人教版八年级数学上册132立方根
- 格式:ppt
- 大小:398.00 KB
- 文档页数:19
加速度学习网 我的学习也要加速平方根和立方根有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备基础,也是中考的必考内容之一,此节我们要掌握平方根和立方根的概念。
本节有配套免费学习视频。
二、知识要点1、平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:① 当0=a 时,它的平方根只有一个,也就是0本身;② 当0>a 时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
③ 当0<a 时,也即a 为负数时,它不存在平方根。
2、算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
加速度学习网 我的学习也要加速例1 求下列各数的算术平方根 (1)64;(2)2)3(-;(3)49151. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.解:(1)因为6482=,所以64的算术平方根是8,即864=;(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-; (3)因为496449151=,又4964)78(2=,所以49151的算术平方根是78,即7849151=. 注意:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74149161=的错误.例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表示16的负平方根,故其结果是负数;259表示259的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.解:(1)因为8192=,所以±81=±9. (2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53.(4)因为22)4(4-=,所以4)4(2=-.加速度学习网 我的学习也要加速例(1)64的立方根是(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。
《13.1.1立方根》教学设计旬阳县棕溪初级中学张熙莲1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级下册第13章第2小节立方根第一课时2.知识背景分析本章可以看成其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此在中学数学中占有重要的地位。
通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。
在此之前,学生已学习了数的平方根,这为过渡到本节的学习起着铺垫作用。
通过本节课的学习,学生可以更深入的了解无理数,为后面学习奠定基础。
求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。
学习立方根的意义在于:(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。
(2)立方根是奇次方根的特例,就像平方根是偶次方根的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。
3.学情背景分析教学对象是八年级学生,在学习本节前,对平方根和开平方运算有了一定的了解。
因此,本节课对于立方根的意义及开立方运算的学习采用“自主学习、总结概括、推理论证、实践运用”的学习程式进行。
4.学习目标(1)知识技能①了解立方根的概念,初步学会用根号表示一个数的立方根。
②了解开立方和立方互为逆运算,会用立方运算求某些数的立方根。
③能类比平方根的方法学习立方根,及开立方运算,并区别立方根和平方根的不同。
(2)过程与方法通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。
通过学习立方根,培养学生理解概念并用定义解题的能力。
(3)情感态度①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。
②通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情。
5.学习重、难点5.1学习重点1、立方根的概念及性质;2、会求一个数的立方根。
2.3 立方根学习目标:(一)学习知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.学习重点:立方根的概念.学习难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.学习方法:类比学习法.学习过程:Ⅰ.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?Ⅱ.新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义.[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.[生]它们的表示方法和读法不同,一个正数a的平方根表示为±a,立方根表示为3a.2.例题讲解[例1]求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5. [师]请大家思考下列问题.3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?大家可以先举例后找规律.: (3a )3=a .又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.[例2]求下列各式的值: (1)38-;(2)3064.0;(3)-31258;(4)(39)3 Ⅲ.课堂练习(一)随堂练习1.求下列各式的值:333333)16(;5;64;125.0-.2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x 厘米,得(二)补充练习1.求下列各数的立方根:0,1,-8127,6,-1000125,0.001 2.求下列各式的值:3233333333)278(;)2(;)2(;16463;1251;1;027.0------ 3.下列说法对不对?-4没有立方根;1的立方根是±1;361的立方根是61;-5的立方根是-35;64的算术平方根是Ⅳ.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a ,后来的正方体的棱长为b ,得na 3=b 3∴3333n a b =∴b =a n n a 333=. 即后来的棱长变为原来的3n 倍.Ⅴ.课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.Ⅵ.课后作业习题2.5.Ⅶ.活动与探究1.求下列各式中的x .(1)8x 3+27=0;(2)(x -1)3-0.343=0;(3)81(x +1)4=16;(4)32x 5-1=0.。
2019-2020学年八年级数学 132 立方根学案 人教新课标版教学目标:知识与技能目标:1、了解立方根的概念,能够用根号表示一个数的立方根.2、能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.3、经历运用计算器探求数学规律的过程,发展合情推理的能力. 过程与方法目标:用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同.情感与态度目标:发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理 教学重点和难点:重点:立方根的概念及求法。
难点:立方根与平方根的区别教学过程:一 导入新课(2分钟)在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______; (23)3=_____;(-23)3•=_____ ; 03=______. 二 自学提纲(8分钟)请认真看课本P77-79的内容,并回答下列问题:1、立方根的定义:一般地,如果一个数的立方等于a,即________,那么这个数叫做a 的_________.一个数a 的立方根用符号________表示,读作______,其中a 叫做________.3叫__________.2、开立方:求一个数的_________运算,叫做开立方._________与立方互为逆运算.3、立方根的性质: 正数的立方根是______数,负数的立方根是____数,0的立方根是________.4、探究: 因为38-=______,=_______,结论5、立方根与平方根有什么区别?6、估计:350取值在哪两个连续整数之间:_____________________7、探究: 用计算器计算: 3000216.0=_______;3216.03216=_________;3216000三 检查自学效果(8分钟)1. 下列说法正确是( )A. 25的平方根是5B. 一2 2 的算术平方根是2C. 0.8的立方根是0.2D.65是3625的一个平方根 2. 38-=( )A .2B .-2C .±2D .不存在3. 如果一个实数的平方根与它的立方根相等,则这个数是( )A. 0B. 正整数C. 0和1D. 14. 正方体M的体积是正方体N的体积的64倍,那么正方体M的棱长是正方体N的棱长的( )A.4倍 B.8倍 C.16倍 D.2倍5. –1的立方根是 ,271的立方根是 , 9的立方根是 -0.064的立方根是__. 6. 比较大小:3 ____328.7.8.求下列各数的立方根: 0 64611- 0.216 610-四 讨论更正 合作探究(5分钟)1、学生自由更正,各抒己见。
§3.2 立方根教学目标:了解立方根的概念,会用符号表示一个数的立方根教学重点:了解立方根的概念,用立方运算求某些数的立方根;,会用计算器求某些数的立方根教学难点:明确平方根与立方根的区别,能熟练地求某些数的立方根一、创设情景,导入新课出示一个正方体纸盒,提出问题,如果这个正方体的体积为216,那么它每条棱长是多少? 二、合作交流,解读探究观察 由以上问题,有,即要求一个数,使它的立方等于216,通过分析,有,那么6就是这个正方体的棱长 归纳 如果一个数的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根探究 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?因为,所以8的立方根是(2 ) 因为,所以0.125的立方根是( ) 因为,所以8的立方根是( 0 ) 因为,所以8的立方根是( ) 因为,所以8的立方根是( )【探究说明】 一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。
例如:表示27的立方根,;表示的立方根, 【探究】因为所以 =因为,所以 = 总结 利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
操作 用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同。
步骤:输入→ 被开方数 → = → 根据显示写出立方根例:求-5的立方根(保留三个有效数字)→被开方数→= →1.709975947所以三、应用迁移,巩固提高例1 求下列各数的立方根⑴-8 ⑵⑶⑷⑸⑹例2 计算⑴⑵⑶⑷⑸例3张叔叔有棱长为的两个正方体纸箱中装满了大米,他将这两箱大米都倒入了另一个新的正方体木箱中,结果正好装满,那么这个新的正方体木箱的棱长大约是多少?(结果精确到)分析从一个实际问题中抽象出数学关系,即一个正方体的体积等于另一个正方体体积的2倍,列式并计算。
人教版数学八年级上册13.2《立方根》教学设计一. 教材分析《立方根》是人教版数学八年级上册第13.2节的内容,主要介绍立方根的概念、性质和运算法则。
通过本节课的学习,使学生理解立方根的概念,掌握立方根的性质和运算法则,能够熟练运用立方根解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对数的运算有一定的了解。
但学生对立方根的概念和性质可能较为陌生,需要通过实例和讲解使其理解和掌握。
此外,学生可能对解决实际问题中涉及的立方根运算有一定的困难,需要教师在课堂上进行引导和解答。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质和运算法则;能够运用立方根解决实际问题。
2.过程与方法:通过观察、实验、探究等方法,引导学生发现立方根的性质和运算法则;培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:立方根的概念、性质和运算法则。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.引导发现法:教师引导学生观察、实验、探究,发现立方根的性质和运算法则。
3.练习法:通过丰富的练习题,巩固所学知识,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示立方根的概念、性质和运算法则。
2.练习题:准备一些有关立方根的练习题,用于课堂练习和课后作业。
3.教学道具:准备一些立方体模型,用于直观展示立方根的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如冰淇淋制作、土壤湿度测量等,引导学生思考涉及到的数学问题。
通过提问,引入立方根的概念。
2.呈现(15分钟)讲解立方根的概念,引导学生观察立方体模型,使其理解立方根的直观意义。
通过PPT展示立方根的性质和运算法则,让学生初步掌握。
教学过程设计此文档部分内容来源于网络,如有侵权请告知删除本文档可自行编辑和修改内容,感谢您的支持2此文档部分内容来源于网络,如有侵权请告知删除 本文档可自行编辑和修改内容,感谢您的支持3板 书 设 计A. 27的立方根是±3B. 81-的立方根是21C. -5是-125的立方根D. -6的立方根是-2167.下列说法正确的是( )A .-3是-9的立方根B .3±是27的立方根C .12的立方根是4D . 3的立方根是33 8.下列说法中,不正确的是( )A .任何一个数都有立方根B .一个数只有一个立方根C .正、负数的立方根与被开方数同号D .立方根与本身相等的数只有0和19. 32010的值大约在( )A .11~12之间B .12~13之间C .13~14之间D .14~15之间 四、小结归纳 1.立方根的概念及符号表示;2.开立方和立方互为逆运算;3.会求一个立方数的立方根,会用符号表示一个数的立方根.4.立方根与平方根的异同. 五、作业设计课本80页: 1、2、3、5、6、7 补充:(1)1的平方根是____;立方根为____;算术平方根为____. (2)平方根是它本身的数是____. (3)立方根是其本身的数是____. (4)算术平方根是其本身的数是________. (5) 的立方根为________. (6) 的平方根为________. (7)的立方根为________ .(8)一个自然数的算术平方根是a ,那么与这个自然数相邻的下一个自然数的平方根是____________;立方根是____________.教师组织学生回顾本节知识,学生谈个人收获,师生交流.学生谈本节课学到的知识以及解题体会 13.2 立方根一、立方根概念 二、例题分析 三、归纳总结符号表示教 学 反 思。