脊椎动物各系统演化
- 格式:docx
- 大小:15.58 KB
- 文档页数:8
试述脊椎动物各类群呼吸系统结构特点与生理功能的进化历程脊椎动物是具有脊柱的一类动物,包括鱼类、两栖类、爬行类、鸟类和哺乳类等。
这些不同群体的脊椎动物在呼吸系统的结构特点和生理功能上有着相似和不同的进化历程。
鱼类是最早出现的脊椎动物,它们的呼吸器官主要是鳃。
鱼鳃的结构是一对一对交替排列的片状鳃弓,每一片上都有很多细小的鳃丝,用来进行气体交换。
水经过鱼的口腔和咽喉进入鳃腔,经过鳃丝与血液发生接触,氧气从水中进入血液,二氧化碳从血液中释放到水中。
随着陆地的演化,鱼类的后裔逐渐进化为两栖类,它们同时具备了水生和陆生的生活方式。
两栖类具有肺和鳃两种呼吸器官。
在水中呼吸时,两栖类通过呼吸道将水引入肺部,通过肺部冲洗骨质的绒毛状突起,实现气体交换。
在陆地呼吸时,两栖类使用肺呼吸空气。
这说明,两栖类的呼吸系统是在原有的鳃呼吸系统基础上进化而来的。
爬行类是从两栖类进化而来的,他们的呼吸系统有了一定的改变。
爬行类的肺部中有更多肺泡,表面积更大,这样可以增加氧气扩散进入血液的速度。
爬行类也具备部分美洲鳄类和一些大型陆龟等爬行类动物能够通过皮肤呼吸,进一步提高了生物体对氧气的吸收。
鸟类是爬行类的后裔,它们的呼吸系统具有更高的效率和适应性。
鸟类的肺部结构特殊,有许多气囊与肺相连。
这些气囊使鸟能够在呼气时将气体从肺部推入气囊,再通过吸气时将气体从气囊进入肺部,实现了气体在呼吸系统中的循环,从而使氧气浓度更高,二氧化碳浓度更低。
此外,鸟类的气囊还起到轻身和发声的作用。
哺乳类是鸟类的后裔,它们进一步改进了呼吸系统。
哺乳类的肺部内部有很多细小的囊泡,叫做肺泡。
肺泡的壁薄而丰富血管,具有较大的表面积。
哺乳类的呼吸是通过肌肉组织收缩和舒张来实现的。
肺泡内外的气体通过扩张和收缩的动作来实现交换。
哺乳类还具有膈肌,当膈肌收缩时,胸腔腔隙增大,气体通过负压进入肺部。
当膈肌松弛时,胸腔腔隙减小,气体被排出。
这种呼吸方式使哺乳类能够高效地利用氧气,维持高能量的代谢。
哺乳纲到鸟纲骨骼系统演化过程
哺乳纲和鸟纲都属于脊椎动物门,其骨骼系统的演化过程如下:
1. 双弓型骨盆的出现:哺乳纲和鸟纲最早的祖先都具有双弓型骨盆,即由髂骨、耻骨、坐骨、尾骨等多个骨头构成的复杂结构。
这种骨盆的出现为四肢的支撑和运动提供了更加稳定的平台。
2. 腕骨、踝骨的演化:哺乳纲和鸟纲在进化过程中都减少了一些腕骨和踝骨,这使得它们的四肢更加灵活,运动更加自如。
3. 重心位置的改变:哺乳纲在进化过程中,重心逐渐向腰部移动,而鸟纲则进一步将重心移向胸部,这种改变使得它们能够更加有效地运动,例如奔跑或飞行。
4. 发育出翼骨:随着时间的推移,鸟纲的祖先逐渐发展出支持翼膜的骨骼系统,进一步增加了它们飞行的能力。
总的来说,哺乳纲和鸟纲的骨骼系统在演化过程中都逐渐变得更加适应它们自身的生活环境和行为需求。
脊椎动物亚门分为6纲:圆口纲,鱼纲,两栖纲,爬行纲,鸟纲和哺乳纲。
八大系统中各纲特征一、运动系统1、圆口纲1、骨骼系统:仅有软骨,无硬骨。
(1)头骨:无上下颌。
颅骨不完全。
(2)咽骨(咽颅):为一软骨条相编结而成的软骨篮,称鳃笼,与其他脊椎动物的咽弓没有同源关系,鳃笼紧贴在皮下,包在鳃囊外面,不分节;而咽弓是分节的,着生于咽内壁。
2、脊索:脊索终生保留。
3、鳍:无偶鳍。
具奇鳍4、肌肉保持原始分节,与文昌鱼类似。
2、鱼纲1.体形:纺锤形:适应快速持久游泳侧扁型:游泳不多但敏捷平扁形:行动迟缓,底栖生活河豚型:不善游泳鳗鲡型:穴居生活2.鳍:奇鳍:背鳍、臀鳍、尾鳍(软骨鱼歪型尾,硬骨鱼正型尾)偶鳍:胸鳍、腹鳍3.皮肤和鳞片:皮肤分表皮和真皮,表皮无角质层有大量粘液腺,真皮内有鳞片,皮下组织少鳞片分盾鳞(软骨鱼特有,由基板和棘构成,与齿同源)、硬鳞、骨鳞(分圆鳞和栉鳞)。
后两种为硬骨鱼特有,完全来源于中胚层。
4.骨骼系统:中轴骨:头骨、脊柱、肋骨(硬骨鱼较发达)附肢骨:带骨(肩带、腰带)、鳍骨(胸鳍、腹鳍)、奇鳍骨5.肌肉系统:躯干肌(上、下轴肌)、头部肌肉(腮肌)、附肢肌肉3、两栖纲1、头骨脑腔狭小,无眶间隔,脑颅属于平颅型。
不高,骨块数目少。
蚓螈类骨片大,排列紧凑无大孔洞。
,由外枕骨形成。
脑颅连接为自接型。
失去连接脑颅与咽颅的悬器作用,进入中耳腔,形成传导声波的耳柱骨。
舌弓的其它部分和鳃弓的一部分成为舌器支持舌,舌骨体由基舌软骨愈合而成,前角由角舌软骨形成,后角由第1对鳃弓演化成。
成体鳃弓大部分消失,小部分演变为勺状软骨和环状软骨及气管环。
蝌蚪有4对鳃弓2、脊柱颈椎1枚,呈环状叫寰椎。
躯干椎椎体前凹型,盘舌蟾科为后凹型,有尾两栖类为双凹型。
椎体为二种类型者叫参差型椎体。
荐椎1枚,椎体前面与躯干椎相关节,后面与尾杆骨相关节。
横突发达与髂骨相连。
无尾目尾椎愈合成一根尾杆骨。
有尾两栖类尾椎在20枚以上。
脊椎动物演化顺序脊椎动物演化顺序是生物学中的一个重要领域,研究着脊椎动物从原始形态逐渐演化至现代多样化形态的过程。
脊椎动物是地球上最复杂和多样化的生物群体之一,包括鱼类、两栖类、爬行类、鸟类和哺乳类等。
以下将以生动、全面和有指导意义的方式,介绍脊椎动物演化的主要阶段和特征。
起源于远古时代的脊椎动物,其先驱是鱼类。
早期的鱼类生活在海洋中,具备了基本的脊柱结构和鳞片保护身体。
随着时间的推移,鱼类逐渐适应淡水环境,并发展出了具有更灵活鳍状肢和内外骨骼系统的先进形态。
接下来,两栖类在演化史中登场。
两栖类是首批能够生活在水和陆地上的动物,拥有四肢和肺呼吸系统。
这使得它们能够从水中爬上陆地并适应陆地环境。
然而,两栖类仍然依赖于水生环境进行繁殖和生活的某些阶段。
然后,爬行类动物于约3.5亿年前进化而来。
相比于两栖类,爬行类已经完全适应陆地环境,并成功解决了生活在陆地上的一系列问题。
爬行类的进化成果包括鳞片覆盖全身、气囊骨骼和由鳞片和甲壳(如龟类)构成的外壳。
这些特征将它们与其他动物区分开来,并使其能够生活在各种环境中。
其次,鸟类是脊椎动物进化中的一支独立演化的群体。
鸟类在特征上与爬行类有相似之处,但它们通过进一步的演化,发展出了独特的适应空中飞行的特征。
鸟类的前肢进一步演化为翅膀,同时,它们还发展出了轻骨骼和空气中的运动学技能,使得能够在空中自由行动。
鸟类的繁盛演化成果让它们在现代自然界中成为了生态系统的重要组成部分。
最后,哺乳动物是脊椎动物演化的终极阶段。
哺乳动物拥有许多独特的进化特征,如具有毛发和乳腺的哺乳腺,不仅为其提供了优秀的自我保护机制,还能为新生幼崽提供养育和营养。
哺乳动物还演化出了高度发达的大脑和复杂的社会行为,使其成为地球上最为进化的生物。
总的来说,脊椎动物演化的顺序是从鱼类到两栖类,再到爬行类,然后是鸟类,最后是哺乳类。
每个阶段的演化都是基于前一阶段的基础上,逐步积累和改良而来。
这一生物演化的过程,为我们研究生物多样性的起源、进化和适应性提供了重要的参考和指导。
脊椎动物骨骼体系的演化研究脊椎动物是地球上最为复杂的一类生物之一,至今已有数百万年的演化历程。
而在这长时间的历程中,脊椎动物骨骼体系的结构也在不断地演化改变。
研究这种演化的原因、特点以及内容,对于理解许多生物学现象都是有着重要意义的。
一、脊椎动物骨骼体系的形态发生演化的原因脊椎动物的骨骼体系形态的演化受到了很多因素的影响。
首先是生存环境。
在不同的环境中,脊椎动物对于自己的生存方式和生活习性的选择也会有所不同。
例如,在海洋环境中,较大的体型和稳健的骨骼结构可以帮助动物稳定地游泳;而在陆地环境中,快速、敏捷的动作能力则是很重要的。
在不同的生存环境下,脊椎动物发生了形态分化和进化,从而产生了许多不同类型的骨骼结构。
其次是适应食性的原因。
脊椎动物在接受不同的食物时,也经常会产生形态上的差异。
例如,在肉食性动物中,骨骼结构通常更加坚固和有力,以保证它们能够捕捉猎物并快速地将其制服;而在植食性动物中,骨骼表现出的则是更高的灵活性和适应性,帮助它们更好地适应复杂的环境。
综上,脊椎动物骨骼体系形态的演化是一个综合性的过程,与生存环境和食性两个方面密切相关。
二、脊椎动物骨骼体系的形态演化特点脊椎动物的骨骼体系形态演化有很多特点。
其中,最为突出的是多样性和复杂性。
多样性体现在,脊椎动物的骨骼结构有许多不同的形态与结构。
例如,在不同的动物类群中,头颅、颈椎、背椎、尾椎等骨骼结构的形态都有很大的差异。
这也使得脊椎动物能够根据自身的需要,产生出各种各样的体型和外形,以适应不同的生存环境和食性需要。
其次,复杂性则体现在脊椎动物骨骼体系形态的策略和机制本身是一种复杂、高度耦合的系统。
这个系统中包含了许多因素,例如骨骼的形态、骨骼结构的物理力学特性,以及动物的肌肉、神经等组织的特性等等。
所有这些不同的因素都是相互依存、相互作用的,从而演化出了复杂、多样的骨骼结构。
三、脊椎动物骨骼体系演化的内容脊椎动物的骨骼体系的演化涉及到了许多方面的内容。
脊椎动物的进化历程脊椎动物是地球上最为复杂和多样化的一类生物。
它们具有脊柱和脊髓的特征,这使得它们拥有高度的适应性和生存能力。
脊椎动物的进化历程十分漫长而且多样化,本文将会从古生代到现代,从鱼类到哺乳动物,详细地讲述脊椎动物的进化过程。
1. 古生代:鱼类的出现在古生代,约5亿年前,第一个具备脊椎的生物出现了。
它们被称为鱼类。
鱼类主要生活在水中,通过鳃呼吸。
最早的鱼类是软骨鱼,它们的内骨骼由软骨组成,没有真正的骨骼系统。
后来,硬骨鱼出现了,它们的骨骼变得更加坚固,逐渐演化出具备灵活尾巴和鳞片的特征。
2. 中生代:爬行动物的兴起进入中生代,约2.5亿年前,爬行动物开始在陆地上繁衍生息。
它们通过肺呼吸,依靠四肢在陆地上行走。
最早的爬行动物是两栖类动物,具备水陆两栖的特性。
后来,类似恐龙的爬行动物成为中生代的主要群体,它们逐渐演化出鳞片、骨骼支撑的四肢以及适应陆地环境的特征。
3. 中生代末期:哺乳动物的出现约2亿年前,在中生代的末期,哺乳动物开始出现。
哺乳动物是一类体温恒定、具有乳腺和毛发的动物。
它们通过哺乳来喂养幼崽,具备高度的亲子关怀。
早期的哺乳动物体型较小,多居住在夜晚活动,以腐肉和昆虫为食。
随着时间的推移,哺乳动物逐渐演化出不同的物种,从啮齿类到食肉类,再到灵长类等。
4. 新生代:灵长类动物的繁盛进入新生代,灵长类动物成为主导的物种。
它们具备高度发达的大脑和灵活的手脚,可以直立行走。
灵长类动物包括猴子、猿类和人类。
其中,人类是具有高度智能和社会行为的一类动物。
人类通过工具的使用和语言的交流,对环境进行改造和适应,成为地球上的最顶级物种。
脊椎动物的进化历程展示了生物适应性与多样性的奇妙之处。
从最早的鱼类到现代的人类,每一类脊椎动物都经历了漫长而复杂的进化过程。
它们的适应性使得它们能够在不同的环境中生存和繁衍,为地球上的生物多样性做出了巨大贡献。
通过了解脊椎动物的进化历程,我们可以更好地理解生物的演化和生存之道。
脊椎动物的神经类型和演化特征脊椎动物是拥有脊骨的动物,它们的神经类型和演化特征具有重要的研究价值。
首先,我们可以从神经类型方面来了解脊椎动物的演化历程。
神经类型分为无神经系统、散神经系统和中枢神经系统三种。
无神经系统指的是没有神经元这样的专门的神经细胞,例如海绵动物;散神经系统指的是分散在身体各个部分的神经元和神经纤维,例如刺胞动物;而中枢神经系统则是通过神经元密集堆积形成大脑和脊髓的神经系统,例如脊椎动物。
脊椎动物的中枢神经系统演化历程可以追溯到古生代,最早的脊椎动物是海生生物,它们的神经系统还没有发展到中枢神经系统的阶段。
后来,这些海生生物逐渐进化为陆地上的爬行动物,如爬行动物和哺乳动物。
这些动物的神经系统进一步发展,形成了相对复杂的大脑和脊髓。
最终,早期哺乳动物逐渐进化为今天的类人猿和人类,中枢神经系统也不断进化,获得更高级的认知能力和智慧。
此外,脊椎动物的演化特征还包括了一些其他的方面。
例如,脊椎动物特有的神经干和脊髓,这些器官可以将信息从周围神经
系统传送到大脑和反过来,从而实现信息处理和反应;还有脊椎动物特有的远红外感受器,这些感受器可以帮助蛇类在夜间狩猎探测食物,是一种非常独特的适应性进化。
总的来说,脊椎动物的神经类型和演化特征具有非常重要的生物学意义。
通过对脊椎动物神经演化的研究,可以更好地理解生物进化的规律;同时,对于我们认知神经系统和脊椎动物本身也具有一定的启示作用。
脊椎动物各系统演化
一、鱼类,两栖类,爬行类、鸟类和哺乳类的骨骼
观察经制备好的骨骼标本,了解其特点。
1.主轴骨骼
鱼类:脊柱分躯椎(附有肋骨,保护内脏器官)和尾椎(运动用)两部。
两栖类;脊柱分?化为一块颈椎、七块躯椎和——块骶椎,尾椎则愈合为一块尾杆骨。
爬行类:脊柱分化为颈椎、胸腰椎、骶椎及尾椎。
鸟类:脊柱的颈椎较多,而胸椎互相愈合,腰椎、骶椎及部分尾椎与腰带合成复合的骶部,尾椎最后为一块尾综骨。
哺乳类:脊柱分颈椎、胸椎、腰椎、骶椎和尾椎五部。
2.头骨:脊椎动物的头骨,在软骨鱼类只有软骨颅,硬骨鱼才变为硬骨,加以真皮形成的骨骼参加在内,头骨数目可多到180余块。
以后随着进化,合并和消失等方式,到哺乳类减到35块,到人类只留28块。
3.附肢骨:肢带(肩带和腰带)和肢骨是连动器官的支柱,依照动物生
活状况而起变化。
鱼类:肩带和腰带都不与脊柱相接,末端为鳍条,成为胸鳍和腹鳍。
两栖类:肩带在腹中线上与胸骨相接,包括喙骨、前喙骨、肩胛骨和上肩胛骨。
前肢由肱骨、尺骨、桡骨、腕骨、掌骨和指骨构成。
腰带与脊柱相接,由髂骨、坐骨及耻骨组成。
后肢由股骨、胫腓骨、附骨、跖骨及趾骨组成。
哺乳类:腰带组成骨盆。
肩带中的肩胛骨更为发达。
锁骨变化多。
肢骨的基本情况未变,唯腕骨数目减少。
二、鱼类、两栖类、爬行类、鸟类和哺乳类的消化系统
观察液浸标本,比较五类动物消化器官的口裂和口腔、消化管的各部分及消化腺。
三、鱼类,两栖类,爬行类,鸟类和哺乳类的呼吸系统(图5—19)
鱼类:呼吸器官为鳃,受鳃弓和鳃条支持,鳃前隔的两面具有许多行平行褶皱的鳃瓣。
内中有很多微血管,颜色鲜红,是气体交换的场所。
两栖类:幼体仍用鳃呼吸,成体用肺呼吸,但肺的构造简单,还得依靠皮肤帮助呼吸。
爬行类:终生用肺呼吸,但肺结构尚较简单。
鸟类:适应飞行,除肺外,尚有与肺相通的气囊、构成双重呼吸。
哺乳类:肺更趋于发达、完善,呼吸的动作也更复杂,尤其是膈的存在,呼吸作用更为加强。
五、鱼类、两栖类、爬行类、鸟类和哺乳类的循环系统
1.心脏(图5—20)
伍类一心房一心室,心室前有动脉圆锥,心房后有静脉窦。
两栖类二心房一心室,有动脉圆锥和静脉窦。
图5—21脊椎动物动脉弓的比较
Ⅰ肺鱼类Ⅱ有尾类Ⅲ无尾类Ⅳ爬行类V鸟类Ⅵ哺乳类1~6、动脉弓7、腹主动脉8、背主动脉9、肺动脉10、动脉导管爬行类心室开始分隔
为二,但间隔不完全,有一泮尼氏孔。
鸟类和哺乳类有左右心房和左右心室,共有四腔。
2.动脉弓(图5—21)
脊椎动物胚胎期动脉弓6对。
鱼类:第一、二对动脉弓形成颈总动脉,三至六为鳃动脉。
两栖类:除第一、二对形成颈总动脉外,第三对也参加颈总动脉的形成。
第五对消失,第六对形成肺动脉,第四对形成主动脉弓。
鸟类:同两栖类,唯主动脉弓仅右侧存在而左侧退化。
哺乳类:同两柄类,但主动脉弓仅左侧存在而右侧退化。
各类脊椎动物脑的比较
1.鱼类:大脑半球很小,嗅叶很发达,视叶(中脑)很发达,小脑也相当发达。
2.两栖类:大脑半球较发达,中脑较不发达,但仍为最高神经中枢所在地。
小脑很不发达,呈一片状突起。
3.爬行类:大脑半球较前发达,嗅叶很小,中脑为较大的二叠体,为视觉中枢,最高中枢已移至间脑和大脑,小脑相当发达。
4.鸟类:大脑半球较前更发达,嗅叶退化,中脑和小脑也相当发达。
5.哺乳类:大脑半球很发达,已形成大脑皮质,为最高神经中枢;中脑为四叠体;小脑很发达,侧叶表面上有皱褶出现。
1、颌弓与脑颅的连接方式:
双接式:颌弓通过它本身和舌颌软骨与脑颅连接起来,见于原始的软骨鱼、总鳍鱼。
舌接式:颌弓借舌颌骨与脑颅连接。
多数软骨鱼和硬骨鱼属于这种类型。
自接式:颚方软骨直接与脑颅相连,其上的方骨与下颌的关节骨成关节。
见于肺鱼和路生脊椎动物。
颅接式:上颌颚方软骨直接与脑颅愈合,方骨和关节骨变为中耳的听小骨,下颌的齿骨直接连接脑颅。
见于哺乳类。
2、脊椎动物咽颅的演化:
原始有头类:第一对咽弓
软骨鱼类:颚方软骨
(上颚)
硬骨鱼类、两栖类:方骨
爬行类及鸟类:方骨
哺乳类:砧骨
陆生动物呼吸系统的演变趋势
1)呼吸表面积逐渐扩大
2)呼吸的机械装置更加完善:
①两栖类的呼吸运动是借助口腔底部的上下运动来完成的。
②爬行类开始形成了胸廓,通过肋间肌的收缩完成呼吸。
③鸟类在静止时胸腹式呼吸,飞行时利用翼的扇动,使前后气囊收缩
与扩张,完成呼吸。
④哺乳类依靠膈肌的升降和肋间肌收缩的协同作用完成胸腹式呼吸。
3)呼吸道和消化道逐渐趋于分开:
①两栖类的呼吸通道和食物通道在口咽腔处形成交叉。
②爬行类的鳄到哺乳类,形成了次生颚,内鼻孔后移,呼吸道和消化道完全分开。
4)呼吸道进一步分化,发声器逐渐完善。
脊椎动物心脏各部分的比较:
圆口类软骨鱼硬骨鱼两栖类爬行类鸟类和哺乳类
静脉窦有
有有有退化并入心房
动脉圆锥无有动脉球有无无
心房 1 1 1 2 2 2
心室 1 1 1 1 1(有室间隔) 2
各纲脊椎的特点:
⑴圆口纲:终生具脊索,出现脊椎雏形(神经弧片)。
⑵鱼纲:体椎(具肋骨),尾椎(具脉弓),双凹椎体,具脊索痕迹。
⑶两栖纲:颈、躯干、荐、尾椎;颈椎1、荐椎1(首次出现);双凹、前凹、后凹型椎体。
⑷爬行纲:颈、躯干、荐、尾椎;颈椎多枚、荐椎2枚;双凹、前凹、后凹型椎体。
⑸鸟纲:颈椎多枚;愈合荐椎、尾综骨;马鞍型椎体。
⑹哺乳纲:颈椎7枚,荐椎愈合;双平椎体。
脊椎动物排泄系统的演变
⑴尾索:无集中排泄器官,只具尿酸颗粒——尿泡。
⑵头索:90-100对肾管。
⑶圆口纲:胚胎期前肾,成体中肾;盲鳗终身前肾。
⑷鱼纲:软骨鱼:中肾,无膀胱,尿素。
硬骨鱼:中肾,具输尿管膀胱,尿素。
⑸两栖纲:中肾,具泄殖腔膀胱,尿素。
⑹爬行纲:后肾,具尿囊膀胱,尿酸。
⑺鸟纲:后肾,无膀胱,尿酸。
⑻哺乳纲:后肾,具尿囊膀胱,尿素。
脊椎动物肾脏的演化:
前肾:脊椎动物在胚胎期都有前肾出现,但只在鱼类和两栖类的胚胎中前肾才有作用。
圆口类中的盲鳗是以前肾作为排泄器官的。
中肾:是鱼类和两栖类胚胎期以后的排泄器官,位于前肾后方的体腔中部,到中肾阶段,原来的中肾导管纵裂为二,一条为中肾导管(吴氏管),为中肾总导管,在雄性兼有输精作用;另一条牟勒氏管在雄性退化,在雌性演变成输卵管。
后肾:是羊膜动物胚胎期以后的排泄器官,其发生时期和生长的部位
都在中肾之后,位于体腔的后部。
脊椎动物神经系统的演化:
⑴圆口纲:五部脑,一平面,脑N10对,脊N的背根、腹根不相联合。
⑵鱼纲:五部脑,一平面,脑N10对,脊N的背根、腹根相联合。
⑶两栖纲:五部脑,一平面,脑N10对,出现原脑皮,大脑半球分开,小脑不发达。
⑷爬行纲:五部脑,出现弯曲,脑N12对,出现新脑皮。
⑸鸟纲:大脑增大,纹状体发达,小脑发达,出现横沟。
⑹哺乳纲:大脑高度发达,大脑皮层出现沟回,各中枢在大脑集中。