导数与不等式证明(绝对精华)讲课稿
- 格式:doc
- 大小:339.01 KB
- 文档页数:11
导数与不等式课堂考点探究探究点一导数方法证明不等式例题1已知函数f(x)=ln x+(1-a)x3+bx,g(x)=xe x-b (a,b∈R,e为自然对数的底数),且曲线y=f(x)在点(e,f(e))处的切线方程为y=1+1x.e(1)求实数a,b的值;(2)求证:f(x)≤g(x).[总结反思](1)证明f(x)>g(x)的一般方法是证明h(x)=f(x)-g(x)>0(利用单调性),特殊情况是证明f(x)min>g(x)max(最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f(x1)+g(x1)<f(x2)+g(x2)对x1<x2恒成立,即等价于函数h(x)=f(x)+g(x)为增函数.变式题已知函数f(x)=xln x-e x+1.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)证明:f(x)<sin x在(0,+∞)上恒成立.探究点二根据不等式确定参数范围例题2已知函数f(x)=x-ax+b的图像在点(e,f(e))处的切线方程为y=-ax+2e.lnx(1)求实数b的值;(2)若存在x∈[e,e2],满足f(x)≤1+e,求实数a的取值范围.4[总结反思](1)根据不等式恒成立求参数范围的关键是把不等式转化为相关函数,利用函数值与最值之间的数量关系确定参数满足的不等式(组),解不等式(组)(2)注意分离参数、构造函数等方法的应用.变式题已知f(x)=e x-ax2,若f(x)≥x+(1-x)·e x在x≥0时恒成立,求实数a的取值范围.探究点三可化为不等式问题的函数问题例题3已知函数f(x)=(x-1)ln x-(x-a)2(a∈R).若f(x)在(0,+∞)上单调递减,求a的取值范围. [总结反思]已知函数在某个区间上单调、在定义域上存在单调递增(减)区间等问题的解决方法是根据函数导数与单调性的关系建立不等式(组),通过研究不等式(组)得出问题答案.(x>1)图像的上方,求a的取值范围.变式题若函数y=ax2的图像恒在函数y=x2x2-1参考答案例题1 [思路点拨] (1)对函数f (x )求导,根据切线方程及导数得出参数a ,b ;(2)构建函数F (x )=f (x )-g (x ),只需证明F (x )≤0,对F (x )求导,分析求单调性与最大值.解:(1)∵f'(x )=1x +3(1-a )x 2+b , ∴f'(e )=1e+3(1-a )e 2+b ,且f (e )=1+(1-a )e 3+be , 又曲线y=f (x )在点(e ,f (e ))处的切线方程为y=(1e +1)x ,∴切点坐标为(e ,1+e ),∴{1e +3(1−a)e 2+b =1e +1,1+(1−a)e 3+be =1+e,解得a=b=1.(2)证明:由(1)可知f (x )=ln x+x ,g (x )=xe x -1,且f (x )的定义域为(0,+∞), 令F (x )=f (x )-g (x )=ln x+x-xe x+1, 则F'(x )=1x +1-e x -xe x =1+xx -(x+1)e x =(x+1)1x-e x . 令G (x )=1x -e x ,可知G (x )在(0,+∞)上为减函数,且G (12)=2-√e >0,G (1)=1-e<0, ∴存在x 0∈12,1,使得G (x 0)=0,即1x 0-e x 0=0. 当x ∈(0,x 0)时,G (x )>0,∴F'(x )>0,F (x )为增函数;当x ∈(x 0,+∞)时,G (x )<0,∴F'(x )<0,F (x )为减函数.∴F (x )≤F (x 0)=ln x 0+x 0-x 0e x 0+1,又∵1x 0-e x 0=0,∴1x 0=e x 0,即ln x 0=-x 0, ∴F (x 0)=0,即F (x )≤0,∴f (x )≤g (x ).变式题 解:(1)依题意得f'(x )=ln x+1-e x,又f (1)=1-e ,f'(1)=1-e , 故所求切线方程为y-1+e=(1-e )(x-1),即y=(1-e )x.(2)证明:依题意,要证f (x )<sin x ,即证xln x-e x+1<sin x , 即证xln x<e x+sin x-1. 当0<x ≤1时,e x+sin x-1>0,xln x ≤0, 故xln x<e x+sin x-1,即f (x )<sin x. 当x>1时,令g (x )=e x +sin x-1-xln x ,故g'(x )=e x+cos x-ln x-1. 令h (x )=g'(x )=e x +cos x-ln x-1,则h'(x )=e x -1x-sin x , 当x>1时,e x -1x >e-1>1,所以h'(x )=e x -1x -sin x>0,故h (x )在(1,+∞)上单调递增. 故h (x )>h (1)=e+cos 1-1>0,即g'(x )>0,所以g (x )>g (1)=e+sin 1-1>0,即xln x<e x+sin x-1,即f (x )<sin x. 综上所述,f (x )<sin x 在(0,+∞)上恒成立.例题2 [思路点拨] (1)利用导数求得切线方程,将其和已知的切线方程对比,可得b=e ;(2)将原不等式分离常数,得到a ≥1lnx -14x 在[e ,e 2]上有解,令h (x )=1lnx -14x ,利用导数求得其最小值,进而得到a 的取值范围.解:(1)函数f (x )的定义域为(0,1)∪(1,+∞).因为f (x )=x lnx -ax+b ,所以f'(x )=lnx -1(lnx)2-a ,所以f (e )=e-ae+b ,f'(e )=-a.所以函数f (x )的图像在点(e ,f (e ))处的切线方程为y-(e-ae+b )=-a (x-e ),即y=-ax+e+b. 又已知函数f (x )的图像在点(e ,f (e ))处的切线方程为y=-ax+2e ,所以实数b 的值为e.(2)f (x )≤14+e ,即x lnx -ax+e ≤14+e , 所以问题转化为a ≥1lnx -14x 在[e ,e 2]上有解. 令h (x )=1lnx -14x ,x ∈[e ,e 2], 则h'(x )=14x 2-1x(lnx)2=(lnx)2-4x 4x 2(lnx)2=(lnx+2√x)(lnx -2√x)4x 2(lnx)2.令p (x )=ln x-2√x ,所以当x ∈[e ,e 2]时,有p'(x )=1x -√x =1−√xx <0, 所以函数p (x )在区间[e ,e 2]上单调递减,在区间[e ,e 2]上,p (x )<p (e )=ln e-2√e <0,h'(x )<0,即h (x )在区间[e ,e 2]上单调递减,h (x )≥h (e 2)=1ln e 2-14e 2=12-14e 2. 所以实数a 的取值范围为12-14e 2,+∞. 变式题 解:f (x )≥x+(1-x )e x ,即e x -ax 2≥x+e x -xe x ,即e x -ax-1≥0,x ≥0.令h (x )=e x -ax-1(x ≥0),则h'(x )=e x-a (x ≥0). 当a ≤1时,由x ≥0知h'(x )≥0,∴h (x )≥h (0)=0,原不等式恒成立.当a>1时,令h'(x )>0,得x>ln a ;令h'(x )<0,得x<ln a.∴h (x )在(0,ln a )上单调递减,又∵h (0)=0,∴h (x )≥0不恒成立,∴a>1不合题意.综上,a 的取值范围为(-∞,1].例题3 [思路点拨] 问题转化为f'(x )≤0在(0,+∞)上恒成立,构建函数g (x )=f'(x ),让其最大值小于或等于0即可.解:由已知得,f'(x )=ln x+x -1x -2(x-a )=ln x-1x -2x+1+2a ≤0恒成立. 令g (x )=ln x-1x -2x+1+2a ,则g'(x )=1x +1x 2-2=-2x 2+x+1x 2=-(2x+1)(x -1)x 2(x>0).∴当0<x<1时,g'(x )>0,g (x )在(0,1)上单调递增,当x>1时,g'(x )<0,g (x )在(1,+∞)上单调递减,∴g (x )max =g (1)=2a-2.∴由f'(x )≤0恒成立可得a ≤1.即当f (x )在(0,+∞)上单调递减时,a 的取值范围是(-∞,1].变式题 解:∵函数y=ax 2的图像恒在函数y=x2x 2-1(x>1)图像的上方, ∴ax 2-x2x 2-1>0在(1,+∞)上恒成立,∴a>12x 3-x .设f(x)=1,x>1,2x3-x则f'(x)=1−6x2<0在(1,+∞)上恒成立, (2x3-x)2∴f(x)在(1,+∞)上单调递减,∴f(x)<f(1)=1,∴a≥1.。
第2课时 利用导数证明不等式命题解读 导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.01突破核心命题考 点 一将不等式转化为一个函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.反思感悟训练1 (2023·新课标Ⅱ卷节选)证明:当0<x<1时,x-x2<sin x<x.证明:设f(x)=x-sin x,则f′(x)=1-cos x≥0,所以函数f(x)在(0,1)上单调递增,所以当x∈(0,1)时,f(x)>f(0)=0,即x-sin x>0在(0,1)上恒成立,所以sin x<x在(0,1)上恒成立.设g(x)=sin x+x2-x,则g′(x)=cos x+2x-1.设h(x)=cos x+2x-1,则h′(x)=-sin x+2>0,所以函数h(x)在(0,1)上单调递增,所以当x∈(0,1)时,h(x)>h(0)=0,即g′(x)>0在(0,1)上恒成立,所以函数g(x)在(0,1)上单调递增,所以当x∈(0,1)时,g(x)>g(0)=0,即sin x+x2-x>0在(0,1)上恒成立,所以sin x>x-x2在(0,1)上恒成立.综上所述,当0<x<1时,x-x2<sin x<x.考 点 二将不等式转化为两个函数的最值问题如果要证明的不等式由指数函数、对数函数、多项式函数组合而成,往往进行指对分离,转化为证明g (x )≥h (x ),分别求g (x )min ,h (x )max进行证明.反思感悟训练2 (2024·衡水模拟改编)已知函数f(x)=eln x-e x,证明:xf(x)-e x+2e x≤0.考 点 三放缩法证明不等式例3 已知函数f(x)=a e x-1-ln x-1.(1)若a=1,求f(x)在(1,f(1))处的切线方程;(2)证明:当a≥1时,f(x)≥0.解:(1)当a=1时, f(x)=e x-1-ln x-1(x>0),f′(x)=e x-1-,k=f′(1)=0,又f(1)=0,∴切点为(1,0).∴切线方程为y-0=0(x-1),即y=0.法二:令g(x)=e x-x-1,∴g′(x)=e x-1.当x∈(-∞,0)时,g′(x)<0;当x∈(0,+∞)时,g′(x)>0,∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴g(x)min=g(0)=0,故e x≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.由e x≥x+1⇒e x-1≥x(当且仅当x=1时取“=”),由x-1≥ln x⇒x≥ln x+1(当且仅当x=1时取“=”),∴e x-1≥x≥ln x+1,即e x-1≥ln x+1,即e x-1-ln x-1≥0(当且仅当x=1时取“=”),即f(x)≥0.导数方法证明不等式时,最常见的是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)e x ≥e x ,当且仅当x =1时取等号.(3)ln x ≤x -1,当且仅当x=1时取等号.反思感悟训练3 已知函数f(x)=ax-sin x.(1)若函数f(x)为增函数,求实数a的取值范围;(2)求证:当x>0时,e x>2sin x.解:(1)∵f(x)=ax-sin x,∴f′(x)=a-cos x,由函数f(x)为增函数,则f′(x)=a-cos x≥0恒成立,即a≥cos x在R上恒成立,∵y=cos x∈[-1,1],∴a≥1,即实数a的取值范围是[1,+∞).(2)证明:由(1)知,当a=1时,f(x)=x-sin x为增函数,当x>0时,f(x)>f(0)=0⇒x>sin x,要证当x>0时,e x>2sin x,只需证当x>0时,e x>2x,即证e x-2x>0在(0,+∞)上恒成立,设g(x)=e x-2x(x>0),则g′(x)=e x-2,令g′(x)=0,解得x=ln 2,∴g(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,∴g(x)min=g(ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,∴g(x)≥g(ln 2)>0,∴e x>2x成立,故当x>0时,e x>2sin x.02限时规范训练(二十二)解:(1)易知函数f(x)的定义域为R,∵f(x)=e x-x-1,∴f′(x)=e x-1,令f′(x)>0,解得x>0,f(x)在(0,+∞)上单调递增,令f′(x)<0,解得x<0,f(x)在(-∞,0)上单调递减,即f(x)的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f(x)的极小值为f(0)=0,无极大值.3.已知函数f(x)=x ln x,求证:f(x)<2e x-2.(2)证明:设h(x)=x-sin x,则h′(x)=1-cos x≥0,h(x)单调递增,所以当x>0时,h(x)>h(0)=0,即x>sin x(x>0).所以e x-sin x-1>e x-x-1,所以要证e x-sin x-1>x ln x,只需证明f(x)>x ln x即可.当x∈(0,1)时,f(x)>0,x ln x<0,所以f(x)>x ln x.限时规范训练(二十二)点击进入WORD文档。
二轮博题 (十一)导数与没有等式道明之阳早格格创做【教习目标】1. 会利用导数道明没有等式.2. 掌握时常使用的道明要领.【知识回瞅】一级排查:应知应会1.利用导数道明没有等式要思量构制新的函数,利用新函数的单调性或者最值办理没有等式的道明问题.比圆要道明对付任性∈x [b a ,]皆有)()(x g x f ≤,可设)()()(x g x f x h -=,只消利用导数道明)(x h 正在[b a ,]上的最小值为0即可.二级排查:知识聚集利用导数道明没有等式,解题本领归纳如下:(1)利用给定函数的某些本量(普遍第一问先让办理出去),如函数的单调性、最值等,服务于第二问要道明的没有等式.(2)多用分解法思索.二边与对付数(指数),移项通分等等.要注意变形的目标:果为要利用函数的本量,力供变形后没有等式一边需要出现函数闭系式.(4)时常使用要领另有断绝函数法,max min )()(x g x f ≥,搁缩法(常与数列战基础没有等式所有考查),换元法,主元法,消元法,数教归纳法等等,但是无论何种要领,问题的粗髓仍旧构制辅帮函数,将没有等式问题转移为利用导数钻研函数的单调性战最值问题.(5)修议有本领共教不妨相识一下罗必塔规则战泰勒展启式,有许多题皆是利用泰勒展启式搁缩得去.三极排查:易错易混用导数道明数列时注意定义域.【课堂商量】一、做好(商)法例1、道明下列没有等式:①1+≥x e x ②1ln -≤x x ③xx 1-1ln ≥ ④1x 1)-2(x ln +≥x )1(≥x ⑤)2,0(,2sin ππ∈>x x x 二、利用max min )()(x g x f ≥道明没有等式例2、已知函数.22)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处博得极小值0,供b a ,的值;(2)正在(1)的条件下,供证:对付任性的],[,221e e x x ∈,总有)()(21x g x f >. 变式:道明:对付十足),0(+∞∈x ,皆有ex e x x 21ln ->创制.三、构制辅帮函数或者利用主元法例3、已知n m ,为正整数,且,1n m <<供证:m n n m )1()1(+>+.变式:设函数x x f ln )(=,22)(-=x x g (1≥x ).(1)试推断)()()1()(2x g x f x x F -+=正在定义域上的单调性;(2)当b a <<0时,供证22)(2)()(b a a b aa fb f +->-.四、分解法道明没有等式例4、设1>a ,函数a e x x f x -+=)1()(2.若直线()y f x 正在面P 处的切线与x轴仄止,且正在面(,)M m n 处的切线与直线OP 仄止(O 是坐标本面),道明:123--≤e a m . 变式:已知函数x x x f ln )(2=.(Ⅰ)供函数)(x f 的单调区间;(Ⅱ)道明:对付任性的0>t ,存留唯一的s ,使)(s f t =. (Ⅲ)设(Ⅱ)中所决定的s 闭于t 的函数为)(t g s =,道明:当2e t >时,有21ln )(ln 52<<t t g . 五、断绝函数例5、已知函数)ln()(m x e x f x +-=.(Ⅰ)设0=x 是)(x f 的极值面,供m 并计划)(x f 的单调性; (Ⅱ)当2≤m 时,道明:)(x f 0>.变式:已知函数,,)(R x x nx x f n ∈-=其中*∈N n ,且2≥n .(1)计划)(x f 的单调性;(2)设直线)(x f y =与x 轴正半轴的接面为P ,直线正在面P 处的切线圆程为)(x g y =,供证:对付于任性的正真数x ,皆有)()(x g x f ≤;(3)若闭于x 的圆程)()(为实数a a x f =有二个正真数根21,x x ,供证:.2112+-<-n a x x六、与数列分离例6、已知函数3ln )(--=ax x a x f )(R a ∈.(1)供函数)(x f 的单调区间;(2)供证:)2(1ln 44ln .33ln .22ln ≥*∈<n N n nn n , 变式:(1)已知),0(+∞∈x ,供证:xx x x 11ln 11<+<+; (2)供证:)2(1131211ln 1413121≥*∈-++++<<++++n N n n n n , . 【坚韧锻炼】1. 已知函数,ln 21)(2x x x f +=供证:正在区间),1(+∞上,函数)(x f 的图像正在函数332)(x x g =的图像的下圆. ()1ln 1x f x x+=-. (Ⅰ)供直线()y f x =正在面()()00f ,处的切线圆程;(Ⅱ)供证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设真数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对付()01x ∈,恒创制,供k 的最大值. 210x x <<,供证:n n n x x x x ⎪⎭⎫ ⎝⎛+>+222121. )0()1ln()(>+=x xx x f . (1)推断)(x f 的单调性;(2)道明:e nn <+)11((e 为自然对付数,*N n ∈). (1)供函数)(x f 的最小值;(2)设没有等式ax x f >)(的解集为P ,且P ⊆]2,0[,供真数a 的与值范畴;(3)设*∈N n ,道明:1321-<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛e e n n n n n nn n n . )0()1ln()(2≤++=a ax x x f .(1)计划)(x f 的单调性;(2)道明:)(4211+)(4311+)(411n+ e <(e 为自然对付数,*N n ∈,2≥n ). (1)供函数)(x f 的最大值;(2)设b a <<0,道明 :2ln )()2(2)()(0a b b a g b g a g -<+-+<. xbe x ae x f x x 1ln )(-+=,直线()y f x =正在面(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)供,a b ; (Ⅱ)道明:()1f x >.9. 已知函数()ax e x f x -=(a 为常数)的图像与y 轴接于面A ,直线()x f y =正在面A 处的切线斜率为-1.(Ⅰ)供a 的值及函数()x f 的极值; (Ⅱ)道明:当0>x 时,x e x <2;(Ⅲ)道明:对付任性给定的正数c ,总存留0x ,使恰当()∞+∈,0x x ,恒有x ce x <2.10.(选做)已知.1)1()(--=x e x x f(1)道明:当0>x 时,0)(<x f ;(2)数列}{n x 谦脚,1,111=-=+x e e x n n x x n 供证:}{n x 递减,且n n x 21>.。
二轮专题 (十一) 导数与不等式证明
【学习目标】
1. 会利用导数证明不等式.
2. 掌握常用的证明方法.
【知识回顾】
一级排查:应知应会
1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可.
二级排查:知识积累
利用导数证明不等式,解题技巧总结如下:
(1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.
(2)多用分析法思考.
(3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.
(4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题.
(5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来.
三极排查:易错易混
用导数证明数列时注意定义域.
【课堂探究】
一、作差(商)法
例1、证明下列不等式:
①1+≥x e x ②1ln -≤x x ③x x 1-1ln ≥
④1x 1)-2(x ln +≥
x )1(≥x ⑤)2
,0(,2sin ππ∈>x x x
二、利用max min )()(x g x f ≥证明不等式
例2、已知函数.2
2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值;
(2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.
变式:证明:对一切),0(+∞∈x ,都有ex e
x x 21ln ->
成立.
三、构造辅助函数或利用主元法 例3、已知n m ,为正整数,且,1n m <<求证:m n n m )1()1(+>+.
变式:设函数x x f ln )(=,22)(-=x x g (1≥x ).
(1)试判断)()()1()(2x g x f x x F -+=在定义域上的单调性;
(2)当b a <<0时,求证22)(2)()(b
a a
b a a f b f +->
-.
四、分析法证明不等式
例4、设1>a ,函数a e x x f x
-+=)1()(2.若曲线()y f x =在点P 处的切线与x 轴平行, 且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:123--
≤e a m .
变式:已知函数x x x f ln )(2=.
(Ⅰ)求函数)(x f 的单调区间;
(Ⅱ)证明:对任意的0>t ,存在唯一的s ,使)(s f t =.
(Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为)(t g s =,证明:当2e t >时,有21ln )(ln 52<<t t g .
五、隔离函数
例5、已知函数)ln()(m x e x f x +-=.
(Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明:)(x f 0>.
变式:已知函数,,)(R x x nx x f n ∈-=其中*∈N n ,且2≥n .
(1)讨论)(x f 的单调性;
(2)设曲线)(x f y =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为)(x g y =,求证:对于任意的正实数x ,都有)()(x g x f ≤;
(3)若关于x 的方程)()(为实数a a x f =有两个正实数根21,x x ,求证:.2112+-<-n
a x x
六、与数列结合
例6、已知函数3ln )(--=ax x a x f )(R a ∈.
(1)求函数)(x f 的单调区间;
(2)求证:
)2(1ln 44ln .33ln .22ln ≥*∈<n N n n
n n ,Λ
变式:(1)已知),0(+∞∈x ,求证:x
x x x 11ln 11<+<+; (2)求证:)2(1131211ln 1413121≥*∈-++++<<++++n N n n n n ,ΛΛ.
【巩固训练】
1. 已知函数,ln 21)(2x x x f +=
求证:在区间),1(+∞上,函数)(x f 的图像在函数33
2)(x x g =的图像的下方.
2.已知函数()1ln 1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;
(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝
⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭
对()01x ∈,恒成立,求k 的最大值.
3.已知210x x <<,求证:n
n n x x x x ⎪⎭⎫ ⎝⎛+>+222121.
4. 设函数)0()
1ln()(>+=x x x x f .
(1)判断)(x f 的单调性;
(2)证明:e n n <+)1
1((e 为自然对数,
*N n ∈).
5.已知函数.)(x e x f x -=
(1)求函数)(x f 的最小值;
(2)设不等式ax x f >)(的解集为P ,且P ⊆]2,0[,求实数a 的取值范围;
(3)设*∈N n ,证明:1321-<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛e e n n n n n n
n n n Λ.
6.已知)0()1ln()(2≤++=a ax x x f .
(1) 讨论)(x f 的单调性;
(2)证明:)(4211+)(4311+)(41
1n +Λe <(e 为自然对数,
*N n ∈,2≥n ).
7. 已知函数x x x g x x x f ln )(,)1ln()(=-+=
(1)求函数)(x f 的最大值;
(2)设b a <<0,证明 :2ln )()2(2)()(0a b b a g b g a g -<+-+<.
8.设函数x be x ae x f x x 1
ln )(-+=,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.
11 9. 已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.
(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,x e x <2;
(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,
0x x ,恒有x ce x <2.
10.(选作)已知.1)1()(--=x e x x f
(1)证明:当0>x 时,0)(<x f ;
(2)数列}{n x 满足,1,111=-=+x e e x n n x x n 求证:}{n x 递减,且n n x 21>.。