电子电路综合设计实验报告
- 格式:docx
- 大小:357.86 KB
- 文档页数:13
一、实验目的1. 理解和掌握电子电路的基本原理和基本分析方法。
2. 熟悉常用电子仪器的使用方法,如示波器、万用表等。
3. 提高电路设计、调试和故障排除的能力。
二、实验仪器与设备1. 示波器2. 万用表3. 面包板4. 电源5. 电阻、电容、二极管、三极管等电子元件6. 电路原理图三、实验原理本次实验主要涉及以下几种电路:1. 放大电路:利用三极管放大信号的原理,实现对输入信号的放大。
2. 滤波电路:利用电容、电感等元件的特性,对信号进行滤波处理。
3. 振荡电路:利用正反馈原理,产生稳定的振荡信号。
四、实验步骤1. 搭建放大电路:(1)根据电路原理图,在面包板上搭建放大电路。
(2)使用示波器观察输入信号和输出信号的波形。
(3)调整电路参数,观察对输出信号的影响。
2. 搭建滤波电路:(1)根据电路原理图,在面包板上搭建滤波电路。
(2)使用示波器观察输入信号和输出信号的波形。
(3)调整电路参数,观察对输出信号的影响。
3. 搭建振荡电路:(1)根据电路原理图,在面包板上搭建振荡电路。
(2)使用示波器观察输出信号的波形。
(3)调整电路参数,观察对输出信号的影响。
五、实验结果与分析1. 放大电路:(1)输入信号为正弦波,输出信号为放大后的正弦波。
(2)通过调整电路参数,可以实现不同倍数的放大。
(3)放大电路具有非线性失真现象,需要通过合适的电路设计来减小。
2. 滤波电路:(1)输入信号为含有多种频率成分的复合信号,输出信号为经过滤波后的信号。
(2)通过调整电路参数,可以实现不同频率的滤波效果。
(3)滤波电路对信号有一定的延迟,需要根据实际需求进行优化。
3. 振荡电路:(1)输出信号为稳定的正弦波。
(2)通过调整电路参数,可以实现不同频率的振荡。
(3)振荡电路对电路参数的稳定性要求较高,需要保证电路元件的精度。
六、实验总结通过本次实验,我们掌握了电子电路的基本原理和基本分析方法,熟悉了常用电子仪器的使用方法,提高了电路设计、调试和故障排除的能力。
电子电工综合实验论文专题:裂相〔分相〕电路院系:自动化学院专业:电气工程及其自动化:小格子学号:指导老师:徐行健裂相(分相)电路摘要:本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。
用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。
同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。
得到如下结论:1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系;2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率;3.负载为感性时,两实验得到的曲线差异较小,反之,则较大。
关键词:分相两相三相负载功率阻性容性感性引言根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。
所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。
而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。
正文1.实验材料与设置装备本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为〔均为理想器材〕实验原理:(1). 将单相电源分裂成两相电源的电路结构设计把电源U1分裂成U1和U2输出电压,如下列图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。
上图中输出电压U1和U2与US之比为Us U 1=2)11(11C wR + Us U 2=2)221(11C wR +对输入电压Us 而言,输出电压U1和U2与其的相位为: Φ1=-tg (wR1C1) Φ2=tg (221C wR )或 ctg φ2=wR2C2=-tg(φ2+90°) 假设 R1C1=R2C2=RC 必有 φ1-φ2=90°一般而言,φ1和φ2与角频率w 无关,但为使U1与U2数值相等,可令wR1C1=wR2C2=1则在确定R,C 数值时,可先确定C=10µF ,则根据上式可确定R=318.31Ω。
一、实验目的本次电子电路实习实验旨在通过实际操作,加深对电子电路基本原理的理解,掌握电路的搭建、调试和测试方法,提高动手能力和分析问题、解决问题的能力。
二、实验器材1. 实验板:包括电源模块、电阻、电容、二极管、三极管、集成电路等;2. 电源:直流稳压电源;3. 测量仪器:万用表、示波器;4. 其他:导线、焊接工具、螺丝刀等。
三、实验内容1. 电阻、电容、二极管、三极管等基本元件的识别与检测;2. 基本电路的搭建与调试,如串联电路、并联电路、RC低通滤波器、晶体管放大电路等;3. 集成电路的应用,如555定时器、运算放大器等;4. 电路的测试与分析,包括静态工作点测试、动态响应测试等。
四、实验步骤1. 实验前准备(1)熟悉实验器材和实验步骤;(2)了解实验原理,明确实验目的;(3)准备好实验记录表格。
2. 实验操作(1)基本元件的识别与检测1)根据元件的外观、颜色、封装等特征进行识别;2)使用万用表测量元件的阻值、电容值、二极管正向导通压降、三极管放大倍数等参数。
(2)基本电路的搭建与调试1)根据电路图,将元件焊接在实验板上;2)连接电源,进行电路的调试;3)测试电路的静态工作点,确保电路正常工作。
(3)集成电路的应用1)根据电路图,搭建集成电路的应用电路;2)连接电源,进行电路的调试;3)测试集成电路的输出波形、幅度等参数。
(4)电路的测试与分析1)使用万用表测试电路的静态工作点;2)使用示波器观察电路的动态响应,如频率响应、瞬态响应等;3)分析测试结果,判断电路性能是否符合要求。
3. 实验记录与总结(1)记录实验数据,包括元件参数、电路参数、测试结果等;(2)分析实验结果,总结实验心得,提出改进建议。
五、实验结果与分析1. 电阻、电容、二极管、三极管等基本元件的识别与检测结果符合预期;2. 基本电路的搭建与调试成功,电路性能符合要求;3. 集成电路的应用电路搭建成功,电路性能符合要求;4. 电路的测试与分析结果表明,电路性能良好,满足设计要求。
实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。
分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。
该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。
因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。
RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。
对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。
将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。
2.多谐振荡电路实验电路如图2所示。
深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。
再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。
该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。
根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。
设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。
矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。
3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。
设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。
一、实验目的通过本次电子电路实训实验,掌握电子电路的基本原理和实验技能,了解电子电路的设计与调试方法,培养动手操作能力和分析解决问题的能力。
二、实验原理电子电路是利用电子元件(如电阻、电容、电感、晶体管等)组成的电路,用于实现信号的产生、传输、处理和转换等功能。
本次实验主要涉及以下几种电路:1. 电阻分压电路:用于实现电压的分配和调节。
2. 晶体管放大电路:用于实现信号的放大。
3. 滤波电路:用于实现信号的筛选和分离。
4. 振荡电路:用于产生稳定的正弦波信号。
三、实验器材1. 电子元器件:电阻、电容、电感、晶体管、二极管等。
2. 仪器设备:示波器、万用表、电源、面包板等。
3. 工具:电烙铁、焊锡丝、剪刀、镊子等。
四、实验步骤1. 电阻分压电路实验(1)搭建电阻分压电路,将电阻按照一定比例连接。
(2)使用万用表测量电阻两端电压,记录数据。
(3)根据理论计算公式,计算实际电压与理论电压的误差。
2. 晶体管放大电路实验(1)搭建晶体管放大电路,连接晶体管、电阻、电容等元件。
(2)调整电路参数,观察输出信号的变化。
(3)使用示波器观察放大电路的输入、输出波形,分析电路性能。
3. 滤波电路实验(1)搭建滤波电路,连接电阻、电容、电感等元件。
(2)调整电路参数,观察滤波效果。
(3)使用示波器观察滤波电路的输入、输出波形,分析电路性能。
4. 振荡电路实验(1)搭建振荡电路,连接晶体管、电阻、电容等元件。
(2)调整电路参数,观察振荡波形。
(3)使用示波器观察振荡电路的输出波形,分析电路性能。
五、实验结果与分析1. 电阻分压电路实验结果:实际电压与理论电压误差较小,说明电阻分压电路性能良好。
2. 晶体管放大电路实验结果:放大电路能够放大输入信号,输出波形稳定,说明电路性能良好。
3. 滤波电路实验结果:滤波电路能够有效筛选信号,输出波形清晰,说明电路性能良好。
4. 振荡电路实验结果:振荡电路能够产生稳定的正弦波信号,输出波形稳定,说明电路性能良好。
最新电子电路实验四实验报告实验目的:1. 熟悉电子电路的基本组成和工作原理。
2. 掌握常用电子元器件的特性及其在电路中的应用。
3. 学习电路设计、搭建和调试的基本方法。
4. 提高分析和解决电路问题的能力。
实验内容:1. 设计并搭建一个基本的放大电路,包括晶体管的偏置和放大器的构建。
2. 测量并记录放大电路的输入阻抗、输出阻抗和增益。
3. 实验验证负反馈对放大器性能的影响,包括稳定性和增益的调整。
4. 通过实验分析,理解频率响应对放大器性能的影响。
5. 使用示波器和多用表等测量工具,对电路进行性能测试和故障诊断。
实验设备和材料:1. 面包板或印刷电路板(PCB)。
2. 晶体管(NPN和PNP类型)。
3. 电阻、电容、二极管等基本电子元器件。
4. 电源供应器。
5. 示波器。
6. 多用电表。
实验步骤:1. 根据实验指导书设计放大电路,并在面包板上搭建电路。
2. 调整电源供应器,为电路提供稳定的工作电压。
3. 使用多用电表检查电路的连通性和元器件的极性。
4. 打开示波器,连接到电路的输入和输出端,观察波形变化。
5. 调整电路中的电阻和电容,改变反馈网络,记录不同配置下的电路性能。
6. 分析实验数据,绘制电路的频率响应曲线。
7. 根据实验结果,对电路进行必要的调整和优化。
实验结果与分析:1. 记录电路的输入阻抗、输出阻抗和增益数据,并与理论值进行比较。
2. 分析负反馈对电路性能的影响,包括增益稳定性和带宽的变化。
3. 根据实验数据,绘制电路的频率响应曲线,并解释其物理意义。
4. 讨论实验中遇到的问题及其解决方案,提出可能的改进措施。
结论:通过本次实验,我们成功搭建并测试了一个基本的放大电路。
实验结果表明,电路的性能符合设计预期,输入阻抗、输出阻抗和增益均在合理范围内。
通过调整反馈网络,我们观察到了电路性能的明显变化,验证了负反馈对放大器性能的重要性。
此外,实验也提高了我们对电子电路设计、搭建和调试的理解和实践能力。
电子系统综合设计实验报告所选课题:±15V直流双路可调电源学院:信息科学与工程学院专业班级:学号:学生姓名:指导教师:2016年06月摘要本次设计本来是要做±15V直流双路可调电源的,但由于买不到规格为±18V 的变压器,只有±15V大小的变压器,所以最后输出结果会较原本预期要小。
本设计主要采用三端稳压电路设计直流稳压电源来达到双路可调的要求。
最后实物模型的输出电压在±13左右波动。
1、任务需求⑴有+15V和-15V两路输出,误差不超过上下1.5V。
(但在本次设计中,没有所需变压器,所以只能到±12.5V)⑵在保证正常稳压的前提下,尽量减小功效。
⑶做出实物并且可调满足需求2、提出方案直流可变稳压电源一般由整流变压器,整流电路,滤波器和稳压环节组成如下图a所示。
⑴单相桥式整流作用之后的输出波形图如下:⑵电容滤波作用之后的输出波形图如下:⑶可调式三端集成稳压器是指输出电压可以连续调节的稳压器,有输出正电压的LM317三端稳压器;有输出负电压的LM337三端稳压器。
在可调式三端集成稳压器中,稳压器的三个端是指输入端、输出端和调节端。
LM317的引脚图如下图所示:(LM337的2和3引脚作用与317相反)3、详细电路图:因为大容量电解电容C1,C2有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常 并入瓷介质小容量电容C5,C6,C7,C8用来抵消电感效应,抑制高频干扰。
参数计算: 滤波电容计算:变压器的次级线圈电压为15V ,当输出电流为0.5A 时,我们可以求得电路的负载为I =U /R=34Ω时,我们可以根据滤波电容的计算公式: C=т/R,来求滤波电容的取值范围,其中在电路频率为50HZ 的情况下,T 为20ms 则电容的取值范围大于600uF ,保险起见我们可以取标准值为2200uF 额定电压为50V的点解电容。
北京邮电大学电子电路综合实验报告示波器功能扩展电路的设计学院:电子工程学院班级:学号:班内序号:姓名:目录摘要关键字 (3)实验目的 (3)实验仪器与器件 (3)实验任务要求 (3)设计思路和总体结构框图 (3)分块电路原理 (4)总体结构框图与电路原理总结 (6)实现功能说明以及主要测试数据 (7)故障及问题分析 (9)总结和心得体会 (9)PROTEL绘制的原理图 (11)面包板与PCB板 (11)所有元器件及测试仪表清单 (12)参考文献 (13)课题名称:示波器功能扩展电路的设计与实现摘要:本实验是示波器功能扩展电路,可同时用一路通道检测分离4路信号。
电路分为五个基本分块电路——(1)555定时器作多谐振荡器产生时钟信号,时钟电路产生方波;(2)地址产生电路:计数器74LS169产生方波的二分频与四分频信号;(3)位移电路:CD4052一路为直流通道,另一路为信号通道,两路信号通过衰减器后在示波器水平位置上同时显示四路不同的信号;(4)放大调整和加法器电路:集成运放用于信号衰减放大与加法,将交流信号叠加到直流信号上实现纵向分离。
关键词:选通电路、信号叠加、交流放大,多踪显示。
一、实验目的:1.了解掌握555定时器的用作多谢振荡器的方法。
2.了解运算放大器组成的加法器实际应用。
3.学习模拟多路选择器的工作原理和使用方法。
4.复习巩固示波器原理和使用的相关知识。
5.提高独立设计电路和验证试验的能力二、实验仪器与器件:1. 直流稳压电源2. 函数信号发生器3. 示波器4. 晶体管毫伏表5. 万用表6. 芯片:NE555定时器;集成运算放大器LF353;计数器74LS169;多路模拟开关CD4052;7.电阻电容导线若干8. 面包板三、实验任务要求设计制作一个示波器功能拓展电路,能够实现将普通双踪示波器改装成为多踪示波器进行多路信号测试。
1.基本要求:(1)能够实现用示波器一路探头输入稳定显示四路被测波形;(2)输入信号幅度为0~10V,频率不低于500Hz;(3)系统电源DC+-5V。
电路电子实验报告总结与反思一、实验内容本次实验主要涉及电路电子领域的相关知识,包括电路的设计、实验仪器的使用和数据处理等。
具体实验内容如下:1. 了解并掌握基本电路元件的特性和工作原理;2. 设计并组装电路板,实现特定功能;3. 使用万用表和示波器测量电路参数;4. 记录实验数据并进行数据处理;5. 分析实验结果,总结实验思考。
二、实验过程在本次实验中,我选择了一个简单的放大电路作为实验对象。
首先,我仔细研究了相关的理论知识,包括放大电路的分类、基本原理和电路设计方法等。
然后,根据实验要求,我设计了一个适合放大特定信号的电路。
接下来,我按照设计要求组装了电路板,并连接上相应的电源和信号源。
在实验过程中,我使用了万用表测量了电路中各个元件的电压和电流,并使用示波器观察了电路中信号的波形变化。
在实验过程中,我还出现了一些问题。
例如,我没有正确设置示波器的刻度,导致观察到的信号波形不清晰。
此外,我还发现电路中的一个元件连接错误,导致电路无法正常工作。
幸运的是,经过反复检查和排除,我成功解决了这些问题,并取得了满意的实验效果。
三、实验结果与数据分析通过本次实验,我成功实现了一个放大电路,并观察到了输入信号和输出信号的波形变化。
通过测量和数据处理,我得到了一些实验结果。
首先,我测量了电路中各个元件的电压和电流。
根据测量结果,我发现电路中的元件工作正常,并且符合设计要求。
此外,我还观察到输入信号和输出信号的幅度比例,发现输出信号的幅度确实得到了一定程度的放大。
然后,我对实验数据进行了进一步的分析。
通过对比不同输入信号的输出波形,我发现输入信号的频率对于输出的影响较大。
当输入信号的频率较小时,输出信号的形态基本保持不变。
但当输入信号的频率增大时,输出信号的波形发生了明显的改变。
综上所述,通过本次实验,我掌握了电子电路实验的基本方法和技巧,并成功设计和实现了一个放大电路。
实验结果符合预期,进一步验证了电路设计的正确性。
电⼦电路综合设计实验报告(数控直流稳压电源设计)北京邮电⼤学电⼦电路综合设计实验实验报告实验名称:简易数控直流稳压电源的设计学院:电⼦⼯程学院班级:XXX班学号:XXXXXXXX姓名:XXX班内序号:XX2012年3⽉25⽇课题名称:简易数控直流稳压电源的设计摘要:本设计实验要求我们设计出简易数控直流稳压电源,通过⼿动调节实现输出不同电压的功能,通过电压与电流的放⼤实现较强的带负载能⼒,通过滤波电容消除纹波对直流的影响,并运⽤protel 软件进⾏仿真。
该设计实验旨在培养我们的实验兴趣与学习兴趣,提⾼实验技能与探究技能,引导我将所学所想运⽤到实际中去。
关键字:稳压电源,设计,仿真⼀、设计任务要求1.基本要求(1)设计实现⼀个简易数控直流稳压电源,设计指标及给定条件为:1) 输出电压调节范围:5V ~ 9V,步进0.5V 递增,纹波⼩于50mV;2) 输出电流⼤于100mA;3) 由预制输⼊控制输出电压递增;4) 电源为12V。
(2)设计+5V电源电路(不要求实际搭建),⽤PROTEL软件绘制完整的电路原理图(SCH)。
2.提⾼要求(1) 数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值;(2) ⽤PROTEL软件绘制电路的印刷电路板图(PCB)。
3.探究要求输出电压调节范围更宽,步进更⼩:范围:0 ~ 10 V, 步进:0.1V。
本次探究实验主要着重完成了基本要求部分的设计与探究。
⼆、设计思路、总体结构框图本实验要求设计⼀个可以充当数控直流稳压电源的电路,电路由数字控制部分、D/A 转换部分、可调稳压部分组成。
数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值(此部分为提⾼部分),⼆进制计数器输出输⼊到D/A 转换器中,经过D/A 转换后实现输出电压的可调。
其框图如图1所⽰。
图1 系统总体结构框图三、分块电路和总体电路的设计1.第⼀部分——数字电路控制部分此部分是电路的数字控制部分,也是电路输⼊端,其电路原理图如图2所⽰。
电子电路综合设计实验报告实验5自动增益控制电路的设计与实现POSTS姓名:学号:班内序号:. 实验名称:自动增益控制电路的设计与实现二.实验摘要:在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况; 另外,在其他应用中,也经常有多个信号频谱结构和动态范围大体相似,而最大波幅却相差甚多的现象。
很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。
此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。
自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小范围内变化的特殊功能电路,简称为实验采用短路双极晶体管AGC 电路。
本直接进行小信号控制的方法,简单有效地实现AGC功能。
关键词:自动增益控制,直流耦合互补级,可变衰减,反馈电路。
三.设计任务要求1. 基本要求:1)设计实现一个AGC电路,设计指标以及给定条件为:输入信号0.5〜50mVrms输出信号:0.5〜1.5Vrms;信号带宽:100〜5KHz;2)设计该电路的电源电路(不要求实际搭建),用PROTEST件绘制完整的电路原理图(SCH及印制电路板图(PCB2.提高要求:1)设计一种采用其他方式的AGCt路;2)采用麦克风作为输入,8 Q喇叭作为输出的完整音频系统。
3.探究要求:1)如何设计具有更宽输入电压范围的AGC电路;2)测试AGC电路中的总谐波失真(THD及如何有效的降低THD四.设计思路和总体结构框图AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA以及检波整流控制组成(如图1),该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC勺功能。
如图2,可变分压器由一个固定电阻R i和一个可变电阻构成,控制信号的交流振幅。
可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源V REG和大阻值电阻F2组成的直流源直接向短路晶体管注入电流。
为防止R2影响电路的交流电压传输特性。
R2的阻值必须远大于R1。
4__□、需:PKOiUK图2由短路三械管构成的衰减器电路对正电流的I 所有可用值,晶体管Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态。
短路晶体管的 V-I 特性曲线非常类似与PN 二极管,符合肖特基方程,除了稍高的直流电压值外,即器件电 压的变化与直流电流变化的对数成正比。
因此,对于VI 曲线上所有直流工作点,短路晶体管的微分电阻与流过的直 流电流成反比,换句话说,器件的微分电导直接与电流成正比。
由于在其工作状态下,共射极连接的双极型晶体管的电流放大系数一般在 100或100以上,在相当大的电流范围内,微分电阻都遵守这一规则。
因此,图2中V REG 的变化就会改变电流I,并控制R-Q i 分压比。
耦合电容C 和G 将电路的衰减器与输入信号源和输出负载隔离开来下图为一个典型的小信 号双极晶体管的短路VI 特性,图中显示,至少可以在五个十倍程范围内控制微 分电阻,即控制幅度超过lOOdR五. 分块电路和总体电路的设计1.总体电路原理图F I-2KeiaT nr litDetector反馈丈Jutput2. 分块电路(1)输入缓冲级输入信号V N驱动缓冲极Q,它的旁路射极电阻R有四个作用:首先,它将Q1的微分输出电阻提高到接近公式(1)所示的值。
风1~ r be+(1+ P r ce/r be)(R3//r be) (1)该电路中的微分输出电阻增加很多,使R4的阻值(27kQ)几乎可以唯一地确定整个输出电阻。
其次,由于R3未旁路,使Q1电压增益降低至:A Q1=—P R I/〔r be+(1+ P )R3〕e— R/ R 3 (2)第三,如公式(2)所示,未旁路的R3有助于Q1集电极电流一电压驱动的线性响应。
第四,Q1的基极微分输入电阻升至RBAS=r be+(1+ P )R3, 与只有r be相比,它远远大于Q1的瞬时工作点,并且对其依赖性较低。
图中,电阻F4构成可变衰减器的固定电阻,类似于图1中的电阻R10电路原理图如下:『::3C2)直流耦合互补级联放大电路该部分利用直流耦合将Q2与 Q3进行级联,构成互补放大器,在电路中提供 大部分电路电压增益。
电路图如下:MIDUX :C]卜::M:Is3)输出级电路r r :«R4可R I4是1k Q电阻,将发射极输出跟随器Q4与信号输出端隔离开来。
必要时,选用更低的电阻,但如果R I4过低,则大电容的连接电缆会使Q进入寄生振荡。
电路图如下:比a-a3汨3J3{£*JX:IK4)自动增益控制部分(AGC即反馈电路Q6构成衰减器的可变电阻部分。
Q为Q提供集电极驱动电流,Q的共射极结构只需要很少的基极电流。
电阻R I7决定了AGC勺释放时间,其阻值可以选大些,从而能够有较长的AGC释放时间。
电阻R19用于限制通过Q和Q6的最大直流控制电流。
当把大的C3值和Q6最小微分电阻作比较时,即最大信号波幅在完全控制下,其电抗对最低频率信号频谱成分而言是可以忽略的。
D和E2构成一个倍压整流器, 它从输出级Q提取信号的一部分,为Q5生成控制电压。
这种构置可以容纳非对称信号波形的两极性的大峰值振幅。
电阻R I5决定了AGC勺开始时间,若与C6组合的R I5过小,则是反馈传输函数产生极点,导致不稳定。
为确保对高频信号的良好响应,D和C2可以使用肖特基或快速PN硅二极管。
电路图如下:Utq-.eIIL(Ig5)9V稳压源电路Dlvv;VWVl(mV) VO(mV) 0.51.02.03.04.05.0 7.010.015.020.030.0 40.0 50.0100 686 704 718 725 732 735 744 753 765 777 787 799 810 500 665 693 711 722 729 735 744 755 767 776 789 800 809 1k 665 691 712 723 731 737 746 757 769 777 791 802 811 2k 669 695 715 725 732 738 747 757 770 776 789 804 813 3k 668 695 713 723 732 737 746 757 769 778 792 803 8125k662 693 711 722 729 736 744 755 767 775 788 798 8075dB。
六.所实现的功能说明1)已完成的基本功能本实验所完成的电路实现了自动增益控制的功能,输入的信号范围在0.5 50mVrms即40dB动态范围。
在这个输入范围内,输出电压的变化不超过2)主要测试数据部分波形图:1■ ft MO" I rIOoGcXI 材7, tO«V -l ・M V ol .0 2ti*fcB ・VID71- Bo.OeV AVa* 2・W V t 30»V 3i 103)测试方法i.固定某一频率,输入端接正弦输入信号,电压有效值从0.5 调至50mV,用示波器观察输入输出信号,并用交流毫伏表测量输入输出的信号电压的有效值记录输出电压的有效值。
ii.在100~5000Hz的范围内改变频率值,重复上述过程。
七. 故障及问题分析故障1 :输出波形混乱。
问题分析:第一次连接的电路混乱,同时由于对面包板内部连线了解的不够清晰,不小心将部分元件短路掉了。
解决方法:通过原理图,在纸上大致模拟画出在面包板上对电路元件的排布,再重新连接电路,问题得以解决。
故障2: 用示波器观察输入输出波形时,发现电路的输出信号始终随输入变化而变化,完全符合线性关系。
问题分析:经检测,Q的输出波形会失真,说明放大倍数很大,即互补放大电路部分没有问题,由此可知在负反馈电路部分出现了错误。
解决方法:通过对每个器件管脚输出波形的检测,一段导线两端的波形并不一致,由此发现面包板的短路问题,导致自动增益控制功能失效。
经改变导线在面包板上的位置后,问题得以解决。
故障3:输出波形不稳定,且当输入达到要求范围内的一定数值时,电路不能实现自动增益控制的功能了。
问题分析:故障现象与课本中学习的三极管进入线性区与否的差异十分类似,而我所连接的电路中,某些三极管的管脚间距过大,可能导致与面包板的接触不良,因此怀疑问题出在三极管上。
解决方法:将部分三极管重新排布后,问题得以解决。
八. 总结与结论1)测试数据分析:在实验要求的频段内,当输入信号从0.5mVrms变化到50mVrms即40dB的动态范围时,输出大约只是从660mVrms变化到810mVrms 即约1.78dB,增益从输入0.5mVrms输出660mVrm(即1320倍)到输入50mVrms 输出810mVrm(s 即16.2 倍),实现了自动增益控制的功能,符合设计的要求。
2)心得体会:本实验电路较我们曾经接触过的电路要复杂很多,需要分块了解每一部分的结构与功能,通过老师的讲解,我了解了对于复杂电路的分析方法,并对本次试验的目的与实现有了更为具体的了解。
此外,复杂的电路也给电路搭建带来了很大的挑战。
这要求我们一定要仔细对电路的串并联进行分析,才能正确连接电路,得到正确的实验结论。
当电路出现问题时,应该仔细分析故障,而不能盲目的重连电路,因此冷静与耐心也是做好此次试验必不可少的。
经过几次的修改,我对于利用面包板搭建电路已较为熟练,并对各种元件好坏的检测方法有了一定的了解,从中也锻炼了自己的动手能力。
此外,在设计电路时,还需要运用Protel DXP 软件,让我们初步对设计电路有了一定的认识,也学会了一种较为先进的电路设计方法,对于PCB板的手动布局与布线有了较为熟练的掌握。
九.PROTEL 绘制的原理图及PCB 板:3F s ■S*S*S♦ML*iX4i PM3・---irn 市»sSur)i3anE S31苏H sF¥*忑4®土is3-*r<Og4asBHSisi^实物图:3■••■■■•• * ■ *■ • 姬 * * ■屋兰_~1 •」• ■ •・: pm* •…・可空・哼寸> ….■"…•忑•二 * ■ ■■ •• 4・• * •»» & J * • • • ■ ■ « ■ « • » « -电 jp * ■ ■ • » • ■ ■ * ■ •■ • ■ «』澤:不刃*FI 审:::十.所用元器件及测试仪表清单1) 元器件:面包板(1个)三极管(8050五个,8550 —个) 二极管(1N4148两个) 电阻、电容若干 导线2) 测试仪表:仪器名称用途1直流稳压电源 提供直流电压 函数信号发生器提供输入正弦信号 示波器 显示输入输出波形 交流毫伏表测量输入输出信号有效值卜一.参考文献1. 《电子电路综合设计实验教程》,北京邮电大学电路实验中心2. 《电子电路基础》,刘宝玲主编,高等教育出版社.-Q|L \■ ■ ■ • ■I•■••■■ flV««• ■« a * ft。