条件三角函数式取值范围问题的推广
- 格式:pdf
- 大小:74.12 KB
- 文档页数:2
题型8新定义 (9)已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2-x 1≤12T =πω,求得0<ω≤πx 2-x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[―π2+2kπ,π2+2kπ],解得ω的范围;第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围.结合图象平移求ω的取值范围1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数=平移后的函数.2、平移后与新图象重合:平移后的函数=新的函数.3、平移后的函数与原图象关于轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于轴对称:平移前的函数=平移后的函数-;5、平移后过定点:将定点坐标代入平移后的函数中。
()f x ()g x ()f x ()g x y x ()f x ()g x三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T,相邻的对称轴和对2,也就是说,我们可以根据三角函数的对称性来研究其周期称中心之间的“水平间隔”为T4性,进而可以研究ω的取值。
三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.已知三角函数的零点个数问题求ω的取值范围对于区间长度为定值的动区间,若区间上至少含有k个零点,需要确定含有k个零点的区间长度,一般和周期相关,若在在区间至多含有k个零点,需要确定包含k+1个零点的区间长度的最小值.三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.ππ。
技法点拨摘要:解三角形是高考数学考查的重点内容,从历年高考真题来看题型难度中等。
有关取值范围的问题是一个难点,涉及的问题主要有三角形边或边的比值的取值范围、角的取值范围、面积和周长等几类。
关键词:解三角形;取值范围;高考解三角形是普通高中数学重要的内容之一,主要研究三角形中边和角的关系,其中有关取值范围的考题是历年高考的重点和热点。
解三角形中的取值范围问题通常有三类,一是边或边的比值的取值范围;二是角的取值范围;三是三角形的周长或面积的取值范围。
本文结合实例,分析求解解三角形取值范围的常用策略。
一、运用函数思想方法求解取值范围函数思想方法,是破解取值范围和最值问题的强大武器。
运用函数思想方法的关键是合理选择自变量,在解三角形的取值范围中,主要以角为自变量,通过三角函数的有界性求解。
例1.(2020年浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin A -3a =0.(1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围.解:(1)B =π3(过程略).(2)由A +B +C =π得C =2π3-A ,由△ABC 是锐角三角形,得ìíîïïïï0<A <π20<C <π2,即ìíîïïïï0<A <π20<2π2-A <π2,解得π6<A <π2.由cos C =cos(2π3-A )=-12cos A+A ,得cos A +cos B +cos C=A +12cos A +12=sin(A +π6)+12,因为π3<A +π6<2π3,sin(A +π6)≤1,<sin(A +π6)+12≤32,得cos A +cos B +cosC∈(32].故cos A +cos B +cosC ∈(3+12,32].点评:本题把求解的式子转化为关于角A 的三角函数,也可以转化为角C 的三角函数,无论转化为哪一种都有求出角的范围。
三角函数w的取值范围解题方法
三角函数是数学中的基本概念,而w作为三角函数的一个重要参数,其取值范围对于理解函数性质和解决问题至关重要。
以下介绍几种求解三角函数w的取值范围的方法。
一、观察函数形式
首先,需要仔细观察函数的形式,明确其是否具有周期性、振幅变化和相位偏移等特点。
对于三角函数,这些特点往往会影响w的取值范围。
二、确定基本周期
周期性是三角函数的一个重要特性。
通过确定基本周期,可以更好地理解函数的规律性变化,从而推断出w的可能取值范围。
三、分析振幅和相位偏移
振幅和相位偏移会影响三角函数的形状和位置。
分析这些因素,可以帮助确定w 的取值范围。
例如,当振幅增大时,w的取值范围可能会相应扩大。
四、确定边界条件
边界条件是指函数在某些特定点上的取值或变化趋势。
通过确定边界条件,可以进一步限制w的取值范围。
五、利用三角恒等式
三角恒等式是处理三角函数的重要工具。
通过使用三角恒等式,可以化简函数形式,从而更容易地推断出w的取值范围。
六、求解不等式
当需要确定w的精确取值范围时,可以使用不等式进行求解。
例如,通过解不等式可以找到满足特定条件的w的范围。
综上所述,求解三角函数w的取值范围需要综合考虑多种因素。
通过观察函数形式、确定基本周期、分析振幅和相位偏移、确定边界条件、利用三角恒等式以及求解不等式等方法,可以逐步缩小w的取值范围,最终得到准确的结果。
这些方法不仅适用于处理三角函数的w取值问题,也适用于其他类型的数学问题。
在具体应用中,需要根据问题的具体情况选择合适的方法进行处理。
专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
微专题30 三角函数中的ω取值与范围问题【方法技巧与总结】1、()sin()f x A x ωϕ=+在()sin()f x A x ωϕ=+区间()a b ,内没有零点⎪⎪⎩⎪⎪⎨⎧+≤+<+<+≤≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+≤-≥≤-⇒ωϕππωϕπk b k a T a b 2同理,()sin()f x A x ωϕ=+在区间[]a b ,内没有零点 ⎪⎪⎩⎪⎪⎨⎧+<+<+<+<≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+<-><-⇒ωϕππωϕπk b k a T a b 2 2、()sin()f x A x ωϕ=+在区间()a b ,内有3个零点⎪⎩⎪⎨⎧+≤+<++<+≤≤-<⇒ππϕωππππϕωπk b k k a k T a b T 432(1)(3)(24)T b a k Tk a k k b πϕπϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒≤<⎨⎪⎪+<-≤-+-<≤⎪⎩同理()sin()f x A x ωϕ=+在区间[]a b ,内有2个零点⎪⎪⎩⎪⎪⎨⎧+<+≤++≤+<<-≤⇒ππϕωππππϕωπk b k k a k T a b T 32232(2))2(332k TT b k a k b a k πϕππϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+≤-<-+-≤<⎪⎩ 3、()sin()f x A x ωϕ=+在区间()a b ,内有n 个零点 ⇒(()(+1)1)(1)22n Tn T b a k k a k n k n b πϕππϕωωπϕπϕωω-+≤-⎧⎪⎪-+-⎪≤<⎨⎪⎪+-+-<≤⎩<⎪同理()sin()f x A x ωϕ=+在区间[]a b ,内有n 个零点(1)(1()()22+1)n Tn T b k k a k n k n b a πϕππϕωωπϕπϕωω-+≤-<⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+-+-≤<⎪⎩4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为214n T +,则21(21)42n n T b a πω++==-. 5、已知单调区间(,)a b ,则2T a b -≤.【题型归纳目录】题型一:三角函数的基本性质———奇偶性、单调性、周期性、对称性、最值 题型二:三角函数与零点 题型三:三角函数性质综合应用 【典型例题】题型一:三角函数的基本性质———奇偶性、单调性、周期性、对称性、最值例1.若函数()2sin()(0)3f x x πωω=+>在区间[,]44ππ-上单调递增,则ω的取值范围是( )A .10(0,]3B .2(0,]3C .210[,]33D .10[,)3+∞【解析】解:当44xππ-,时,44x ππωωω-,34343x πππππωωω-++,要使()f x 在[4π-,]4π上单调递增, 则342432πππωπππω⎧--⎪⎪⎨⎪+⎪⎩,得,得10323ωω⎧⎪⎪⎨⎪⎪⎩,又0ω>, 203ω∴<. 故选:B .例2.已知()sin 3(0)f x x x ωωω=>在区间[,]64ππ上单调递增,则ω的取值范围是( )A .(0,2]3B .(0,2][73,26]3C .[7,2650][,19]33D .(0,250][,19]33【解析】解:()sin 3cos 2sin()3f x x x x πωωω=+=+,由22232k x k ππππωπ-++,k Z ∈,得52266k x k πππωπ-+,k Z ∈,即52266k k xππππωω-+,即函数的单调递增区间为526[k ππω-,26]k ππω+,k Z ∈,()f x 在区间[,]64ππ上单调递增,∴5266264k k πππωπππω⎧-⎪⎪⎪⎨⎪+⎪⎪⎩,即125283k k ωω-⎧⎪⎨+⎪⎩,即212583k k ω-+,0ω>,∴当0k =时253ω-,此时203ω<, 当1k =时,2673ω, 当2k =时,219163ω+,此时不成立, 综上ω的范围是203ω<或2673ω, 即(0,2][73,26]3,故选:B .例3.已知函数()sin()(0)6f x x πωω=+>在区间[4π-,2]3π上单调递增,则ω的取值范围为( )A .(0,8]3B .(0,1]2C .1[2,8]3D .3[8,2]【解析】解:函数()sin()(0)6f x x πωω=+>在区间[4π-,2]3π上单调递增,∴246222362k k πωπππωππππ⎧-+-+⎪⎪⎨⎪++⎪⎩,k Z ∈解得:883132k k ωω⎧-⎪⎪⎨⎪+⎪⎩ 0ω>,当0k =时,可得:102ω<. 故选:B .变式1.若函数()sin()(0)4f x x πωω=->在区间(0,)2π上单调递增,则ω的取值范围是( )A .(0,3]2B .[1,3]2C .[1,2]D .(0,2]【解析】解:由22242k x k ππππωπ-+-+,得232,44k k x k Z ππππωωωω-++∈, 取0k =,得344xππωω-, 函数()sin()(0)4f x x πωω=->在区间(0,)2π上单调递增,∴342ππω,即32ω. 又0ω>,ω∴的取值范围是(0,3]2.故选:A .变式2.为了使sin (0)y x ωω=>在区间[0,1]上至少出现50次最大值,则ω的最小值是( ) A .98πB .1972πC .1992πD .100π【解析】解:使sin (0)y x ωω=>在区间[0,1]上至少出现50次最大值 14914T ∴⨯,即197214πω⨯,1972πω∴. 故选:B .变式3.(多选题)已知R ω∈,函数2()(3)sin()f x x x ω=-⋅,存在常数a R ∈,使得()f x a +为偶函数,则ω的值可能为( )A .6π B .4π C .3π D .2π 【解析】解:根据题意,2()(3)sin()f x x x ω=-⋅,则2()(3)sin[()]f x a x a x a ω+=+-+, 若()f x a +为偶函数,则30a -=且sin[()]sin[()]x a x a ωω+=-+, 则3a =,sin cos cos sin cos sin sin cos x a x a x a x a ωωωωωωωω+=-, 必有cos 0a ω=,则32k πωπ=+,必有36k ππω=+,()k Z ∈ 当0k =时,6πω=,当1k =时,2πω=,故选:AD .变式4.若函数sin()(0)y x ωϕω=+>的部分图象如图,则ω= 4 .【解析】解:由函数的图象可知,0(x ,0)y 与0(4x π+,0)y -,纵坐标相反,而且不是相邻的对称点,所以函数的周期002()42T x x ππ=+-=,所以22T ππω==,所以4ω=.故答案为:4.变式5.为了使函数sin (0)y x ωω=>在区间[0,1]上至少出现4次最大值,则ω的最小值是132π. 【解析】解:为了使函数sin (0)y x ωω=>在区间[0,1]上至少出现4次最大值,则ω取得最小值时,需有2233144T T ππωω+=⨯+=⨯, 解得132πω=, 故答案为132π. 变式6.已知函数sin()(0y A x A ωϕ=+≠,0)ω>在(4π,)3π上单调,其图象经过点(4π,0),且有一条对称轴为直线4x π=-,则ω的最大值是 5 .【解析】解:因为函数图象经过点(,0)4π,所以14k πωϕπ+=,1k Z ∈,①因为直线4x π=-为函数的一条对称轴,所以242k ππωϕπ-+=+,2k Z ∈,②①-②可得12()22k k ππωπ=-+-,即1212()k k ω=-+-,由12k k Z -∈,0ω>,可得1ω=,3,5,⋯, 因为函数sin()y A x ωϕ=+在(,)43ππ上单调,所以434T ππ-,即212ππω,解得6ω,所以ω的最大值是5. 故答案为:5.题型二:三角函数与零点 例4.已知函数211()sin sin (0)222xf x x ωωω=+->,x R ∈,若()f x 在区间(,2)ππ内有零点,则ω的取值范围是( )A .1(4,55)(84⋃,)+∞B .(0,15][48,1)C .1(8,15)(48⋃,5)4D .1(8,15)(48⋃,)+∞【解析】解:1cos sin 12()222x x f x ωω-=+-= ()4x πω-,由()0f x =,可得(41)()4k x k Z πω+=∈, 令2ω=得函数()f x 有一零点9(,2)8x πππ=∈,排除(B )、(C ), 令38ω=得函数()f x 在(0,)+∞上的零点从小到大为:123x π=,2103x π,⋯显然1(,2)x ππ∉,2(,2)x ππ∉,可排除(A ), 故选:D .例5.已知函数21()3sin cos cos 2f x x x x ωωω+-,(0,)x R ω>∈,若函数()f x 在区间(,)2ππ内没有零点,则ω的取值范围( )A .(0,5]12B .(0,5511][,]12612C .(0,5]8D .511(0,][,1)612【解析】解:函数21()3sin cos cos 2f x x x ωωω+-, 31cos21222x x ωω+=+-, sin(2)6x πω=+,函数()f x 在区间(,)2ππ内没有零点,所以:()()02f f ππ⋅>,即:sin()sin(2)066πππωωπ+⋅+>,所以:①sin()06sin(2)06ππωπωπ⎧+>⎪⎪⎨⎪+>⎪⎩,解得:5(0,]12ω∈, ②sin()06sin(2)06ππωπωπ⎧+<⎪⎪⎨⎪+<⎪⎩,解得:511[,]612ω∈,综上所述:(0ω∈,5511][,]12612, 故选:B .例6.已知函数()sin()f x x ωϕ=+,其中0ω>,0ϕπ<<,()()4f x f π恒成立,且()f x 在区间(0,)4π上恰有两个零点,则ω的取值范围是( ) A .(6,10)B .(6,8)C .(8,10)D .(6,12)【解析】解:依题意得()4f π为()f x 的最大值1,∴242k ππωϕπ+=+,k Z ∈,(0,)ϕπ∈,(82,82)k k k Z ω∴∈-+∈①又()f x 在区间(0,)4π上恰有两个零点,5044T π∴-,且3044T π<-,即53T ππ<,即253πππω<,解得610ω<,②∴由①②(6,10)ω∈.故选:A .变式7.已知函数231()cos (0,)22xf x x x R ωωω=+->∈,若函数()f x 在区间(,2)ππ内没有零点,则ω的取值范围是( ) A .5(0,]12B .5(0,)6C .5511(0,][,]12612D .5511(0,](,]12612⋃ 【解析】解:13()cos sin()26f x x x x πωωω==+.令6x k πωπ+=可得6k x ππωω=-+,k Z ∈. 令26k ππππωω<-+<解得11266k ωω+<<+, 函数()f x 在区间(,2)ππ内没有零点,∴区间1(6ω+,12)6ω+内不存在整数. 又2122ππππω-=,1ω∴, 又0ω>, 1(6ω∴+,12)(06ω+⊂,1)或1(6ω+,12)(16ω+⊂,2).1216ω∴+或1112266ωω+<+, 解得5012ω<或511612ω. 故选:C .变式8.已知函数()sin()f x x ωϕ=+,其中0ω>,0ϕπ<<,()()4f x f π恒成立,且()y f x =在区间3(0,)8π上恰有3个零点,则ω的取值范围是 (6,10) .【解析】解:函数()sin()f x x ωϕ=+,其中0ω>,0ϕπ<<,()()4f x f π恒成立,()14f π∴=,∴242k ωππϕπ+=+,k Z ∈,224k πωπϕπ∴=+-,k Z ∈.结合ϕ的范围,可得0k =或1k =. ①当0k =时,24πωπϕ=-,由0ω>,且(0,)ϕπ∈,可得(0ω∈,2 ). ()y f x =在区间3(0,)8π上恰有3个零点,3(,)8x ωπωϕϕϕ+∈+, 3348πωπϕπ∴<+,即334824πωππωππ<+-,即57282πωππ<,即2028ω<. 综合可得,ω∈∅. ②当1k =时,522424πωππωπϕπ=+-=-, 由0ω>,且(0,)ϕπ∈,可得(6ω∈,10 ). ()y f x =在区间3(0,)8π上恰有3个零点,3(,)8x ωϕϕωπϕ+∈+, 3348πωπϕπ∴<+,即3534824πωππωππ<+-,即412ω<.综合可得,此时,(6,10)ω∈. 综上,结合①②可得,(6,10)ω∈, 故答案为:(6,10). 变式9.已知函数1()2cos sin()(0)2262xx f x ωωπω=+->,x R ∈,若()f x 在区间(,2)ππ内没有零点,则ω的取值范围是 (0,5511][,]12612. 【解析】解:由1()2cos (sincoscossin )226262xxxf x ωωπωπ=+- 21313sincoscos sin()222226xxxcos x x x ωωωπωωω=+-=+=+. ()f x 在区间(,2)ππ内没有零点, 2ππππω∴-=,可得01ω<. 当(,2)x ππ∈时,(66x ππωπω+∈+,2)6ππω+,∴26()226k k Z k ππωπππωππ⎧+⎪⎪∈⎨⎪++⎪⎩,或26()2226k k Z k ππωππππωππ⎧++⎪⎪∈⎨⎪++⎪⎩, 解得152()612k k k Z ω-+∈,或5112()612k k k Z ω++∈, 又01ω<<,5012ω∴<或511612ω. ω∴的取值范围是(0,5511][,]12612. 故答案为:(0,5511][,]12612. 变式10.已知函数()2sin()f x x ω=,其中常数0ω>(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,区间[a ,](b a ,b R ∈且)a b <满足,()y g x =在[a ,]b 上恰有30个零点,求b a -的取值范围. 【解析】解:(1)对于函数()2sin f x x ω=,其中常数0ω>,若()y f x =在[4π-,2]3π上单调递增, 则()42ππω--,且232ππω,求得34ω,即ω的取值范围为(0,3]4. (2)令2ω=,将函数()2sin 2y f x x ==的图象向左平移6π个单位长度,可得函数2sin 2()2sin(2)63y x x ππ=+=+的图象;再向上平移1个单位长度,得到函数()2sin(2)13y g x x π==++的图象,令()0g x =,求得1sin(2)32x π+=-,72236x k πππ∴+=+,或112236x k πππ+=+,k z ∈, 求得512x k ππ=+或34x k ππ=+,k z ∈,故函数()g x 的零点为512x k ππ=+或34x k ππ=+,k z ∈. ()g x ∴的零点相离间隔依次为3π和23π, ()y g x =在[a ,]b 上恰有30个零点, b a ∴-的最小值为2431415333πππ⨯+⨯=,2471615333b a πππ-<⨯+⨯=, ∴434733b a ππ-<. 题型三:三角函数性质综合应用例7.已知函数()sin()(06,)22f x x ππωϕωϕ=+<<-<<的图象向右平移3π个单位长度得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则(ωϕ= )A .34π-B .23π-C .23π D .34π 【解析】解:把函数()f x 的图象向右平移3π个单位长度, 得到函数()sin()3g x x ωπωϕ=-+的图象,若()f x 和()g x 的图象都关于4x π=对称,则432k πωππωϕπ-+=+,⋯①42k ππωϕπ+=+,⋯②由①②得3n ωππ=,n Z ∈;3n ω∴=,又(0,6)ω∈,3ω∴=; ()sin(3)f x x ϕ∴=+;由342k ππϕπ+=+,解得4k πϕπ=-,又(2πϕ∈-,)2π,4πϕ∴=-,34πωϕ∴=-. 故选:A .例8.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在(4π,)3π单调,则ω的最大值为( ) A .12B .11C .10D .9【解析】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,()4k πωϕπ∴-+=,且42k ππωϕπ+='+,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①.()f x 在(4π,)3π单调,∴12234πππω-,12ω∴②.由①②可得ω的最大值为11. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=,满足4x π=-为()f x 的零点,同时也满足满足()f x 在(4π,)3π单调, 故11ω=为ω的最大值, 故选:B .例9.已知函数()sin()(0,||),24f x x x ππωϕωϕ=+>=-为()y f x =图象的对称轴,4x π=为()f x 的零点,且()f x 在区间(,)126ππ上单调,则ω的最大值为( ) A .13B .12C .9D .5【解析】解:函数()sin()(0,||),24f x x x ππωϕωϕ=+>=-为()y f x =图象的对称轴,4x π=为()f x 的零点,()f x 在区间(,)126ππ上单调,∴周期2()6126T πππ⨯-=,即26ππω,12ω∴.4x π=-为()y f x =图象的对称轴,4x π=为()f x 的零点,∴21242n ππω+=,n Z ∈,21n ω∴=+.当11ω=时,由题意可得114k πϕπ⨯+=,4πϕ=,函数为()sin(11)4y f x x π==+,在区间(,)126ππ上,711(46x ππ+∈,25)12π,()f x 在区间(,)126ππ上不单调,11ω∴≠.当9ω=时,由题意可得94k πϕπ⨯+=,4πϕ=-,函数为()sin(9)4y f x x π==-,在区间(,)126ππ上,9(42x ππ-∈,5)4π,()f x 在区间(,)126ππ上单调,满足条件,则ω的最大值为9, 故选:C .变式11.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且11(36x π∀∈,17)36π,|()|1f x <,则ω的最大值为( )A .5B .4C .3D .2【解析】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴.4m πωϕπ∴-+=,42n ππωϕπ+=+.(,)m n Z ∈2()1n m ω∴=-+,即ω为奇数.下面验证5ω=不符合题意, 当5ω=时,可得4πϕ=,函数()sin(5)4f x x π=+,且11(36x π∈,17)36π时,64945(,)43636x πππ+∈, 而56494(,)23636πππ∈,不符合11(36x π∈,17)36π,|()|1f x <,则ω的最大值为3,故选:C .变式12.将函数()sin(2)(0f x x ωϕω=+>,[0ϕ∈,2])π图象上每点的横坐标变为原来的2倍,得到函数()g x ,函数()g x 的部分图象如图所示,且()g x 在[0,2]π上恰有一个最大值和一个最小值(其中最大值为1,最小值为1)-,则ω的取值范围是( )A .713(,]1212B .713[,)1212C .1117[,)1212D .1117(,]1212【解析】解:将函数()sin(2)(0f x x ωϕω=+>,[0ϕ∈,2])π图象上每点的横坐标变为原来的2倍, 得函数()sin()g x x ωϕ=+,由()g x 图象过点3以及点在图象上的位置, 知3sin ϕ=,23πϕ=,02x π,∴2222333x πππωπω++, 由()g x 在[0,2]π上恰有一个最大值和一个最小值,∴5272232ππππω+<,∴11171212ω<, 故选:C .变式13.已知22()sin ()cos ()(0)33f x x x ππωωω=+-+>.给出下列判断:①若1()1f x =,2()1f x =-,且12||2min x x π-=,则2ω=;②若()f x 在[0,2]π上恰有9个零点,则ω的取值范围为5359[,)2424; ③存在(0,2)ω∈,使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ④若()f x 在[,]63ππ-上单调递增,则ω的取值范围为1(0,]3.其中,判断正确的个数为( ) A .1B .2C .3D .4【解析】解:222()sin ()cos ()cos(2)sin(2)3336f x x x x x ππππωωωω=+-+=-+=+.①由题可知,最小正周期22T ππω==,1ω∴=,即①错误; ②设函数()sin(2)6f x x πω=+在y 轴右侧与x 轴的第9个交点的横坐标为α,第10个交点的横坐标为β,则296πωαπ+=,2106πωβπ+=,解得5312παω=,5912πβω=, 若()f x 在[0,2]π上恰有9个零点,则535921212πππωω<,解得53592424ω<,即②正确;③()f x 的图象向右平移6π个单位得到函数()sin[2()]sin(2)6636g x x x ππωππωω=-+=-+, 函数()g x 的图象关于y 轴对称,∴,362k k Z ωππππ-+=+∈,13k ω∴=--,k Z ∈,若存在(0,2)ω∈,则13(0,2)k --∈,解得1(1,)3k ∈--,与k Z ∈相矛盾,即③错误;④令2[2,2]622x k k πππωππ+∈-++,得[,]36k k x ππππωωωω∈-++,k Z ∈, ()f x 在[,]63ππ-上单调递增,∴当0k =时,有3636ππωππω⎧--⎪⎪⎨⎪⎪⎩,解得12ω,0ω>,102ω∴<, 故ω的取值范围为1(0,]2,即④错误.∴正确的只有②,故选:A .变式14.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在(18π,5)36π单调,求ω的最大值.【解析】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,()4n πωϕπ∴-+=,n Z ∈,且42n ππωϕπ⋅+='+,n Z '∈,∴相减可得()222n n k πππωππ⋅='-+=+,k Z ∈,即21k ω=+,即ω为奇数.()f x 在(18π,5)36π单调,(1)若()f x 在(18π,5)36π单调递增,则2182k ππωϕπ⋅+-,且52362k ππωϕπ⋅++,k Z ∈, 即2182k ππωϕπ-⋅--+①,且52362k ππωϕπ⋅++,k Z ∈②, 把①②可得:336ωππ,12ω∴,故有奇数ω的最大值为11. 当11ω=时,114k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=-. 此时()sin(11)4f x x π=-在(18π,5)36π上不单调,不满足题意.当9ω=时,94k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=, 此时()sin(9)4f x x π=+在(18π,5)36π上单调递减,不满足题意;故此时ω无解.(2)若()f x 在(18π,5)36π单调递减,则2182k ππωϕπ⋅++,且532362k ππωϕπ⋅++,k Z ∈,即2182k ππωϕπ-⋅---③,且532362k ππωϕπ⋅++,k Z ∈④, 把③④可得:336ωππ,12ω∴,故有奇数ω的最大值为11. 当11ω=时,114k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=-. 此时()sin(11)4f x x π=-在(18π,5)36π上不单调,不满足题意.当9ω=时,94k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=, 此时()sin(9)4f x x π=+在(18π,5)36π上单调递减,满足题意;故ω的最大值为9. 故答案为:9.【过关测试】 一.选择题2.若函数()3sin (0)f x x ωω=>能够在某个长度为3的闭区间上至少三次出现最大值3,且在[,]1110ππ-上是单调函数,则整数ω的值是( ) A .4B .5C .6D .7【解析】解:函数sin y x ω=能够在某个长度为3的区间上至少三次出现最大值3, 如果起点为最高点,到下一个最高点,刚好一个周期,可两次获得最大值3, 由三角函数的图象与性质可知:即:223πω;解得:43πω; 又[11x π∈-,]10π上为单调函数,1110xωπωπω∴-,且102112ωππωππ⎧⎪⎪⎨⎪--⎪⎩, 解得5ω;综上可得,正整数5ω=. 故选:B .3.已知函数()sin()(0f x A x A ωϕ=+>,0ω>,||)2πϕ,满足()06f π-=且对于任意的x R ∈都有2()()3f x f x π=-,若()f x 在52(,)369ππ上单调,则ω的最大值为( ) A .5 B .7 C .9 D .11【解析】解:函数()sin()(0f x A x A ωϕ=+>,0ω>,||)2πϕ,满足()0sin()66f A πωπϕ-==-+,6k ωπϕπ∴-+=,k Z ∈①. 对于任意的x R ∈都有2()()3f x f x π=-,故()f x 的图象关于直线3x π=对称,∴32n ωππϕπ+=+,n Z ∈②.∴②-①可得()362n k ωπωπππ+=-+,即2()1n k ω=-+,即ω等于π的奇数倍. 若()f x 在52(,)369ππ上单调,则12252936πππω⋅-,求得12ω. 当11ω=时,由①可得116k πϕπ-+=,k Z ∈,结合||2πϕ,可得6πϕ=-,此时,()sin(11)6f x A x π=-,当52(,)369x ππ∈,4911(636x ππ-∈,41)18π, 故不满足()f x 在52(,)369ππ上单调,故11ω=不满足条件. 当9ω=时,()sin(9)f x A x ϕ=+,由①可得32k πϕπ-+=,k Z ∈,结合||2πϕ,可得2πϕ=或2πϕ=-,满足()f x 在52(,)369ππ上单调,也满足③. 故ω的最大值为9, 故选:C . 4.已知0ω>,||2πϕ,在函数()sin()f x x ωϕ=+,()cos()g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当(6x π∈-,)4π时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是() A .(6π,)3πB .[6π,]3πC .(,)32ππD .[,]32ππ【解析】解:由()()f x g x =,得sin()cos()x x ωϕωϕ+=+, 即tan()1x ωϕ+=, 即4x k πωϕπ+=+,则4x k πωπϕ=+-,4k x ππϕω+-=,当0k =时,14x πϕω-=,当1k =时,24x ππϕω+-=,相邻两个交点的横坐标之差的绝对值为2π, 21442x x πππϕϕππωωω+--∴-=-==, 即2ω=,则()sin(2)f x x ϕ=+, 当(6x π∈-,)4π时,函数()f x 的图象恒在x 轴的上方,即此时()0f x >,恒成立, 由()0f x >,得222k x k πϕππ<+<+,k Z ∈, 得222k x k ϕϕπππ-<<-+,则26224k k ϕππϕπππ⎧--⎪⎪⎨⎪-+⎪⎩,得2624k k ϕππϕππ⎧+⎪⎪⎨⎪+⎪⎩,得2322k k πϕππϕπ⎧+⎪⎪⎨⎪+⎪⎩,当0k =时,得32πϕπϕ⎧⎪⎪⎨⎪⎪⎩,得32ππϕ, 则ϕ的取值范围是[3π,]2π,故选:D .5.已知函数()2sin 1(0)f x x ωω=+>在区间[2π-,2]3π上是增函数,则ω的取值范围是( ) A .(0,3]4B .(0,1]C .3[4,1]D .3[2,1]【解析】解:函数()2sin 1(0)f x x ωω=+>, ()f x 区间[2π-,2]3π上是增函数, 则有2222232k k πωπππωππ⎧--+⎪⎪⎨⎪+⎪⎩,k Z ∈,解得:14k ω-且334k ω+, 0ω>,(0∴,3]4.故选:A .6.已知函数()sin()(0)4f x x πωω=+>在区间[0,]π上有且仅有4条对称轴,则下列四个结论正确的是()A .()f x 在区间(0,)π上有且仅有3个不同的零点B .()f x 的最小正周期可能是4π C .ω的取值范围是1317[,)44D .()f x 在区间(0,)16π上单调递增【解析】解:函数()sin()(0)4f x x πωω=+>,令42x k ππωπ+=+,k Z ∈,得(41)4k x πω+=,k Z ∈, 函数()f x 在区间[0,]π上有且仅有4条对称轴,即有4个整数k 满足(41)04k ππω+,由(41)04k ππω+,得0144k ω+,可得0k =,1,2,3,则1434144ω+⨯<+⨯,∴131744ω<,即ω的取值范围是1317[,)44,故C 正确; (0,)x π∈,(44x ππω∴+∈,)4πωπ+,得7(42ππωπ+∈,9)2π,当[44x ππω+∈,9)2π时,()f x 在区间(0,)π上有且仅有4个不同的零点,故A 错误; 周期2T πω=,由1317[,)44ω∈,得14(17ω∈,4]13, 8(17T π∴∈,8]13π,()f x ∴的最小正周期不可能是4π,故B 错误; (0,)16x π∈,(44x ππω∴+∈,)164ωππ+,又13[4ω∈,17)4,∴29[16464ωπππ+∈,33)64π,又33642ππ>,()f x ∴在区间(0,)16π上不一定单调递增,故D 错误.故选:C .7.函数()sin()(0)6f x x πωω=+>在区间[0,]3π上恰有三个零点,则ω的取值范围是( )A .111722ω< B .111722ωC .172322ω< D .172322ω【解析】解:函数sin()(0)6y x πωω=+>在区间[0,]3π恰有3个零点,[66x ππω+∈,]36ππω+,可得3436πππωπ+<,可得172322ω<. 故选:C .8.已知函数()sin()(0)3f x x πωω=+>的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( )A .2937[,]66ππB .2937[,)66ππC .2537[,)66ππD .[4π,6)π【解析】解:因为[0x ∈,1],所以[33x ππω+∈,]3πω+,因为()f x 的图象在区间[0,1]上恰有3个最高点, 所以46232ππππωπ++<+,解得253766ππω<. 故选:C .9.若存在唯一的实数(0,)2t π∈,使得曲线sin()(0)4y x πωω=->关于直线x t =对称,则ω的取值范围是()A .3(4,7]4B .3[4,7]4C .3(2,7]2D .3[2,7]2【解析】解:函数sin()4y x πω=-,其对称方程为42x k ππωπ-=+,k Z ∈,解得34k x ππω+=,k Z ∈;对称轴(0,)2x t π=∈,∴当0k =时,可得对称性:342ππω<,,解得:32ω>; 当1k =时,可得对称性:342πππω+,解得:72ω; ω∴的取值范围是3(2,7]2.故选:C . 二.多选题10.已知函数()sin()(0f x x ωϕω=+>,)R ϕ∈在区间75(,)126ππ上单调,且满足73()()124f f ππ=-则( )A .2()03f π=B .04ω<C .关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D .若函数()f x 在区间213[,)36ππ上恰有5个零点,则ω的取值范围为8(,3]3【解析】解:函数()sin()f x x ωϕ=+满足73()()124f f ππ=-. 对于A ,因为1732()21243πππ⨯+=,所以()f x 的一个对称中心是(3π,0),即2()03f π=,选项A 正确;对于B ,因为576122Tππ-,解得2T π,即22ππω,解得4ω,所以04ω<,选项B 正确;对于C ,关于x 的方程()1f x =只有一个实数解,函数()sin()(0f x x ωϕω=+>,)R ϕ∈在区间7(12π,5)6π上单调,且满足2()03f π=, 所以5224()633T πππ⨯-=, 当23T π=时,()sin3f x x =,()1f x =在区间[0,2)π上的实数解为6π,56π,32π共有三个,选项C 错误; 对于D ,函数()f x 在区间2[3π,13)6π上恰有5个零点,所以13252632TT ππ<-, 所以2132522632ππππωω⨯<-⨯,解得81033ω<, 且满足5224()63T πππω>⨯-=,即223ππω,解得3ω,所以8(3ω∈,3],选项D 正确.故选:ABD .11.已知函数()4sin cos()1(0)6f x x x πωωω=++>在(0,)x π∈上恰有3个零点,则( )A .()f x 在(0,)π上恰有2个极大值点和2个极小值点B .()f x 在(0,)8π上的最大值是2C .()f x 在(0,)12π上是增函数D .ω的取值范围是1723(,]1212【解析】解:函数()4sin cos()16f x x x πωω=++314sin (sin )12x x x ωωω=-+ 223sin cos 2sin 1x x x ωωω=-+ 3sin 2cos2x x ωω=+2sin(2)6x πω=+,0ω>; 当(0,)x π∈时,2(66x ππω+∈,2)6πωπ+,对于D ,因为()f x 在(0,)π内恰好3个零点,所以3246ππωππ<+,解得17231212ω<,选项D 正确; 对于A ,当(0,)x π∈时,2(66x ππω+∈,2)6πωπ+,因为3246ππωππ<+,所以()2sin(2)6f x x πω=+在区间(0,)π上可能有2个或1个极小值点,选项A 错误;对于B ,当(0,)8x π∈时,2(66x ππω+∈,)46ωππ+,因为17231212ω<,所以1725464126482ωππππππ+>⨯+=>,所以()f x 在区间(0,)8π上有最大值为2,选项B 正确;对于C ,当(0,)12x π∈时,2(66x ππω+∈,)66ωππ+,因为17231212ω<,所以2335666126722ωππππππ+⨯+=<,所以()f x 在区间(0,)12π上单调递增,选项C 正确.故选:BCD .12.已知函数2()12cos ()(0)3f x x πωω=-+>,下面结论正确的是( )A .若1x ,2x 是函数()f x 的两个不同的极值点,且12||x x -的最小值为π,则1ω=B .存在(0,1)ω∈,使得()f x 往右平移6π个单位长度后得到的图象关于原点对称C .若()f x 在[0,2]π上恰有6个零点,则ω的取值范围是3541[,)2424D .若2(0,]3ω∈,则()f x 在[,]64ππ-上单调递增【解析】解:22()12cos ()cos(2)sin(2)336f x x x x πππωωω=-+=-+=+,对于A ,12||2min T x x π-==,∴2ππω=,12ω=,错误; 对于B ,平移后12()sin(2)6g x x ωωπ-=+关于原点对称,则1216()62kk k Z ωππω--=∈⇒=,k Z ∈,当0k =时,1(0,1)2ω=∈,正确;对于C ,[0x ∈,2]π,2[,4]666x πππωωπ+∈+,3541647[,)62424ππωππω+<⇒∈,正确; 对于D ,当[,]64x ππ∈-,则2(636x πωππω+∈-+,)26ωππ+,若()f x 在[,]64ππ-上单调递增,则23623262ωπππωωπππ⎧-+-⎪⎪⇒⎨⎪+⎪⎩,0ω>,∴2(0,]3ω∈,正确.故选:BCD . 三.填空题13.若函数sin y x ω=能够在某个长度为1的闭区间上至少两次获得最大值1,且在区间[,]1615ππ-上为增函数,则正整数ω的值为 .【解析】解:由题意函数sin y x ω=图象过(0,0),其周期2T πω=,要使长度为1的闭区间上至少两次获得最大值1,则有1T , 即21πω,解得2ωπ,在区间[,]1615ππ-上为增函数, ∴2216k ππωπ--且2215k πωππ+,k Z ∈,解得832k ω-且307.5k ω+,∴当0k =时,正整数ω值为7,符合条件.故答案为:7.14.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=⋅-->在区间52[,]63ππ-上是增函数,且在区间(0,)π上恰好取得一次最大值,则ω的取值范围是 .【解析】解:22()2sin cos ()sin 24x f x x x ωπωω=⋅-- 2sin [1cos()]2x x sin x πωωω=⋅+--2sin (1sin )sin x x x ωωω=⋅+- sin x ω=,令2,2x k k Z πωπ=+∈,解得2,2k x k Z ππωω=+∈, 因为()f x 在区间(0,)π上恰好取得一次最大值, 所以02ππω<<,解得12ω>, 令22,22k xk k Z πππωπ-++∈,解得22,22k k x k Z ππππωωωω-++∈, 因为()f x 在区间52[,]63ππ-上是增函数, 所以562232ππωππω⎧--⎪⎪⎨⎪⎪⎩,解得35ω, 综上所述,1325ω<, 所以ω的取值范围为13(,]25.故答案为:13(,]25.15.设函数()sin (0)g x x ωω=>向左平移5πω个单位长度得到函数()f x ,已知()f x 在[0,2]π上有且只有5个零点,则ω的取值范围是 . 【解析】解:由题意知,()sin ()sin()55f x x x ππωωω=+=+, 因为[0x ∈,2]π,所以[55x ππω+∈,2]5πωπ+,又()f x 在[0,2]π上有且只有5个零点, 所以5265ππωππ+<,解得1229510ω<, 所以ω的取值范围是12[5,29)10.故答案为:12[5,29)10.16.若函数()2sin(2)4f x x π=+在[0,]2m和[3m ,]π上均单调递增,则实数m 的取值范围为 .【解析】解:由()2sin(2)4f x x π=+知,当[0x ∈,]π时,()f x 在[0,]8π和5[,]8ππ上单调递增,[0,]2m和[3m ,]π上均单调递增, ∴28538m m ππ⎧⎪⎪⎨⎪⎪⎩,∴5244mππ, m ∴的取值范围为:5[,]244ππ. 故答案为:5[,]244ππ. 17.已知函数5()cos()(0)6f x x πωω=->在(0,)4π上有且仅有2个零点,则实数ω的取值范围为 .【解析】解:令()0f x =,则562x k πωππ-=+,k Z ∈,43k x ππωω∴=+, 由于()f x 在(0,)4π上有且仅有2个零点,则有434ππω<,且有734ππω,则有162833ω<为所求范围. 故答案为:16(3,28]3.18.已知函数()sin()(0f x x ωϕω=+>,)R ϕ∈在区间75(,)126ππ上单调,且满足73()()124f f ππ=-.(1)若5()()6f x f x π-=,则函数()f x 的最小正周期为 π ;(2)若函数()f x 在区间213[,)36ππ上恰有5个零点,则ω的取值范围为 . 【解析】解:因为7(12π,37)(412ππ⊆,5)6π, 所以()f x 在7(12π,3)4π上单调, 又73()()124f f ππ=-,所以73212423πππ+=,可得2()03f π=, 又由于5()()6f x f x π-=, 所以函数()f x 的对称轴方程为556212x ππ==,则2531244Tπππ-==,所以函数的最小正周期为π; 因为函数()f x 在区间2[3π,13)6π上恰有5个零点, 所以13252632T T ππ<-, 所以2132522632ππππωω⋅<-⋅,解得81033ω<, 且满足5224()633T πππ>⨯-=,即223ππω,即3ω, 故8(3ω∈,3],故④正确;故答案为:π,8(,3]3.19.设()3sin()1(0)12f x x πωω=-+>,若()f x 在[,]36ππ-上为增函数,则ω的取值范围是 . 【解析】解:设()3sin()1(0)12f x x πωω=-+>,若()f x 在[,]36ππ-上为增函数, [12312x πωππω-∈--,]63ωππ-, 故有3122ωπππ---,6122ωπππ-,求得54ω, 可得ω的取值范围是5(0,]4,故答案为:(0,5]4.20.已知函数()sin()(0)3f x x πωω=->,[0x ∈,]π的值域为3[,则ω的取值范围是 .【解析】解:因为[0x ∈,]π,所以[,]333x πππωωπ-∈--,因为函数()sin()3f x x πω=-的值域为3[,所以[32ππωπ-∈,4]3π,解得55[,]63ω∈. 故答案为:55[,]63.21.已知函数2sin()(0)3y x πωω=->图象与函数2sin()(0)6y x πωω=+>图象相邻的三个交点依次为A ,B ,C ,且ABC ∆是钝角三角形,则ω的取值范围是 .【解析】解:因为2sin()2sin()326y x x πππωω=-+=+,所以函数2sin()3y x πω=-的图象向左平移2πω个单位得到函数2sin()6y x πω=+的图象,画出两函数2sin()(0)3y x πωω=->和函数2sin()(0)6y x πωω=+>的部分图象,如图所示:根据图象知,2AC πω=,取AC 的中点D ,连接BD ,由对称性知,ABC ∆是以ABC ∠为顶角的等腰三角形,因为ABC ∆是钝角三角形,所以4ABD π∠>,所以tan 1ADABD BD∠=>,所以AD BD >,由2sin()2sin()36x x ππωω-=+,整理可得()()236x x k ππωωππ-++=+,k Z ∈,可得712x k πωπ=+,k Z ∈;则72sin()2sin()23123y x k πππωπ=-=+-=±2||22B BD y ==ABC ∆为钝角三角形,只需AD BD >,即22πω>24ω<,所以ω的取值范围是2)4. 故答案为:2).。
三角函数中的范围与最值问题在三角函数中,角度的范围通常用弧度来表示。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
1. 正弦函数(sin)的取值范围是[-1, 1],其中最大值为1,最小值为-1。
正弦函数的图像是一个周期性的波形,它在0度、180度、360度等整数倍的角度上取到最大值1,在90度、270度等整数倍的角度上取到最小值-1.
2. 余弦函数(cos)的取值范围也是[-1, 1],最大值为1,最小值为-1。
余弦函数的图像与正弦函数相似,但是相位不同,它在90度、270度等整数倍的角度上取到最大值1,在0度、180度、360度等整数倍的角度上取到最小值-1.
3. 正切函数(tan)的取值范围是整个实数集合(无穷),在某些特定角度上可能不存在。
例如,当角度为90度、270度等整数倍时,正切函数不存在。
在其他情况下,正切函数的值在相邻的两个最大值和最小值之间取值。
需要注意的是,在计算机中使用三角函数时,一般使用弧度制而非角度制。
弧度制是以圆的半径为单位来衡量角度的制度,1个弧度等于在半径为1的圆上所对应的弧长。
要将角度转换为弧度,可以使用以下公式:
弧度 = 角度×π / 180
以上是三角函数范围和最值的一般规律,但在具体问题中可
能存在特殊情况,需要根据具体的数学模型或方程来求解。
第8讲 三角函数中的范围、最值问题以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键.例1 (1)若函数y =sin 2x +a cos x +58a -32在⎣⎡⎦⎤0,π2上的最大值是1,则实数a 的值为________. 答案 32解析 y =1-cos 2x +a cos x +58a -32=-⎝⎛⎭⎫cos x -a 22+a 24+58a -12. ∵0≤x ≤π2,∴0≤cos x ≤1. ①若a 2>1,即a >2,则当cos x =1时, y max =a +58a -32=1⇒a =2013<2(舍去); ②若0≤a 2≤1,即0≤a ≤2, 则当cos x =a 2时,y max =a 24+58a -12=1, ∴a =32或a =-4<0(舍去); ③若a 2<0,即a <0,则当cos x =0时, y max =58a -12=1⇒a =125>0(舍去). 综上可得,a =32. (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.答案 34解析 在△ABC 中,因为3a cos C +b =0,所以C 为钝角,由正弦定理得3sin A cos C +sin(A +C )=0,3sin A cos C +sin A cos C +cos A sin C =0,所以4sin A cos C =-cos A ·sin C ,即tan C =-4tan A .因为tan A >0,所以tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =tan A +tan C tan A tan C -1=-3tan A -4tan 2A -1=34tan A +1tan A≤324=34, 当且仅当tan A =12时取等号,故tan B 的最大值是34. 例2 (1)(2020·烟台模拟)将函数f (x )=cos x 的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1ω(ω>0),得到函数g (x )的图象,若g (x )在⎣⎡⎦⎤0,π2上的值域为⎣⎡⎦⎤-12,1,则ω的取值范围为( )A.⎣⎡⎦⎤43,83B.⎣⎡⎦⎤13,53C.⎣⎡⎭⎫43,+∞D.⎣⎡⎭⎫83,+∞ 答案 A解析 f (x )=cos x 向右平移2π3个单位长度,得到y =cos ⎝⎛⎭⎫x -2π3的图象,再将各点横坐标变为原来的1ω(ω>0)得g (x )=cos ⎝⎛⎭⎫ωx -2π3, 当x ∈⎣⎡⎦⎤0,π2时,ωx -2π3∈⎣⎡⎦⎤-2π3,ωπ2-2π3, 又此时g (x )的值域为⎣⎡⎦⎤-12,1, ∴0≤ωπ2-2π3≤2π3,∴43≤ω≤83. (2)若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是________.答案 3π8解析 方法一 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位长度,得到函数g (x )=sin ⎝⎛⎭⎫2x -2φ+π4的图象,该图象关于y 轴对称,即g (x )为偶函数,因此π4-2φ=k π+π2,k ∈Z ,所以φ=-k π2-π8(k ∈Z ),故当k =-1时,φ的最小正值为3π8. 方法二 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位长度,得到函数g (x )=sin ⎝⎛⎭⎫2x -2φ+π4的图象,令2x -2φ+π4=k π+π2,k ∈Z ,得x =k π2+π8+φ(k ∈Z ),此即为g (x )的对称轴方程, 又g (x )的图象关于y 轴对称,所以有k π2+π8+φ=0,k ∈Z ,于是φ=-k π2-π8(k ∈Z ),故当k =-1时,φ取最小正值3π8.(1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等.(2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象.1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ⎝⎛⎭⎫π12=0,则ω的最小值为( )A .2B .4C .6D .8答案 A解析 函数f (x )的周期T ≤4⎝⎛⎭⎫π3-π12=π,则2πω≤π,解得ω≥2,故ω的最小值为2. 2.若函数f (x )=2sin x +cos x 在[0,α]上是增函数,则当α取最大值时,sin 2α的值等于( ) A.45 B.35 C.25 D.215答案 A解析 f (x )=5sin(x +φ),其中tan φ=12,且φ∈⎝⎛⎭⎫0,π2,由-π2+2k π≤x +φ≤π2+2k π,k ∈Z ,得-π2-φ+2k π≤x ≤π2-φ+2k π,k ∈Z .当k =0时,增区间为⎣⎡⎦⎤-π2-φ,π2-φ,所以αmax =π2-φ,所以当α取最大值时,sin 2α=sin 2⎝⎛⎭⎫π2-φ=sin 2φ=2sin φcos φsin 2φ+cos 2φ=2tan φtan 2φ+1=45.3.已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________.答案 [10π,+∞)解析 由题意得T =2πω≤15,∴ω≥10π, ∵ω>0,∴ω≥10π.4.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),若f (x )在⎣⎡⎦⎤0,2π3上恰有两个零点,且在⎣⎡⎦⎤-π4,π24上单调递增,则ω的取值范围是________.答案 ⎣⎡⎦⎤52,103解析 令ωx +π3=k π,k ∈Z , 得x =3k π-π3ω,k ∈Z , ∴f (x )的第2个、第3个正零点分别为5π3ω,8π3ω, ∴⎩⎨⎧ 5π3ω≤2π3,8π3ω>2π3,解得52≤ω<4, 令-π2+2k π≤ωx +π3≤π2+2k π,k ∈Z , ∴-5π6ω+2k πω≤x ≤π6ω+2k πω,k ∈Z , 令k =0,f (x )在⎣⎡⎦⎤-5π6ω,π6ω上单调递增, ∴⎣⎡⎦⎤-π4,π24⊆⎣⎡⎦⎤-5π6ω,π6ω, ∴⎩⎪⎨⎪⎧ -5π6ω≤-π4,π6ω≥π24,ω>0⇒0<ω≤103, 综上得ω的取值范围是52≤ω≤103.。
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小; (2)设向量,边长,当取最大值时,求边的长. 【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小; (2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 ,,所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 例8.【2018届甘肃省张掖市高三三诊】已知3cos,cos 44x x m ⎛⎫= ⎪⎭, sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤,6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()1f B <≤,综上, ()f B的取值范围为⎛ ⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin cos ba c B C A C --+=+(1)求A 的大小; (2)求代数式b c a +的取值范围.【答案】(1)3π(22b ca+<≤ 【解析】试题分析:(1)由()()()222sin cos b a c B C A C --+=+及余弦定理的变形可得2cos sin B A B -,因为cos 0B ≠,故得sin A =ABC ∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b ca+的取值范围即可.试题解析: (1)∵2222cos b a c ac B --=-, ()()()222sin cos b a c B C A C --+=+,∴()()2cos sin cos ac B B C A C -+=+ , ∴()()2cos sin ,B A B ππ--=-∴2cos sin B A B -=,∴23sin sin sin sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫+++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b ca+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+⎪⎝⎭的范围,以达到求解的目的. 例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为2ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (]4,6 【解析】试题分析:(1)由//m n ,得62)0c c o s A a c o s B-+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得2sin 2a R A ===.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号, 所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A.B.C.D.【答案】C【解析】 ,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, AB =, 1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值. 4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】 【解析】由+得,所以,即,再由余弦定理得 ,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯= 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值.试题解析:(1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC ∆面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理 ,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin cos a C A =. (1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 1⎡⎤⎣⎦.在ABC ∆中,由正弦定理,得sin sin b c B C=,∴22sin 2sin 311sin sin sin tan B C B c B B B B π⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角 ,,A B C 的对边分别为,,a b c ,ABC ∆的面积S满足222a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(tan C =0C π<<, 23C π∴=.(2)()3cos2cos =cos2cos 2cos232A A B A A A A π⎛⎫+-+-= ⎪⎝⎭23A π⎛⎫+ ⎪⎝⎭0,2333A A ππππ<<∴<+<(203A π⎛⎫+∈ ⎪⎝⎭ 11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值; (2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=- ⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=()324S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{ 202A A C A C πππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 24A π⎫⎛⎫∴-∈⎪ ⎪⎪⎝⎭⎝⎭(S AcosC ∴+∈.12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭.(1)求角A ;(2)若a =ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (3+(3.试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =, ∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦6B π⎛⎫=+ ⎪⎝⎭,∴ABC ∆周长的取值范围是(3+.。
精选全文完整版(可编辑修改)三角函数难题之参数ω的取值范围问题整理1.(2019江苏高一月考)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象在区间[-1,1]上有3个最低点,则ω的取值范围是( )A .⎣⎡⎭⎫21π4,29π4B .⎣⎡⎭⎫9π2,13π2C .⎣⎡⎭⎫11π4,13π4 D .[4π,6π)解:2.(2019·四川高三月考(理))已知函数f (x )=cos ⎝⎛⎭⎫ωx -2π3(ω>0),x 1,x 2,x 3∈[0,π],且∀x ∈[0,π] 都有f (x 1)≤f (x )≤f (x 2),满足f (x 3)=0的实数x 3有且只有3个,给出下述四个结论:①满足题目条件的实数x 1有且只有1个;②满足题目条件的实数x 2有且只有1个;③f (x )在⎝⎛⎭⎫0,π10上单调递增;④ω的取值范围是⎣⎡⎭⎫136,196.其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④解:3.(2019年江西高三月考(文))已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6+a cos ωx (a >0,ω>0)对任意x 1,x 2∈R 都有f (x 1)+f (x 2)≤43,若f (x )在[0,π]上的值域为[3,23],则实数ω的取值范围为( )A .⎣⎡⎦⎤16,13B .⎣⎡⎦⎤13,23C .⎣⎡⎭⎫16,+∞D .⎣⎡⎦⎤12,1解:π2≤ωx +π3≤2π3,16≤ω≤13.选A .4.(2019年广东高三开学考试(理))将函数y =sin2x 的图象向右平移φ()0<φ<π2个单位长度得到f (x )的图象,若函数f (x )在区间[]0,π3上单调递增,且f (x )的最大负零点在区间()-5π12,-π6上,则φ的取值范围是( ) A .(]π6,π4 B .(]π12,π4 C .()π6,π2 D .()π12,π2解:5.(2019年湖南高一期末)函数f (x )=A sin(ωx +φ) ,(A >0,ω>0),若f (x )在区间[]0,π2上是单调函数,f (-π)=f (0)=-f ()π2,则ω的值为( )A .12B .2C .12或23D .23或2解:6.(2019年内蒙古高一期末(理))函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0),当x ∈[0,1]上恰好取得5个最大值,则实数ω的取值范围为( )A .⎣⎡⎭⎫9π4,25π4B .⎣⎡⎭⎫19π2,27π2C .⎣⎡⎭⎫33π4,41π4D .⎣⎡⎭⎫41π4,50π4解:7.(2019年河南高考模拟(文))已知函数f (x )=sin(ωx +φ)(ω>0)在区间⎝⎛⎭⎫7π12,2π3上单调,且f ⎝⎛⎭⎫π4=1,f ⎝⎛⎭⎫3π4=0,则ω的最大值为( )A .7B .9C .11D .138.(2019年陕西高一期中)若函数f (x )=cos(2x +φ)(其中φ>0)的图象关于点()2π3,0成中心对称,则φ的最小值为( ) A .π6 B .π4 C .π3 D .π2解:9.(2019年山西高考模拟(理))已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象过两点A ⎝⎛⎭⎫0,22,B ⎝⎛⎭⎫π4,0,f (x )在⎝⎛⎭⎫0,π4内有且只有两个极值点,且极大值点小于极小值点,则f ′(x )=( )A .f (x )=sin ⎝⎛⎭⎫3x +π4B .f (x )=sin ⎝⎛⎭⎫5x +3π4C .f (x )=sin ⎝⎛⎭⎫7x +π4D .f (x )=sin ⎝⎛⎭⎫9x +3π4解:10.(2019年云南省云天化中学高一期中)已知函数f (x )=2sin(ωx +φ)(0<ω<6,|φ|<π2)的图象经过点⎝⎛⎭⎫π6,2和⎝⎛⎭⎫2π3,-2.若函数g (x )=f (x )-m 在区间⎣⎡⎦⎤-π2,0上有唯一零点,则实数m 的取值范围是( ) A .(-1,1]∪⎣⎡⎦⎤-12,12 B .{-1}∪⎣⎡⎦⎤-12,12 C .⎝⎛⎦⎤-12,1 D .{-2}∪(-1,1]解:11.(2019年安徽高考模拟(理))已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点,且f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π4恒成立,f (x )在区间⎝⎛⎭⎫-π12,π24上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17 解:12.(2019年湖南高考模拟(理)) 已知函数f (x )=sin(ωx +φ)(ω>0,φ∈⎣⎡⎦⎤π2,π)的部分图象如图所示,且f (x )在(0,2π)上恰有一个最大值和一个最小值,则ω的取值范围是( )A .⎣⎡⎭⎫712,1312B .⎣⎡⎦⎤1112,1712C .⎝⎛⎦⎤712,1312D .⎝⎛⎦⎤1112,1712解:13.(2019年吉林高考模拟)定义在[0,π]上的函数y =sin ⎝⎛⎭⎫ωx -π6(ω>0)有零点,且值域M ⊆⎣⎡⎭⎫-12,+∞,则ω的取值范围是( )A .⎣⎢⎡⎦⎥⎤12,43B .⎣⎢⎡⎦⎥⎤43,2 C .⎣⎢⎡⎦⎥⎤16,43 D .⎣⎢⎡⎦⎥⎤16,2 解:14.(2019年辽宁鞍山一中高考模拟 (理) )函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象在⎣⎡⎦⎤0,π4内有且只有一条对称轴,则实数ω的取值范围是( )A .(1,5)B .(1,+∞)C .[1,5)D .[1,+∞)解:15.(2019年湖北荆州中学高三期末(理))已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π2,π3上是增函数,且在区间[0,π]上存在唯一的x 0使得f (x 0)=2,则ω的取值不可能为( )A .13B .23C .45 D .1解:16.(2018年河北高一期末)已知函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x =-π4是函数的一个零点,且x =π4是其图象的一条对称轴.若⎝⎛⎭⎫π9,π6是f (x )的一个单调区间,则ω的最大值为( ) A .18 B .17 C .15 D .13 解:17.(2018天津耀华中学高考模拟(理))已知函数f (x )=sin ωx +3cos ωx (ω>0),若在区间(0,π)上有三个不同的x 使得f (x )=1,则ω的取值范围是( )A .⎝⎛⎦⎤52,236B .⎝⎛⎭⎫52,236C .⎝⎛⎭⎫32,169D .⎝⎛⎦⎤32,169解:解析:化简()2sin()3f x x πω=+,抓中心角()333x πππωωπ+∈+,=2,36x k ππωπ++或526k ππ+. k =0时,,6π56π,k =1时,13,6π176π,k =2时,25,6π要使f (x )=1有三个解,56π,13,6π176π,175632ππωπω<+>,则,2523636ππωπω≥+≤,则 思维路线:化简、解三角方程(集合)、估算k 、找边界点、解含ω的不等式、验证区间开闭。
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
三角形中的最值和范围问题方法总结总结和探讨在三角形中解决最值和范围问题的方法。
首先,我们可以利用三角函数的特性,因为在三角形中,正弦函数与余弦函数的值都在0到1之间,而正切函数的值则在-1到1之间。
因此,通过分析这些函数的性质,我们可以得出一些结论和结论:(1)三角形中最大值和最小值的计算方法:在三角形中,可以通过最大值最小值公式来求解最大值和最小值,具体公式为A = (b*s*s + c*c*s - a*a*s) / (2*b*s)和B = (c*s*s + a*a*s - b*b*s) / (2*a*s)。
这一方法主要适用于正弦函数和余弦函数的最大值和最小值问题。
例如,在一个三角形中,已知a和b 的长度,我们可以使用正弦函数的性质,通过b/sinB=a/sinA来求出角B的最大值和最小值。
(2)三角形中范围问题的解决方法:在解决三角形中范围问题时,可以使用正弦定理和余弦定理来推导出相关条件。
例如,在求解三角形面积的取值范围时,可以采用作图法、余弦定理法或正弦定理法等方法。
若已知一角和邻边长,则无法求得面积的取值范围,因为邻边长可无限接近于0,所以面积的取值范围为0到正无穷。
此外,在处理中线问题时,可以采用向量加法加平方或利用中线与对边所成两角互补,余弦值相加等于零的思路。
(3)关于余弦定理的应用:余弦定理可以在求解三角形中的范围问题时使用,其公式为c^2 = a^2 + b^2 - 2*a*b*cosC,其中C为三角形的一个角。
通过将此公式变形为cosC = (a^2 + b^2 - c^2) / (2*a*b),我们可以推导出C的范围。
例如,在求解一个角的范围时,我们可以将cosC的值作为条件,然后利用反正弦函数求解其取值范围。
(4)关于三角形的最大值和最小值问题:在求解三角形的最大值和最小值问题时,可以利用三角形内角和定理和正弦函数的性质。
例如,对于一个三角形,我们可以根据内角和定理,计算出最大的角度,然后根据正弦函数的性质,求解出该角度对应的最大值或最小值。
高考数学复习考点题型专题讲解专题3 三角中的最值、范围问题高考定位 以三角函数、三角形为背景的最值及范围问题是高考的热点,常用的方法主要有:函数的性质(如有界性、单调性)、基本不等式、数形结合等.1.(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A.π4B.π2C.3π4D.π 答案 A解析法一f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π, 得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数, 所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A. 法二 因为f (x )=cos x -sin x , 所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立, 即sin x +cos x ≥0,即2sin ⎝⎛⎭⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝ ⎛⎭⎪⎫x +π4的图象可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4, 所以0<a ≤π4,所以a 的最大值是π4,故选A. 2.(2022·全国甲卷)设函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3在区间(0,π)上恰有三个极值点、两个零点,则ω的取值范围是( ) A.⎣⎢⎡⎭⎪⎫53,136 B.⎣⎢⎡⎭⎪⎫53,196 C.⎝ ⎛⎦⎥⎤136,83 D.⎝ ⎛⎦⎥⎤136,196答案 C解析 由题意可得ω>0,故由x ∈(0,π),得ωx +π3∈⎝⎛⎭⎪⎫π3,πω+π3.根据函数f (x )在区间(0,π)上恰有三个极值点,知5π2<πω+π3≤7π2,得136<ω≤196. 根据函数f (x )在区间(0,π)上恰有两个零点,知2π<πω+π3≤3π,得53<ω≤83.综上,ω的取值范围为⎝ ⎛⎦⎥⎤136,83.3.(2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca的取值范围是________. 答案 60° (2,+∞)解析 △ABC 的面积S =12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,所以tan B =3,因为0°<∠B <90°, 所以∠B =60°.因为∠C 为钝角,所以0°<∠A <30°, 所以0<tan A <33,所以c a =sin C sin A =sin (120°-A )sin A=sin 120°cos A -cos 120°sin Asin A=32tan A +12>2, 故ca的取值范围为(2,+∞).4.(2022·新高考Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A =sin 2B1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解 (1)因为cos A 1+sin A =sin 2B1+cos 2B ,所以cos A 1+sin A =2sin B cos B1+2cos 2B -1,所以cos A 1+sin A =sin Bcos B,所以cos A cos B =sin B +sin A sin B , 所以cos(A +B )=sin B , 所以sin B =-cos C =-cos2π3=12. 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以B =π6.(2)由(1)得cos(A +B )=sin B , 所以sin ⎣⎢⎡⎦⎥⎤π2-(A +B )=sin B ,且0<A +B <π2,所以0<B <π2,0<π2-(A +B )<π2,所以π2-(A +B )=B ,解得A =π2-2B ,由正弦定理得a 2+b 2c 2=sin 2A +sin 2Bsin 2C=sin 2A +sin 2B 1-cos 2C =sin 2⎝ ⎛⎭⎪⎫π2-2B +sin 2B 1-sin 2B=cos 22B +sin 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 4B -5cos 2B +2cos 2B =4cos 2B +2cos 2B -5≥24cos 2B ·2cos 2B -5=42-5,当且仅当cos 2B =22时取等号, 所以a 2+b 2c2的最小值为42-5.热点一 三角函数式的最值或范围求三角函数式的最值或范围问题,首先把函数式化为一个角的同名三角函数形式,接着利用三角函数的有界性或单调性求解.例1(2022·宁波调研)已知函数f (x )=2sin x cos x -23cos 2x + 3. (1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=2sin x cos x -23cos 2x +3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,所以f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2-π3=2sin π6=1.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,所以,当2x -π3=π2,即x =5π12时,f (x )取到最大值2; 当2x -π3=-π3,即x =0时,f (x )取到最小值- 3.易错提醒 求三角函数式的最值范围问题要注意: (1)把三角函数式正确地化简成单一函数形式;(2)根据所给自变量的范围正确地确定ωx +φ的范围,从而根据三角函数的单调性求范围.训练1(2022·潍坊质检)在①函数y =f (x )的图象关于直线x =π3对称,②函数y =f (x ) 的图象关于点P ⎝ ⎛⎭⎪⎫π6,0对称,③函数y =f (x )的图象经过点Q ⎝ ⎛⎭⎪⎫2π3,-1,这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数f (x )=sin ωx cos φ+cos ωx sin φ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且________,判断函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上是否存在最大值?若存在,求出最大值及此时的x 值;若不存在,说明理由.解f (x )=sin ωx cos φ+cos ωx sin φ=sin(ωx +φ), 由已知函数f (x )的周期T =2πω=π,得ω=2,所以f (x )=sin(2x +φ). 若选①,则有2×π3+φ=k π+π2(k ∈Z ), 解得φ=k π-π6(k ∈Z ).又因为|φ|<π2,所以φ=-π6, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x -π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当2x -π6=π2,即x =π3时,函数f (x )取得最大值,最大值为1.若选②,则有2×π6+φ=k π(k ∈Z ), 解得φ=k π-π3(k ∈Z ). 又因为|φ|<π2,所以φ=-π3, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.当x ∈⎝⎛⎭⎪⎫π6,π2时,则2x -π3∈⎝ ⎛⎭⎪⎫0,2π3, 所以当2x -π3=π2,即x =5π12时,函数f (x )取得最大值,最大值为1.若选③,则有2×2π3+φ=2k π-π2(k ∈Z ),解得φ=2k π-11π6(k ∈Z ).又因为|φ|<π2, 所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x +π6∈⎝ ⎛⎭⎪⎫π2,7π6,显然,函数f (x )在该区间上没有最大值. 热点二 与三角函数性质有关的参数范围与三角函数性质有关的参数问题,主要分为三类,其共同的解法是将y =A sin(ωx +φ)中的ωx +φ看作一个整体,结合正弦函数的图象与性质进行求解. 考向1 由最值(或值域)求参数的范围例2 若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,32B.⎣⎢⎡⎦⎥⎤32,3C.⎣⎢⎡⎦⎥⎤3,72D.⎣⎢⎡⎦⎥⎤52,72答案 B解析 因为ω>0,所以当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3.故选B.考向2 由单调性求参数的范围例3 已知f (x )=sin(2x -φ)⎝ ⎛⎭⎪⎫0<φ<π2在⎣⎢⎡⎦⎥⎤0,π3上是增函数,且f (x )在⎝ ⎛⎭⎪⎫0,7π8上有最小值,那么φ的取值范围是( ) A.⎣⎢⎡⎭⎪⎫π6,π2 B.⎣⎢⎡⎭⎪⎫π6,π4C.⎣⎢⎡⎭⎪⎫π3,π2D.⎣⎢⎡⎭⎪⎫π4,π3答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤0,π3,得2x -φ∈⎣⎢⎡⎦⎥⎤-φ,2π3-φ, 又由0<φ<π2,且f (x )在⎣⎢⎡⎦⎥⎤0,π3上是增函数,可得2π3-φ≤π2,所以π6≤φ<π2. 当x ∈⎝ ⎛⎭⎪⎫0,7π8时,2x -φ∈⎝ ⎛⎭⎪⎫-φ,7π4-φ, 由f (x )在⎝⎛⎭⎪⎫0,7π8上有最小值,可得7π4-φ>3π2,则φ<π4.综上,π6≤φ<π4.故选B.考向3 由函数的零点求参数的范围例4 已知a =⎝⎛⎭⎪⎫sin ω2x ,sin ωx ,b =⎝ ⎛⎭⎪⎫sin ω2x ,12,其中ω>0,若函数f (x )=a·b -12在区间(π,2π)上没有零点,则ω的取值范围是( ) A.⎝⎛⎦⎥⎤0,18B.⎝ ⎛⎦⎥⎤0,58C.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤58,1D.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58答案 D 解析f (x )=sin 2ω2x +12sin ωx -12=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎪⎫ωx -π4.由函数f (x )在区间(π,2π)上没有零点,知其最小正周期T ≥2π, 即2πω≥2π,所以ω≤1. 当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4,所以⎩⎪⎨⎪⎧ωπ-π4≥k π,2ωπ-π4≤(k +1)π(k ∈Z ),解得k +14≤ω≤k 2+58(k ∈Z ).因为0<ω≤1, 当k =0时,14≤ω≤58,当k =-1时,0<ω≤18,所以ω∈⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58.故选D.规律方法 由三角函数的性质求解参数,首先将解析式化简,利用对称性、奇偶性或单调性得到含有参数的表达式,进而求出参数的值或范围.训练2 (1)(2022·广州调研)若函数f (x )=12cos ωx -32sin ωx (ω>0)在[0,π]内的值域为⎣⎢⎡⎦⎥⎤-1,12,则ω的取值范围为( ) A.⎣⎢⎡⎦⎥⎤23,43B.⎝ ⎛⎦⎥⎤0,43C.⎝⎛⎦⎥⎤0,23D.(0,1](2)(2022·金华质检)将函数f (x )=sin 4x +cos 4x 的图象向左平移π8个单位长度后,得到g (x )的图象,若函数y =g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,则正数ω的最大值为( )A.12B.1 C.32D.23答案 (1)A (2)A解析 (1)f (x )=12cos ωx -32sin ωx =cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),当x ∈[0,π]时,π3≤ωx +π3≤ωπ+π3. 又f (x )∈⎣⎢⎡⎦⎥⎤-1,12,所以π≤ωπ+π3≤5π3,解得23≤ω≤43, 故ω的取值范围为⎣⎢⎡⎦⎥⎤23,43.(2)依题意,f (x )=⎝ ⎛⎭⎪⎫1-cos 2x 22+⎝ ⎛⎭⎪⎫1+cos 2x 22=1+cos 22x 2=3+cos 4x4, 其图象向左平移π8个单位长度得到g (x )=34+14cos ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π8=34+14cos ⎝ ⎛⎭⎪⎫4x +π2 =34-14sin 4x 的图象, 故g (ωx )=34-14sin(4ωx ).令-π2+2k π≤4ωx ≤π2+2k π,k ∈Z ,由于ω>0,得-π8+k π2ω≤x ≤π8+k π2ω,k ∈Z .由于函数g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,故⎩⎪⎨⎪⎧-π8+k π2ω≤-π12,π8+k π2ω≥π4,解得⎩⎪⎨⎪⎧ω≤32-6k ,ω≤12+2k ,k ∈Z ,所以当k =0时,ω=12为正数ω的最大值.热点三 三角形中有关量的最值或范围三角形中的最值、范围问题的解题策略(1)定基本量:根据题意画出图形,找出三角形中的边、角,利用正弦、余弦定理求出相关的边、角,并选择边、角作为基本量,确定基本量的范围.(2)构建函数:根据正弦、余弦定理或三角恒等变换,将所求范围的变量表示成函数形式.(3)求最值:利用基本不等式或函数的单调性等求函数的最值.例5(2022·滨州二模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知6cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =5. (1)求A 的大小;(2)若a =2,求b 2+c 2的取值范围. 解 (1)由已知得6sin 2A +cos A =5,整理得6cos 2A -cos A -1=0, 解得cos A =12或cos A =-13.又A ∈⎝⎛⎭⎪⎫0,π2,所以cos A =12,即A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A 及a =2,A =π3得4=b 2+c 2-bc , 即b 2+c 2=4+bc ,由正弦定理得a sin A =b sin B =c sin C =232=433,即b =433sin B ,c =433sin C ,又C =2π3-B ,所以bc =163sin B sin C =163sin B sin ⎝⎛⎭⎪⎫2π3-B =833sin B ·cos B +83sin 2B=433sin 2B -43cos 2B +43=83sin⎝ ⎛⎭⎪⎫2B -π6+43, 又由⎩⎪⎨⎪⎧0<B <π2,0<23π-B <π2,解得π6<B <π2,所以π6<2B -π6<56π,所以sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以bc ∈⎝ ⎛⎦⎥⎤83,4,所以b 2+c 2=4+bc ∈⎝ ⎛⎦⎥⎤203,8.易错提醒 求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清楚变量的范围,若已知边的范围,求角的范围可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,|b -c |<a <b +c ,三角形中大边对大角等.训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知S =34(b 2+c 2-a 2),a =4.(1)求角A 的大小.(2)求△ABC 周长的取值范围. 解 (1)由S =34(b 2+c 2-a 2), 得12bc sin A =34(b 2+c 2-a 2)=34×2bc cos A , 整理得tan A =3,因为A ∈(0,π), 所以A =π3.(2)设△ABC 的周长为L , 因为a =4,A =π3, 由余弦定理得:42=b 2+c 2-2bc cos π3,即42=b 2+c 2-bc =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22=14(b +c )2, 所以b +c ≤8, 又b +c >a =4,所以L =a +b +c ∈(8,12].一、基本技能练1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( ) A.2 B.4 C.6 D.8 答案 A解析 函数f (x )的周期T ≤4⎝ ⎛⎭⎪⎫π3-π12=π,则2πω≤π,解得ω≥2,故ω的最小值为2.2.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为( ) A.π12B.π6C.π3D.5π6 答案 B解析 将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到图象的函数解析式为y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=cos ⎝ ⎛⎭⎪⎫2x -2π3+φ,此函数为奇函数,所以-2π3+φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ), 则当k =-1时,|φ|取得最小值π6.3.(2022·海南模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin A +2c sinC =2b sin C cos A ,则角A 的最大值为( ) A.π6B.π4 C.π3D.2π3答案 A解析 因为a sin A +2c sin C =2b sin C cos A , 由正弦定理可得,a 2+2c 2=2bc cos A ,① 由余弦定理得,a 2=b 2+c 2-2bc cos A ,② ①+②得2a 2=b 2-c 2,所以cos A =b 2+c 2-a 22bc=b 2+c 2-12(b 2-c 2)2bc=b 2+3c 24bc ≥23bc 4bc =32(当且仅当b =3c 时取等号),所以角A 的最大值为π6.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2a -cb=cos Ccos B,b =4,则△ABC 的面积的最大值为( ) A.43B.2 3 C.2 D. 3 答案 A解析 ∵在△ABC 中,2a -cb=cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C , 整理得sin(B +C )=2sin A cos B , ∵A ∈(0,π),∴sin A ≠0. ∴cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac =ac , ∴ac ≤16,当且仅当a =c 时取等号, ∴△ABC 的面积S =12ac sin B =34ac ≤4 3.即△ABC 的面积的最大值为4 3.5.(2022·苏北四市模拟)若函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6在(0,α)上恰有2个零点,则α的取值范围为( ) A.⎣⎢⎡⎭⎪⎫5π6,4π3 B.⎝⎛⎦⎥⎤5π6,4π3C.⎣⎢⎡⎭⎪⎫5π3,8π3 D.⎝ ⎛⎦⎥⎤5π3,8π3 答案 B解析 由题意,函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6=3sin ⎝ ⎛⎭⎪⎫2x +π3,因为0<x <α,所以π3<2x +π3<2α+π3, 又由f (x )在(0,α)上恰有2个零点, 所以2π<2α+π3≤3π,解得5π6<α≤4π3, 所以α的取值范围为⎝⎛⎦⎥⎤5π6,4π3.故选B. 6.已知函数f (x )=cos(ωx +φ)(ω>0)的最小正周期为π,且对x ∈R ,f (x )≥f ⎝ ⎛⎭⎪⎫π3恒成立,若函数y =f (x )在[0,a ]上单调递减,则a 的最大值是( ) A.π6B.π3 C.2π3D.5π6答案 B解析 因为函数f (x )=cos(ωx +φ)的最小正周期为π, 所以ω=2ππ=2, 又对x ∈R ,都有f (x )≥f ⎝ ⎛⎭⎪⎫π3,所以函数f (x )在x =π3时取得最小值,则2π3+φ=π+2k π,k ∈Z , 即φ=π3+2k π,k ∈Z ,所以f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤π+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z ,则函数y =f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故a 的最大值是π3,故选B.7.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫32,+∞解析 x ∈⎣⎢⎡⎦⎥⎤-π3,π4,因为ω>0,-π3ω≤ωx ≤π4ω, 由题意知-π3ω≤-π2,即ω≥32,故ω取值范围是⎣⎢⎡⎭⎪⎫32,+∞.8.已知函数f (x )=cos ωx +sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在[0,π]上恰有一个最大值点和两个零点,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫53,136解析函数f (x )=cos ωx +sin ⎝⎛⎭⎪⎫ωx +π6=3sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0), 由x ∈[0,π],得ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ+π3.又f (x )在[0,π]上恰有一个最大值点和两个零点, 则2π≤ωπ+π3<52π, 解得53≤ω<136.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的角平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 答案 9解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D , 所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1·sin 60°+12c ·1·sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c=1,则4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9, 当且仅当c =2a 时取等号,故4a+c的最小值为9.10.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A≠π2,c+b cos A-a cos B=2a cos A,则ba=________;内角B的取值范围是________.答案22⎝⎛⎦⎥⎤0,π4解析由c+b cos A-a cos B=2a cos A结合正弦定理得sin C+sin B cos A-sin A cos B=2sin A cos A,即sin(A+B)+sin B cos A-sin A cos B=2sin A cos A,化简得2sin B cos A=2sin A cos A.因为A≠π2,所以cos A≠0,则2sin B=2sin A,所以ba=sin Bsin A=22,则由余弦定理得cos B=a2+c2-b22ac=2b2+c2-b222bc=b2+c222bc≥2bc22bc=22,当且仅当b=c时等号成立,解得0<B≤π4.11.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围. (1)证明由a=b tan A及正弦定理,得sin A cos A =a b =sin A sin B , 所以sin B =cos A , 即sin B =sin ⎝ ⎛⎭⎪⎫π2+A .又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π,故B =π2+A ,即B -A =π2.(2)解 由(1)知,C =π-(A +B ) =π-⎝⎛⎭⎪⎫2A +π2=π2-2A >0, 所以A ∈⎝⎛⎭⎪⎫0,π4,于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝ ⎛⎭⎪⎫sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2⎝⎛⎭⎪⎫sin A -142+98≤98.由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98.12.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b .(1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC面积的最大值并说明此时△ABC 的形状. 解 (1)由已知得a =(-sin x ,cos x ), 又b =(-sin x ,3sin x ), 则f (x )=a ·b =sin 2x +3sin x cos x=12(1-cos 2x )+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, 所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π(k ∈Z ),即x =π3+k π(k ∈Z )时,f (x )取得最大值32. (2)在锐角△ABC 中,因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,所以A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c =23时等号成立),此时△ABC 为等边三角形, S △ABC =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值3 3. 二、创新拓展练13.设锐角△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( ) A.(2,3) B.(1,3) C.(2,2) D.(0,2) 答案 A解析 ∵B =2A ,∴sin B =sin 2A =2sin A cos A . ∵a =1,∴b =2a cos A =2cos A .又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<2A <π2,0<A <π2,0<π-3A <π2,∴π6<A <π4, ∴22<cos A <32, 即2<2cos A <3,故选A.14.(多选)(2022·台州质检)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),已知f (x )在[0,2π]上有且仅有3个极小值点,则( )A.f (x )在(0,2π)上有且仅有5个零点B.f (x )在(0,2π)上有且仅有2个极大值点C.f (x )在⎝ ⎛⎭⎪⎫0,π6上单调递减D.ω的取值范围是⎣⎢⎡⎭⎪⎫73,103答案 CD解析 因为x ∈[0,2π], 所以ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3. 设t =ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3,画出y =cos t 的图象如图所示.由图象可知,若f (x )在[0,2π]上有且仅有3个极小值点, 则5π≤ 2πω+π3<7π, 解得73≤ω<103, 故D 正确;故f (x )在(0,2π)上可能有5,6或7个零点,故A 错误;f (x )在(0,2π)上可能有2或3个极大值点,故B 错误; 当x ∈⎝ ⎛⎭⎪⎫0,π6时,ωx +π3∈⎝ ⎛⎭⎪⎫π3,π6ω+π3.因为73≤ω<103,所以13π18≤π6ω+π3<8π9,故f (x )在⎝⎛⎭⎪⎫0,π6上单调递减,故C 正确.15.(多选)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c =6,记S 为△ABC 的面积,则下列说法正确的是( ) A.若C =π3,则S 有最大值9 3 B.若A =π6,a =23,则S 有最小值3 3C.若a =2b ,则cos C 有最小值0D.若a +b =10,则sin C 有最大值2425答案 ABD解析 对于选项A ,对角C 由余弦定理得36=c 2=a 2+b 2-ab ≥2ab -ab =ab , 因此,S =12ab sin C =34ab ≤93,当且仅当a =b =6时取等号,故A 正确; 对于选项B ,对角A 用余弦定理得 12=a 2=c 2+b 2-3bc =36+b 2-63b , 解得b =23或b =43, 因此,S =12bc sin A =32b ≥33,当且仅当b =23时取等号,故B 正确. 对于选项C ,若a =2b ,由三边关系可得a -b =b <c =6<a +b =3b ⇒2<b <6,此时,由余弦定理,得cos C =a 2+b 2-c 22ab =5b 2-364b 2=54-9b 2∈(-1,1),故C 错误.对于选项D ,若a +b =10,则cos C =a 2+b 2-c 22ab =(a +b )2-c 2-2ab 2ab =32ab -1,又ab ≤(a +b )24=25,当且仅当a =b =5时取等号,∴cos C =32ab -1≥725⇒sin C =1-cos 2C ≤2425,故D 正确,故选ABD.16.(2022·南京师大附中模拟)法国的拿破仑提出过一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰好是一个等边三角形的三个顶点”.在△ABC 中,A =60°,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为O 1,O 2,O 3,则∠O 1AO 3=________;若△O 1O 2O 3的面积为3,则三角形中AB +AC 的最大值为________.答案 120° 4解析 由于O 1,O 3是正△ABC ′,△AB ′C 的外接圆圆心,故也是它们的中心, 所以在△O 1AB 中,∠O 1AB =30°,同理∠O 3AC =30°, 又∠BAC =60°,所以∠O 1AO 3=120°; 由题意知△O 1O 2O 3为等边三角形,设边长为m , 则S △O 1O 2O 3=12m 2sin 60°=34m 2=3,解得O 1O 3=m =2.设BC =a ,AC =b ,AB =c ,在等腰△BO 1A 中,∠O 1AB =∠O 1BA =30°,∠AO 1B =120°, 则AB sin 120°=O 1Asin 30°,解得O 1A =c 3,同理得O 3A =b 3,在△O 1AO 3中,由余弦定理得O 1O 23=O 1A 2+O 3A 2-2O 1A ·O 3A ·cos 120°,即4=c 23+b 23-2·bc 3·⎝ ⎛⎭⎪⎫-12,即b 2+c 2+bc =12,即(b +c )2-bc =12, 故(b +c )2-12=bc ≤⎝⎛⎭⎪⎫b +c 22, 解得b +c ≤4,当且仅当b =c =2时取等号,故三角形中AB +AC 的最大值为4. 17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2c =a (b 2+c 2-a 2). (1)若A =π3,求B 的大小;(2)若a ≠c ,求c -3ba 的最小值.解 (1)因为b 2c =a (b 2+c 2-a 2),所以由余弦定理得cos A =b 2+c 2-a 22bc =b2a .因为A =π3,所以b 2a =12,即a =b , 所以B =A =π3.(2)由(1)及正弦定理得cos A =sin B2sin A,即sin B =2sin A cos A =sin 2A , 所以B =2A 或B +2A =π.当B +2A =π时,A =C ,与a ≠c 矛盾,故舍去, 所以B =2A .c -3b a =sin C -3sin B sin A =sin (A +B )-3sin Bsin A =sin A cos B +cos A sin B -3sin Bsin A=cos B +(cos A -3)sin 2Asin A=cos 2A +2(cos A -3)·cos A =4cos 2A -6cos A -1 =4⎝⎛⎭⎪⎫cos A -342-134.因为C =π-A -B =π-3A >0, 即A <π3,所以cos A >12,所以当cos A =34时,c -3b a 有最小值-134.。
三角函数象限角的取值范围三角函数是数学中的重要概念,它们可以用来描述角度和长度之间的关系。
在三角函数中,角度的取值范围非常重要,因为它决定了函数的定义域和值域。
在本文中,我们将讨论三角函数象限角的取值范围。
我们需要了解什么是象限角。
象限角是指一个角度所在的象限,即角度所在的平面被分成的四个象限之一。
在平面直角坐标系中,第一象限是指x轴和y轴都是正的象限,第二象限是指x轴负、y轴正的象限,第三象限是指x轴和y轴都是负的象限,第四象限是指x轴正、y轴负的象限。
对于三角函数,我们通常使用弧度制来表示角度。
在弧度制下,一个完整的圆周对应的角度是2π。
因此,我们可以将象限角的取值范围分为四个部分。
第一象限角的取值范围是0到π/2。
在第一象限中,x轴和y轴都是正的,因此sin、cos和tan函数的值都是正的。
这意味着在第一象限中,三角函数的值都是正的。
第二象限角的取值范围是π/2到π。
在第二象限中,x轴是负的,y轴是正的。
因此,sin函数的值是正的,cos函数的值是负的,tan 函数的值是负的。
这意味着在第二象限中,sin函数的值是正的,cos函数的值是负的,tan函数的值是负的。
第三象限角的取值范围是π到3π/2。
在第三象限中,x轴和y轴都是负的,因此sin、cos和tan函数的值都是负的。
这意味着在第三象限中,三角函数的值都是负的。
第四象限角的取值范围是3π/2到2π。
在第四象限中,x轴是正的,y轴是负的。
因此,sin函数的值是负的,cos函数的值是正的,tan 函数的值是负的。
这意味着在第四象限中,sin函数的值是负的,cos函数的值是正的,tan函数的值是负的。
三角函数象限角的取值范围是非常重要的,因为它决定了函数的定义域和值域。
在解决三角函数相关问题时,我们需要根据象限角的取值范围来确定函数的符号和取值范围,以便正确地解决问题。