT,列出关于x 的一元二次方程,结合已知在x 轴上有且只有一点P ,可得△=0,即可求出k 的值. 【解题过程】(1)设抛物线解析式为y =ax 2+bx +c ,根据题意得52215b a a b c c⎧-=⎪⎪=++⎨⎪=⎪⎩,解得155a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =x 2-5x +5.(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.∵FN ∥BM ,∴△AEN ∽△ABM ,∴AF AB =AN AM ,∵AF FB =34,∴AFAB=AN AM =37,∵抛物线y =x 2-5x +5=(x -52)2-54,∴抛物线的对称轴为x =52,∴AN =52-1=32,AM =73×32=72,点B 的横坐标为72+1=92,代入y =x 2-5x +5中,得y =114,∴B (92,114),设直线AB 的解析式为y =kx +b ,则119421k b k b ⎧=+⎪⎨⎪=+⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12x +12,∴D (0,12),设直线BC 的解析式为y =mx +n ,则511942n m n =⎧⎪⎨=+⎪⎩,解得125m n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y =-12x +5,∴CD =5-12=92,∴S △BCD =12×92×92=818.设 G (p ,p 2-5p +5) ,则Q (p ,-12p +5),∴GQ =|p 2-5p +5-(-12p +5)|=|p 2-112p |,∵S △BCG =12QG ×92,又∵△BCG 与△BCD 的面积相等,∴12|p 2-112p |×92=818,当p 2-112p =92时,p 1=32,p 2=3,∵G 是抛物线上位于对称轴右侧的一点,∴p 2=3,∴G (3,-1);当p 2-112p =-92时,解得p 3=93174+,p 4=93174-,∵G 是抛物线上位于对称轴右侧的一点,∴p 3=93174+,∴G (93174+,673178-);综上G (3,-1) 或(93174+,673178-). Q GNHM FyxAB D COl(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .直线AB 的解析式为y =kx +b ,过A (1,1),1=k +b ,∴b =1-k ,∴直线AB 的解析式为y =kx +1-k ,∴ kx +1-k =x 2-5x +5,整理得x 2-(5+k )x +4+k =0,x 1=1,x 2=4+k ,∴B (4+k ,k 2+3k +1),设p (x ,0),∵∠APB =90°,∠AEP =∠PTB =90°,∴∠APE +∠EAP =∠APE +∠BPT =90°,∴∠EAP =∠BPT ,∴△AEP ∽△PTB ,∴AE PT =EP BT ,∴14k x+-=2131x k k -++,∴x 2-(5+k )x +k 2+4k +5=0,∵在x 轴上有且只有一点P ,∴△=(5+k )2-4×1×(k 2+4k +5)=0,,即3 k 2+6k -5=0,解得k =3263-±,∵k >0,∴k = 3263-+. TE PlOCD BA x yF【知识点】二次函数的表达式;二次函数的性质;一次函数的表达式;三角形面积公式;相似三角形的判定与性质;。
C. D.浙江省温州市2018年中考数学试卷C..如图,已知,添加以下条件,不能判定的是(A. B. C. D.)作线段,分别以为圆心以长为半径作弧两弧的交点为;)以为圆心仍以长为半径作弧交的延长线于点;)连接A. B.点是的外心 D.BD=AB=ABAC=CD,=AB、C.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能判定(A. B. C. D..已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹A. B.C. D.∴弦为.在中,,于,平分交于,则下列结论一定成立的是(A. B. C. D.如图,,且.、是上两点,,.若,,,则A. B. C. D..如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大A. C. D.【来源】陕西省2018【答案】证明见解析..如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.)线段,,之间的数量关系是)若,求的度数);(ADB=,年中考数学试卷BC=,cos ADB= cos∠ABE=cos ADB==AC=AB=3BC=CD= AB=3本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化,当点在菱形内部或边上时,连接,与的数量关系是,与的位置)当点在菱形外部时,,当点在线段的延长线上时,连接,若,求四边形的面积) .,,∴,是等边三角形,∴,∵,∴,===,的面积是 .在中,,为的中点,,垂足分别为点,且.求证:是CE=∴,FC==,CE==.MC=BD EM=BDCM=ME=BD=DM DE=EM=DM,等腰三角形中,,求的度数(答案:)等腰三角形中,,求的度数(答案:或或)等腰三角形中,,求的度数)后,小敏发现,的度数不同,得到的度数的个数也可能不同如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围)或或;()当且,有三个不同的度数)分为顶角和为底角,两种情况进行讨论)分①当时,②当时,两种情况进行讨论.在中,,平分,平分,相交于点,且,则__________【答案】EF=,∴AE=,即+2-aa=,CH=FH=,AC=AE+EH+HC=,故答案为:.是正方形,和都是直角,且点三点共线,,则阴影部分的.等腰三角形的一个底角为,则它的顶角的度数为【答案】的网格中,的顶点,,均在格点上)的大小为)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求;)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求AC=,BC=,AB=,的等边中,,分别为,的中点,于点,为的中点,连接,则的长为【答案】分析:连接.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.,则__________.【答案】.如图,五边形是正五边形,若,则__________交于点,根据得到∠根据五边形是正五边形得到∠交于点∵,∵五边形是正五边形,.如图,为的平分线.,..则点到射线的距离为.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度【答案】或,此时正方形的边长为时,正方形。
一、单选题1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【来源】浙江省湖州市2018年中考数学试题【答案】B点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.学科*网3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.【来源】浙江省温州市2018年中考数学试卷【答案】B点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键. 4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【来源】山东省潍坊市2018年中考数学试题【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【来源】山东省滨州市2018年中考数学试题【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.11.如图,,且.、是上两点,,.若,,,则的长为()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】D【解析】分析:详解:如图,点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.学科*网12.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、解答题13.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【来源】陕西省2018年中考数学试题【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.14.如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.15.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【来源】山东省淄博市2018年中考数学试题【答案】证明见解析【解析】分析:过点A作EF∥BC,利用E F∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:证明:过点A作EF∥BC,点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【来源】山东省淄博市2018年中考数学试题【答案】(1)MG=NG;MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析【解析】分析:(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.详解:(1)连接BE,CD相较于H,如图1,(2)连接CD,BE,相较于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,如图3.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.学科*网17.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)BC=【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH∶AB = 1∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴AC=AB=3∵∠BAC=90°,AC=AB∴BC=点睛: 本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.18.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【来源】四川省宜宾市2018年中考数学试题【答案】证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.20.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺......分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD, 画出△ABD的AD边上的高 .【来源】江西省2018年中等学校招生考试数学试题【答案】(1)作图见解析;(2)作图见解析.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺......按要求作图,结合题意认真分析图形的成因是解题的关键.21.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3) .【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:连接 AC, ∵菱形 ABCD,∠ABC=60°, ∴△ABC 和△ACD 都是等边三角形, ∴AB=AC,∠BAD=120° , ∠BAP=120°+∠DAP, ∵△APE 是等边三角形, ∴AP=AE , ∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30° ,∵∠ADC=60°,∴∠DCE+∠ADC=90°, ∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3) 连接 AC 交 BD 于点 O,CE,作 EH⊥AP 于 H,由(2)知 BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE 是等边三角形,∴,,∵,∴,= = =,∴四边形 ADPE 的面积是 .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键. 学科*网22.已知:在 中,, 为 的中点,,,垂足分别为点 ,且.求证: 是等边三角形.【来源】浙江省嘉兴市 2018 年中考数学试题 【答案】证明见解析.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键 是证明∠A=∠C. 23.如图,⊙O 为锐角△ABC 的外接圆,半径为 5. (1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧 BC 的交点 E(保留作图痕迹,不写作法); (2)若(1)中的点 E 到弦 BC 的距离为 3,求弦 CE 的长.【来源】安徽省 2018 年中考数学试题 【答案】(1)画图见解析;(2)CE=【详解】(1)如图所示,射线 AE 就是所求作的角平分线;(2)连接 OE 交 BC 于点 F,连接 OC、CE, ∵AE 平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在 Rt△OFC 中,由勾股定理可得 FC==,在 Rt△EFC 中,由勾股定理可得 CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC 是解题的关键.24.如图 1,Rt△ABC 中,∠ACB=90°,点 D 为边 AC 上一点,DE⊥AB 于点 E,点 M 为 BD 中点,CM的延长线交 AB 于点 F.(1)求证:CM=EM; (2)若∠BAC=50°,求∠EMF 的大小; (3)如图 2,若△DAE≌△CEM,点 N 为 CM 的中点,求证:AN∥EM.【来源】安徽省 2018 年中考数学试题 【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【详解】(1)∵M 为 BD 中点, Rt△DCB 中,MC= BD, Rt△DEB 中,EM= BD, ∴MC=ME; (2)∵∠BAC=50°,∠ACB=90°, ∴∠ABC=90°-50°=40°, ∵CM=MB, ∴∠MCB=∠CBM, ∴∠CMD=∠MCB+∠CBM=2∠CBM, 同理,∠DME=2∠EBM, ∴∠CME=2∠CBA=80°, ∴∠EMF=180°-80°=100°; (3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE, ∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°, ∴∠ABC=45°,∠ECM=45°, 又∵CM=ME= BD=DM, ∴DE=EM=DM, ∴△DEM 是等边三角形, ∴∠EDM=60°, ∴∠MBE=30°, ∵CM=BM,∴∠BCM=∠CBM, ∵∠MCB+∠ACE=45°, ∠CBM+∠MBE=45°, ∴∠ACE=∠MBE=30°, ∴∠ACM=∠ACE+∠ECM=75°,∵CM⊥EM, ∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形 外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.25.数学课上,张老师举了下面的例题:例 1 等腰三角形 中,,求 的度数.(答案: )例 2 等腰三角形 中,,求 的度数.(答案: 或 或 )张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形 中,,求 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现, 的度数不同,得到 的度数的个数也可能不同.如果在等腰三角形中,设,当 有三个不同的度数时,请你探索 的取值范围.【来源】2018 年浙江省绍兴市中考数学试卷解析【答案】(1)或 或 ;(2)当且, 有三个不同的度数.【解析】【分析】(1)分 为顶角和 为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.三、填空题26.在中,__________., 平分 , 平分 ,相交于点 ,且,则【来源】广东省深圳市 2018 年中考数学试题 【答案】【详解】如图,∵AD、BE 分别平分∠CAB 和∠CBA, ∴∠1=∠2,∠3=∠4, ∵∠C=90°,∴∠2+∠3=45°,∴∠AFE=45°, 过 E 作 EG⊥AD,垂足为 G,在 Rt△EFG 中,∠EFG=45°,EF= ,∴EG=FG=1,在 Rt△AEG 中,AG=AF-FG=4-1=3,∴AE=,过 F 分别作 FH⊥AC 垂足为 H, FM⊥BC 垂足为 M,FN⊥AB 垂足为 N,易得 CH=FH,设 EH=a,则 FH2=EF2-EH2=2-a2,在 Rt△AHF 中,AH2+HF2=AF2,即+2-a2=16,∴a= , ∴CH=FH= , ∴AC=AE+EH+HC= ,故答案为: .【点睛】本题考查了角平分线的性质,勾股定理的应用等,综合性质较强,正确添加辅助线是解题的关键.27.如图,四边形 ACDF 是正方形,和都是直角,且点 三点共线,,则阴影部分的面积是__________.【来源】广东省深圳市 2018 年中考数学试题 【答案】8 【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得 EC=AB=4,然后再利用三角形面积 公式进行求解即可.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出 CE=AB 是解题的关键.28.等腰三角形的一个底角为 ,则它的顶角的度数为__________. 【来源】四川省成都市 2018 年中考数学试题 【答案】点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.学科*网29.如图,在每个小正方形的边长为 1 的网格中,的顶点 , , 均在格点上.(1) 的大小为__________(度); (2)在如图所示的网格中, 是 边上任意一点. 为中心,取旋转角等于 ,把点 逆时针旋转,点 的对应点为 .当 最短时,请用无.刻.度.的直尺,画出点 ,并简要说明点 的位置是如何找到的(不要求 证明)__________. 【来源】天津市 2018 年中考数学试题 【答案】 ; 见解析 【解析】分析:(1)利用勾股定理即可解决问题; (2)如图,取格点 , ,连接 交 于点 ;取格点 , ,连接 交 延长线于点 ;取格点 ,连接 交 延长线于点 ,则点 即为所求. 详解:(1)∵每个小正方形的边长为 1,∴AC=,BC=,AB=,(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.30.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.31.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.【来源】浙江省金华市2018年中考数学试题【答案】AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.学科*网32.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【来源】山东省滨州市2018年中考数学试题【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.33.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】点睛:本题考查了三角形的中位线定理,属于基础题,解答本题的关键是掌握三角形的中位线定理. 34.如图,五边形是正五边形,若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.35.如图,为的平分线.,..则点到射线的距离为__________.【来源】山东省德州市2018年中考数学试题【答案】3点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.36.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 37.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.学科*网。
方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
2018年四川省成都市中考数学试卷
一、选择题(每小题3分,共30分)
1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()
A.a B.b C.c D.d
2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106
3.(3分)如图所示的正六棱柱的主视图是()
A.B.
C.D.
4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)
5.(3分)下列计算正确的是()
A.x2+x2=x4B.(x﹣y)2=x2﹣y2
C.(x2y)3=x6y D.(﹣x)2•x3=x5
6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()
A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC
7.(3分)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()
A.极差是8℃B.众数是28℃
C.中位数是24℃D.平均数是26℃
8.(3分)分式方程=1的解是()
A.x=1B.x=﹣1C.x=3D.x=﹣3
9.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()
A.πB.2πC.3πD.6π
10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()
A.图象与y轴的交点坐标为(0,1)
B.图象的对称轴在y轴的右侧
C.当x<0时,y的值随x值的增大而减小
D.y的最小值为﹣3
二、填空题(每小题4分,共16分)
11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.
12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.
13.(4分)已知==,且a+b﹣2c=6,则a的值为.
14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半
径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC 的长为.
三、解答题(本大题共6个小题,共54分)
15.(12分)(1)2﹣2+﹣2sin60°+|﹣|
(2)化简:(1﹣)÷
16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如图不完整的统计图表.
满意度人数所占百分
比
非常满意1210%
满意54m
比较满意n40%
不满意65%
根据图表信息,解答下列问题:
(1)本次调查的总人数为,表中m的值;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.
(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈
0.75)
19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).
(1)求一次函数和反比例函数的表达式;
(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.
20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:BC是⊙O的切线;
(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;
(3)若BE=8,sin B=,求DG的长,
B卷一、填空题(每小题4分,共20分)
21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.
22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.
23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.
24.(4分)如图,在菱形ABCD中,tan A=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.
25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影
部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.
二、解答题(本大题共3小题,共30分)
26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.
(1)如图1,当P与A′重合时,求∠ACA′的度数;
(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;
(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.
28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m (k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.
(1)求抛物线的函数表达式;
(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;
(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.。