试验设计与建模第一章课后习题答案
- 格式:doc
- 大小:299.00 KB
- 文档页数:10
实验报告姓名:和家慧 专业:通信工程 学号:20121060248 周一下午78节实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MA TLAB 函数直接求解法等。
二 问题:路灯照明问题。
在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw的路灯,它们离地面的高度分别为5m 和6m 。
在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?三 数学模型解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=算法与编程利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1计算结果运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。
试验设计与建模-课后答案1、我们研究过硅酸盐水泥砂浆的抗折强度,用四种不同的配方收集了下述数据:(a )、检验配方法影响泥沙浆强度的假设。
(05.0=α) (b )、用Duncan 多重极差检验法比较均值对。
解、(a )经计算,得出如下方差分析表:①原假设:H0:配方法不影响水泥砂浆强度;H1:配方法影响水泥砂浆强度; ②构造统计量:728.12==EMS MS F 处理;③选定显著性水平:05.0=α;④决策:对于05.0=α,P-值为0<05.0=α,故因拒绝原假设H0,接受备择假设H1,有95%的把握认为配方法影响水泥砂浆强度。
(b )已知E MS =12825.688,N=16,n=4,误差自由度为12,将处理均值按递减顺序排列:25.3156.2=-y ,2971.1=-y ,75.2933.3=-y ,25.2666.4=-y ,各个均值的标准误差是625.564688.12825.==-i y S ,当自由度为12和05.0=α时,查得33.3)12,4(,23.3)12,3(,08.3)12,2(05.005.005.0===γγγ最小显著性极差405.174625.5608.3)12,2(.05.02=⨯==-i y S R γ,3R =182.899,4R =188.561,进行比较得 2对4:3156.25-2666.25=499>188.561(4R ) 2对3:3156.25-2933.75=222.5>182.899(3R ) 2对1:3156.25-2971=185.25<174.405(2R ) 1对4:2971-2666.25=304.75>182.899(3R ) 1对3:2971-2933.75=37.25<174.405(2R ) 3对4:2933.75-2666.25=267.5>174.405(2R )由这一分析知,除了2与1及1与3之外,所有均值对之间均存在显著性差异。
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
数学建模第一次作业院系:机电学院通信工程姓名:严宏海学号:20101003032数学建模习题11用给定的多项式,如y=x3-6x2+5x-3,产生一组数据(xi,yi,i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用rands产生N(0,1)分布随机数),然后用xi和添加了随机干扰的yi作的3次多项式拟合,与原系数比较。
分别作1、2、4、6次多项式拟合,比较结果,体会欠拟合、过拟合现象。
解:程序如下:x=1:0.5:10;y=x.^3-6*x.^2+5*x-3;y0=y+rand;f1=polyfit(x,y0,1)%输出多项式系数y1=polyval(f1,x);%计算各x点的拟合值plot(x,y,'+',x,y1)grid ontitle('一次拟合曲线');figure(2);f2=polyfit(x,y0,2)%2次多项式拟合y2=polyval(f2,x);plot(x,y,'+',x,y2);grid ontitle('二次拟合曲线');figure(3);f4=polyfit(x,y0,4)%4次多项式拟合y3=polyval(f4,x);plot(x,y,'+',x,y3)grid ontitle('四次拟合曲线');figure(4);f6=polyfit(x,y0,6)%6次多项式拟合y4=polyval(f6,x);plot(x,y,'+',x,y4)grid ontitle('六次拟合曲线');运行结果如下:依次为各个拟合曲线的系数(按降幂排列)f1 =43.2000 -149.0663f2 = 10.5000 -72.3000 89.8087f4 =0.0000 1.0000 -6.0000 5.0000 -2.5913f6 = 0.0000 -0.0000 0.0000 1.0000 -6.0000 5.0000-2.4199运行后,比较拟合后多项式和原式的系数,发现四次多项式系数与原系数比较接近,四次多项式的四次项系数很小。
实验01讲评、参考答案讲评未交实验报告的同学名单批改情况:不批改,同学们自己对照参考答案。
附参考答案:实验01 建立数学模型(4学时)(第1章 建立数学模型)1.(求解,编程)如何施救药物中毒p10~11人体胃肠道和血液系统中的药量随时间变化的规律(模型):d ,(0)1100d (,0)d ,(0)0d xx x ty x y y tλλμλμ⎧=-=⎪⎪>⎨⎪=-=⎪⎩ 其中,x (t )为t 时刻胃肠道中的药量,y (t )为t 时刻血液系统中的药量,t =0为服药时刻。
1.1(求解)模型求解p10~11要求:① 用MATLAB 求解微分方程函数dsolve 求解该微分方程(符号运算)。
② 用MATLAB 的化简函数simplify 化简所得结果。
提示:dsolve 和simplify 的用法可用help 查询。
建议在命令窗口中操作。
《数学建模实验》王平1.2(编程)结果分析p11已知λ=0.1386, μ=0.1155,将上题中得到x(t)和y(t)两条曲线画在同一个图形窗口内(见[11]图1)。
提示:MATLAB命令:plot, fplot, hold on/off, grid on/off, xlabel, ylabel, text。
★编写的程序和运行结果(比较[11]图1):2.(编程,验证)商人们怎样安全过河p8~9三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人们怎样才能安全渡河呢?[模型构成]决策:每一步(此岸到彼岸或彼岸到此岸)船上的人员。
要求:在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
x k第k次渡河前此岸的商人数y k第k次渡河前此岸的随从数x k , y k=0,1,2,3; k=1,2,⋯过程的状态s k=(x k , y k)允许状态集合S={(x, y)|x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}u k第k次渡船上的商人数v k第k次渡船上的随从数u k , v k=0,1,2; k=1,2,⋯决策d k=(u k , v k)允许决策集合D={(u , v)|u+v =1, 2}状态转移律s k+1=s k+(-1)k d k[多步决策问题]求d k∈D(k=1, 2, ⋯, n), 使s k∈S, 并按转移律由s1=(3,3) 到达s n+1=(0,0)。
欢迎共阅1、我们研究过硅酸盐水泥砂浆的抗折强度,用四种不同的配方收集了下述数据:H1,25.3156.2=y 2971.1=y 75.2933.3=y 25.2666.4=y 625.564688.12825.==-i y S ,当自由度为12和05.0=α时,查得33.3)12,4(,23.3)12,3(,08.3)12,2(05.005.005.0===γγγ最小显着性极差405.174625.5608.3)12,2(.05.02=⨯==-i y S R γ,3R =182.899,4R =188.561,进行比较得2对4:3156.25-2666.25=499>188.561(4R )2对3:3156.25-2933.75=222.5>182.899(3R )2对1:3156.25-2971=185.25<174.405(2R )1对4:2971-2666.25=304.75>182.899(3R ) 1对3:2971-2933.75=37.25<174.405(2R )3对②构造统计量:024.2==EMS MS F 处理; ③选定显着性水平:05.0=α;④决策:对于05.0=α,P-值为0.157>05.0=α,故因接受原假设H0,认为温度不影响砖的密度。
(b )已知E MS =0.026,N=18,n=4,误差自由度为14,将处理均值按递增顺序排列:5.21.2=-y ,7.21.4=-y ,72.21.3=-y ,74.21.1=-y ,各个均值的标准误差是08.04026.0.==-i y S ,当自由度为14和05.0=α时,查得27.3)14,4(,18.3)14,3(,03.3)14,2(05.005.005.0===γγγ,最小显着性极差2R =0.2424,3R =0.2544,4R =0.2616,进行比较得:1对2:21.74-21.5=0.24<0.2616(4R )1对4:21.74-21.7=0.04<0.2544(3R )(c )估计实验的误差方差。
第一章习题1-1什么是仿真?它所遵循的基本原则是什么?答:仿真是建立在控制理论,相似理论,信息处理技术和计算技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识,统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。
它所遵循的基本原则是相似原理。
1-2在系统分析与设计中仿真法与解析法有何区别?各有什么特点?答:解析法就是运用已掌握的理论知识对控制系统进行理论上的分析,计算。
它是一种纯物理意义上的实验分析方法,在对系统的认识过程中具有普遍意义。
由于受到理论的不完善性以及对事物认识的不全面性等因素的影响,其应用往往有很大局限性.仿真法基于相似原理,是在模型上所进行的系统性能分析与研究的实验方法.1-3数字仿真包括那几个要素?其关系如何?答: 通常情况下,数字仿真实验包括三个基本要素,即实际系统,数学模型与计算机。
由图可见,将实际系统抽象为数学模型,称之为一次模型化,它还涉及到系统辨识技术问题,统称为建模问题;将数学模型转化为可在计算机上运行的仿真模型,称之为二次模型化,这涉及到仿真技术问题,统称为仿真实验.1—4为什么说模拟仿真较数字仿真精度低?其优点如何?.答:由于受到电路元件精度的制约和容易受到外界的干扰,模拟仿真较数字仿真精度低但模拟仿真具有如下优点:(1)描述连续的物理系统的动态过程比较自然和逼真。
(2)仿真速度极快,失真小,结果可信度高。
(3)能快速求解微分方程.模拟计算机运行时各运算器是并行工作的,模拟机的解题速度与原系统的复杂程度无关.(4)可以灵活设置仿真试验的时间标尺,既可以进行实时仿真,也可以进行非实时仿真.(5)易于和实物相连。
1-5什么是CAD技术?控制系统CAD可解决那些问题?答:CAD技术,即计算机辅助设计(Computer Aided Design),是将计算机高速而精确的计算能力,大容量存储和处理数据的能力与设计者的综合分析,逻辑判断以及创造性思维结合起来,用以加快设计进程,缩短设计周期,提高设计质量的技术.控制系统CAD可以解决以频域法为主要内容的经典控制理论和以时域法为主要内容的现代控制理论。
数学建模与数学实验答案【篇一:数学建模与数学实验报告】>指导教师__成绩____________组员1:班级:工管0803 姓名:何红强学号:20083416组员2:班级:工管0801姓名:陈振辉学号:20085291实验1.(1)绘制函数y?cos(tan(?x))的图像,将其程序及图形粘贴在此。
建立m文件fun1.m 解:x=linspace(0, pi,30);y=cos(tan(pi*x)); plot(x,y)x=linspace(0, pi,30); y=cos(tan(pi*x)); plot(x,y)(2)用surf,mesh命令绘制曲面z?2x?y,将其程序及图形粘贴在此。
(注:图形注意拖放,不要太大)(20分)建立m文件fun3.m 解:x=-3:0.1:3; y=1:0.1:5;[x,y]=meshgrid(x,y); z=2*x.^2+y.^2; mesh(x,y,z)2214实验2.1、某校60名学生的一次考试成绩如下:93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 551)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分)解:1)建立数据文件chengji.mat,和m文件tjl.m 代码:load chengji mean=mean(x) std=std(x)range=range(x)skewness=skewness(x) kurtosis=kurtosis(x) hist(x,10)运行得:mean =80.1000 std =9.7106 range =44skewness =-0.46822结论:从上图图形形态来看符合正态分布3)假设正态分布的参数为:mu=80sigma=10 检验:首先取出数据,用以下命令:load chengji.mat 然后用以下命令检验[h,sig,ci] = ztest(price1,80,10)返回:h =0 sig = 0.9383 ci =[77.5697 , 82.6303]检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说明提出的假设均值80是合理的.2. sig-值为0.8668, 远超过0.5, 不能拒绝零假设3. 95%的置信区间为[77.5697 , 82.6303], 它完全包括80, 且精度很高.实验3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为x1x235y?1??2x1??3x2??4x3其中?1,?,?5是未知参数,x1,x2,x3是三种反应物(氢,n戊烷,异构戊烷)的含量,y是反应速度.今测得一组数据如表4,试由此确定参数?1,?,?5,并给出置信区间.?1,?,?5的参考值为(1,0.05, 0.02, 0.1, 2).(20分)序号 1 2 3 4 5 6 7 8 9 10 11 12 13反应速度y 8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13氢x1 470 285 470 470 470 100 100 470 100 100 100 285 2853n戊烷x2300 80 300 80 80 190 80 190 300 300 80 300 190异构戊烷x310 10 120 120 10 10 65 65 54 120 120 10 120解:先建立vol.m文件代码如下:function y=vol(beta,x)beta=[beta(1) beta(2) beta(3) beta(4)beta(5)];x1=x(:,1);x2=x(:,2);x3=x(:,3);y=(beta(1)*x2-x3./beta(5))./(1+beta(2)*x1+beta(3)*x2+beta(4)*x3);然后建立ll1.m文件代码如下:x=[470 285 470 470 470 100 100 470 100 100 100 285 285 300 80 300 80 80 190 80 190 300 300 80 300 190 10 10 120 120 10 10 65 65 54 120 120 10 120];y=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13]; beta0=[1 0.05 0.02 0.1 2];[beta,r,j]=nlinfit(x , y,vol,beta0); beta运行结果为:beta =1.2526 0.0628 0.0400 0.1124 1.1914实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。
数学建模与实验知到章节测试答案智慧树2023年最新鲁东大学第一章测试1.数学建模基本步骤的第一步是:()参考答案:作出简化、合理的假设2.包饺子问题中,模型假设中哪些条件是本质的()参考答案:所有的馅是均匀的3.确定一个大饺子与多个小饺子所装的馅之间的大小关系是定量分析。
()参考答案:错4.森林救火模型中,所有的关系之间都应该成正比例关系 ( )参考答案:错5.建立数学模型的关键是能够用用数学语言表示现实对象.()参考答案:对第二章测试1.LINGO程序中规定变量为0-1变量的函数是@bin()参考答案:对2.关于Matlab中的函数M文件,哪些说法是错误的?()参考答案:可以在Editor窗口点击Run运行;能在Command Window 直接写3.[a,b]=min([34,-10;5,2])的结果中()参考答案:a的第二个元素是-10;b表示每列最小值所在的行号4.MATLAB中拟合的命令polyfit(x,y,m),其中参数m默认是1。
()参考答案:对5.A=[10 -2],B=[-34 2],下列哪些表达式结果中的1是逻辑变量?参考答案:any(A);A>=B第三章测试1.奶制品的生产与销售模型输出结果中[MILK]影子价格为3.16,说明增加1桶牛奶可使净利润增长()元。
参考答案:37.922.接力队的选拔问题(4种泳姿5个运动员中确定每种泳姿一个运动员)中需要确定()个0-1决策变量。
参考答案:203.某个项目只有两种选择,即要么做该项目,要么不做该项目,则可以借助( )加以处理.参考答案:0-1变量4.选课策略问题中“最优化方法”课程的先修课程是“微积分”和“线性代数”的约束条件表示为。
( )参考答案:错5.建立数学规划模型需要考虑哪些基本要素()参考答案:决策变量;约束条件;目标函数第四章测试1.从指数增长模型、logistic模型,到增加考虑脉冲因素、种群个体差异性(年龄、状态等)、时滞等因素的模型,这些改进措施可以让常微分方程模型()参考答案:预测结果更加精确2.Volterra 食饵-捕食者模型平衡点有2个分别为。
数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。
试研究两变量(x,y)之间的关系。
其中:(秒)()。
要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
3、优化理论中的线性规划问题---生产安排。
1、 根据三组数据的绝对误差计算权重:12322211110000,25,400000.010.20.005w w w ====== 因为123::400:1:1600w w w = 所以1.54400 1.71 1.53716001.53840011600pH ⨯+⨯+⨯==++2、 因为量程较大的分度值也较大,用量程大的测量数值较小的物理量会造成很大的系统误差。
3.、含量的相对误差为0.2g ,所以相对误差为:0.20.99790525.3Rx E x ∆===。
4、 相对误差18.20.1%0.0182x mg mg ∆=⨯= 故100g 中维生素C 的质量范围为:18.2±0.0182。
5、1)、压力表的精度为1.5级,量程为0.2,则max 0.2 1.5%0.003330.3758R x MPa KPa x E x ∆=⨯==∆===2)、1的汞柱代表的大气压为0.133,所以max 20.1330.133 1.6625108R x KPax E x -∆=∆===⨯ 3)、1水柱代表的大气压为gh ρ,其中29.8/g m s =则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯6、样本测定值算术平均值 3.421666667 3.48 几何平均值 3.421406894 3.37 调和平均值 3.421147559 3.47 标准差s 0.046224092 3.38 标准差 0.04219663 3.4 样本方差 0.002136667 3.43 总体方差0.001780556 算住平均误差 0.038333333极差 0.117、依题意,检测两个分析人员测定铁的精密度是否有显著性差异,用F双侧检验。
根据试验值计算出两个人的方差及F值:221221223.733, 2.3033.7331.621232.303s s s F s ===== 而0.9750.025(9,9)0.248386,(9,9) 4.025994F F ==, 所以0.9750.025(9,9)(9,9)F F F <<两个人的测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
第一章1-1习题1.设用原料A 生产甲、乙、丙的数量分别为131211,,x x x ,用原料B 生产甲、乙、丙的数量分别为232221,,x x x ,原料C 生产甲、乙、丙的数量分别为333231,,x x x ,则可以建立线性规划问题的数学模型:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=≥≤+--≤+--≥--≤+--≥--≤++≤++≤++++++++-+=)3,2,1,(,005.05.05.004.06.06.0015.015.085.008.02.02.006.06.04.0120025002000..8.38.56.78.18.36.52.08.16.3max 332313322212322212312111312111333231232221131211333231232221131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x S ijLINDO 求解程序见程序XT1-1-1。
求解结果:1200,22.1482,33.473,0,78.1017,66.1526322212312111======x x x x x x 0,0,0332313===x x x ,24640max =S 〔元〕。
2.设用设备,,,,,32121B B B A A 加工产品Ⅰ的数量分别为54321,,,,x x x x x ,设备121,,B A A 加工产品Ⅱ的数量分别为876,,x x x ,设备22,B A 加工产品Ⅲ的数量分别为109,x x ,则目标函数为:976321)5.08.2())(35.02())(25.025.1(max x x x x x x S -++-+++-=400072007000114783400086250100001297312600010530051048397261xx x x x x x x x x ⨯-+⨯-+⨯-++⨯-+⨯-整理后得到:⎪⎪⎩⎪⎪⎨⎧=≥=-=-+=--++≤≤+≤+≤++≤+-+-++---+=)10,9,8,7,6,5,4,3,2,1(,00;0;0;40007;7000114;400086;100001297;6000105..2304.19256.15.03692.115.135.04474.0375.07816.075.0max 109876543215104839726110987654321j x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x x S j 整数 LINDO 求解的程序见程序XT1-1-2。
数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。
试研究两变量(x,y)之间的关系。
其中:(秒)()。
要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
3、优化理论中的线性规划问题---生产安排。
【西北农林科技大学试验设计与分析复习题】员海燕版一、名词解释(15分)1.重复:一个条件值的每一个实现。
或因素某水平值的多次实现。
2.因素:试验中要考虑的可能会对试验结果产生影响的条件。
常用大写字母表示。
3.水平:因素所处的不同状态或数值。
4.处理:试验中各个因素的每一水平所形成的组合 5.响应:试验的结果称为响应;响应函数:试验指标与因素之间的定量关系用模型ε+=),,(1n x x f y 表示,其中),,(1n x x f y =是因素的值n x x ,,1 的函数,称为响应函数。
678912.试验设计的基本流程是什么? 1明确试验目的2选择试验的指标,因素,水平 3设计试验方案 4实施试验5对获得的数据进行分析和推断。
3.试验设计的相关分析有哪几种?一是相关系数,即用数理统计中的两个量之间的相关程度来分析的一种方法。
二是等级相关,是把数量标志和品质标志的具体体现用等级次序排序,再测定标志等级和标志等级相关程度的一种方法。
有斯皮尔曼等级差相关系数和肯德尔一致相关系数) 4.为什么要进行方差分析?方差分析可检验有关因素对指标的影响是否显著,从而可确定要进行试验的因素;另外,方差分析的观点认为,只需对显著因素选水平就行了,不显著的因素原则上可在试验范围内取任一水平,或由其它指标确定。
5.均匀设计表与正交表,拉丁方设计的关系6.产品的三次设计是什么?产品的三次设计是系统设计,参数设计,容差设计。
三、(15分)1.写出所有3阶拉丁方格,并指出其中的标准拉丁方格和正交拉丁方格123再将这六个的第一行不动,分别交换第二,三行又得到六个,共12个。
用的试验3.说明均匀设计表)6(6*6U是如何构造的?略五、分析题(30分)1由张护士和实习生刘某记录的七个病人的收缩压数据如下:病人:1234567张护士:105,149,133,160,141,120,152 刘某:110,140,138,150,130,147,158 计算斯皮尔曼等级差相关系数。
习题第一章1.1 孟德尔豌豆试验孟德尔做过这样一个实验:把一种开紫花的豌豆种和一种开白花的豌豆种结合在一起,第一次结出来的豌豆开紫花,第二次紫白相间,第三次全白。
对此孟德尔没有充分的理由作出解释。
后来,孟德尔从豌豆杂交实验结果,得出了相对性状中存在着显性和隐性的原理。
虽然还有不少例外,但它仍然是一个原理。
孟德尔根据自己在实验中发现的原理,进一步做了推想。
他认为决定豌豆花色的物质一定是存在于细胞里的颗粒性的遗传单位,也就是具有稳定性的遗传因子。
他设想在身体细胞里,遗传因子是成双存在的;在生殖细胞里,遗传因子是成单存在的。
例如,豌豆的花粉是一种雄性生殖细胞,遗传因子是成单存在的。
在豌豆的根、茎、叶等身体细胞里,遗传因子是成双存在的。
这就是说,孟德尔认为可以观察到的花的颜色是由有关的遗传因子决定的。
如果用D代表红花的遗传因子,它是显性;用d代表白花的遗传因子,它是隐性。
这样,豌豆花色的杂交实验,就可以这样解释:红花×白花(纯种)DD dd(身体细胞,遗传因子成双存在)↓↓(杂交)D d(生殖细胞,遗传因子成单存在)\/Dd(杂交)自交DdDD Dd dD dd红花因为杂种的遗传基础物质是由D和d组成的,因此,它的后代(子2)就可能出现白花(dd)了。
这就是说,隐性的遗传因子在从亲代到后代的传递中,它可以不表现。
但是它是稳定的,并没有消失。
遗传单位,叫做基因。
研究基因的科学就是遗传学。
基因学说就是现代遗传学的中心理论。
很清楚,基因概念是孟德尔在推想中提出来的,虽然当时他并没有提出“基因”这个科学名词。
孟德尔认为遗传单位(基因)具有高度的稳定性。
一个显性基因和它相对的隐性基因在一起的时候,彼此都具有稳定性,不会改变性质。
例如,豌豆的红花基因R和白花基因r在一起,彼此不会因为相对基因在一起而发生变化,在一代一代的传递中,D和d都能长期保持自己的颜色特征。
孟德尔的结论正好跟长期流传的融合遗传理论相对立。
GIS建模原理与方法》习题集第一章概论1、名词解释:模型模拟模式建模概念模型物理模型数学模型模型:是对现实世界中的实体或现象的抽象或简化,是对实体或现象中的最重要的构成及其相互尖系的表述。
模拟:是一种实验方法,是模型的构建和模型应用过程。
模拟首先是针对特定的研究对象构建一个模型,然后利用该模型对研究对象进行各种实验,其目的是为了理解研究对象的行为,评估在一定的限制条件下研究对象的各种变化和不同对策所产生的结果。
模式:是一类事物的标准形式。
建模:建模是构造现实世界中与研究对象相矢的模型的过程。
概念模型:是指利用科学的归纳方法,以对研究对象的观察、抽象形成的概念为基础,建立起来的尖于概念之间的尖系和影响方式的模型。
物理模型:又称实体模型,是现实世界在尺寸上缩小或放大后构成的相似体。
数学模型:是用数学方程(通常是一些代数方程和微分方程的组合)来描述现实世界结构和特性的模型。
2、模型的基本特征有哪些?模型具有结构性、简单性、清晰性、客观性、有效性(复制有效、预测有效、结构有效)、可信性、易操作性的特征。
3、怎么理解模型的简约性?简单性要求提供的模型在某种意义上是同类模型中最坚实的、最简单的,对问题提供了令人信服的解答。
在模型的描述中,简单性表现为简洁性。
在模型的形式中,简单性表现为简约性,即模型中应包含尽可能少的数学方程式,模型的维数应尽可能的低。
4、模型有哪些用途?模型的用途:1 •预测的工具2•理解的工具3 •诊断的工具4•综合的工具5 •管理与决策的工具。
5、建模的基本过程包括哪些内容?建模的步骤:1 ■建立概念模型2 •建立定量模型即概念模型的数量化3 •模型检验4.模型的应用第二章概念模型1、名词解释:原生数据次生数据测量级系统分析原生数据是指那些原始观测、调查获得的数据次生数据是原生数据经过处理而得到的数据测量级:系统分析:它是以系统理论、运筹学、信息论、控制论、计算机软件技术等为基础,研究在自然环境条件下受人控制和影响的有目的运行系统的机理。
习题第一章1、1 孟德尔豌豆试验孟德尔做过这样一个实验:把一种开紫花的豌豆种与一种开白花的豌豆种结合在一起,第一次结出来的豌豆开紫花,第二次紫白相间,第三次全白。
对此孟德尔没有充分的理由作出解释。
后来,孟德尔从豌豆杂交实验结果,得出了相对性状中存在着显性与隐性的原理。
虽然还有不少例外,但它仍然就是一个原理。
孟德尔根据自己在实验中发现的原理,进一步做了推想。
她认为决定豌豆花色的物质一定就是存在于细胞里的颗粒性的遗传单位,也就就是具有稳定性的遗传因子。
她设想在身体细胞里,遗传因子就是成双存在的;在生殖细胞里,遗传因子就是成单存在的。
例如,豌豆的花粉就是一种雄性生殖细胞,遗传因子就是成单存在的。
在豌豆的根、茎、叶等身体细胞里,遗传因子就是成双存在的。
这就就是说,孟德尔认为可以观察到的花的颜色就是由有关的遗传因子决定的。
如果用D代表红花的遗传因子,它就是显性;用d代表白花的遗传因子,它就是隐性。
这样,豌豆花色的杂交实验,就可以这样解释:红花×白花(纯种)DD dd(身体细胞,遗传因子成双存在)↓↓(杂交)D d(生殖细胞,遗传因子成单存在)\/Dd(杂交) 自交DdDD Dd dD dd红花因为杂种的遗传基础物质就是由D与d组成的,因此,它的后代(子2)就可能出现白花(dd)了。
这就就是说,隐性的遗传因子在从亲代到后代的传递中,它可以不表现。
但就是它就是稳定的,并没有消失。
遗传单位,叫做基因。
研究基因的科学就就是遗传学。
基因学说就就是现代遗传学的中心理论。
很清楚,基因概念就是孟德尔在推想中提出来的,虽然当时她并没有提出“基因”这个科学名词。
孟德尔认为遗传单位(基因)具有高度的稳定性。
一个显性基因与它相对的隐性基因在一起的时候,彼此都具有稳定性,不会改变性质。
例如,豌豆的红花基因R与白花基因r 在一起,彼此不会因为相对基因在一起而发生变化,在一代一代的传递中,D与d都能长期保持自己的颜色特征。
孟德尔的结论正好跟长期流传的融合遗传理论相对立。
融合遗传理论就是怎么回事儿呢?它的基本论点就是:遗传因子或遗传物质相遇的时候,彼此会相互混合,相互融化,而成为中间类型的东西。
根据融合理论来推理,甲与乙杂交,就会产生出混血儿,甲的遗传因子与乙的遗传因子,都变成了中间类型的东西。
好比两种液体混合在一起似的,亲代的遗传因子都因为融合而消失了。
根据融合理论来推理,豌豆的红花遗传因子D跟白花遗传因子d在一起的时候也就会融合成为新的东西,D与d 都不再存在了。
显然,融合理论就是错误的,因为它没有科学事实的支持。
它只就是一种推测与猜想,不能解释所有的表现不同的遗传现象。
然而中间类型就是有的。
这就是相对的基因相互作用而产生的性状,基因本身并没有改变。
例如,红花的紫茉莉与白花的紫茉莉杂交,子一代的花就是粉红色的。
可就是子二代,这些粉红色茉莉的后代,却有三种不同的性状:粉红花、红花与白花。
从这里也可以瞧到,现象与本质虽然有着密切的关系,但就是它们之间就是有区别的,不能简单地把现象与本质等同起来。
豌豆就是自花传粉植物,而且还就是闭花受粉,也就是豌豆花在未开放时,就已经完成了受粉,避免了外来花粉的干扰。
所以豌豆在自然状态下一般都就是纯种,用豌豆做人工杂交实验,结果既可靠,又容易分析。
1、2比较植物在不同生长条件下生长速度1、试验的目标植物的生长速度的快慢2、因素及其试验范围不同的生长条件为因素,如,阳光、水分、空气、土壤……3、响应结果为试验的生长速度4、试验误差如,温度的细小误差,土壤中微量元素的干扰,空气湿度……5、区组设立多的区组,可以使试验更加精确6、随机化随机化试验顺序7、重复重复多次试验,减小误差8、统计模型建立统计模型,估计实验结果9、追加试验追加试验,减小误差10、试验的组织与管理1、6 为研究纸张的抗张强度与纸浆中硬木的比例的相关性,现根据十次试验得抗张强度160 172176 182 184 183 188 193 195 200 硬木比例1015 15 20 20 2025252830(b )检验(a)中线性模型的显著性; (c )画出残点图。
解:(a)1ˆβ=38785/4684=8、28 0ˆβ=11、07 得一阶线性模型为:y=8、28x+11、07 (b) )1()1(F 22---=s n R sRSSTSSR=2R =0、964 F=214、961=-)81()1(,αF ),()(8195.0F =11、26 由于11、26<214、961 拒绝原假设 产生显著性影响 (c)1、7 加权最小二乘误差平方与 Q=210)(i i i x y ββω--∑ωωωββx y 10ˆˆ-= 2i 1)())((ˆωωωωωωβx x y y x x i i i i -∑--∑= 即可得出为如题方程组的解1、8 数据如下:102110ˆˆˆ3.1838.20ˆˆβββββ-=∑∑===+=Y x y x Y X x y ii i i iy X1 X2 26 1 1 25 1 1 175 1、5 4 160 1、5 4 164 1、5 4 55 0、5 3 62 1、5 2 102 0、5 3 26 1 1、5 32 0、5 1、5 70 1 2、5 72 0、5 2、5(a )计算其ANOVA 表,并判断模型的显著性,显著性水平α=0、01解: (a)P<0、01 检验显著1、9 (a)考虑中心化线性模型,写出矩阵形式的y,β,G; (b)计算其ANOVA 表。
解:(a)⎪⎪⎪⎭⎫ ⎝⎛⋯=n y y y 1 , ⎪⎪⎪⎭⎫ ⎝⎛=321ββββ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)()()(.........)()()(838281131211x g x g x g x g x g x g G (b)P<0、01 检验显著第一章 试验设计与建模 习题1、5 、基于线性回归模型(1、14),令随机误差ε~Nn (0,σ²)。
令预测误差r=y-^y ,其中^y 就是预测值。
证明:(a )E(r)=0且r 与^y 的协方差矩阵为零矩阵,即r 与^y 相互独立;(b)r ~Nn (0,σ²(I-H)),其中I 为n ×n 的单位矩阵,(b )H=G 1)'(-GG G ´、解:(a)E(r )=E(y-^y )=E(G β+ε-G ^β)=G β+E(ε)-G E(^β)=G β-G β+0(^β就是β的无偏估计) =0y H I y G G G G y G y y y r )()('1'^^-=-=-=-=-β '1')(G G G G H -= 所以),)((),(^Hy y H I Cov y r Cov -= H y y Cov H I ),()('-=22'2)()(σσσ=-=-=H H H H I 0 故r 与^y 相互独立(b)因ε、^β服从正态分布,而r 就是ε与^β的线性组合,故而r 也服从正态分布,由(1)知,E(r )=0 Var(r )=Var(y -^y )=Var(y -G ^β)=Var(y -G 1)'(-GG G ´y )=(I -G 1)'(-GG G ´Var(y ) =(I -H )σ²(H =G 1)'(-GG G ´ 所以,r ~Nn (0,σ²(I -H )) 1、10、设A=)ij a (为n 阶方阵,X=)ij x (为n ×n 的矩阵,向量x='1),...,n x x (,证明(a)设Axx y '=,则xA A x y)('+=∂∂;(b)设)('AX X tr y =,其中tr(B)表示方阵B 的迹,即矩阵B 的对角元素之与,则XA A X y)('+=∂∂。
解:(a)由Ax x y '=知,()⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nn n n n n n x x x a a a a a a a a a x x x y ................................,...,,2121222211121121即⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑===n n i n i ni i in i i i x x x x a x a x a y ....,...,,21111221=∑∑∑===+++ni ni iin n i i ni i i x a x x a x x a x 1122111...,所以⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++++++++++=∂∂n nn n n n n n n n n n n x a x a a x a a x a a x a x a a x a a x a a x a x y 2...)()(...)(...2))(...)(222211122222112211121221111(= ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n nn n nn n n nn n n n n x x x a a a a a a a a a x x x a a a a a a a a a .......................... (21212221212111)21212222111211=xA A x A Ax )(''+=+,得证(b)易知∑∑∑===+++==ni ni ini n i i ni i i a x x a x x a x x AX X tr y 1111212111111'...)( ∑∑∑===++++ni ni ini n ni i i i i a x x a x x a x x 1122122221212......+∑∑∑===++++ni n i ni inin nn i in n i in n a x x a x x a x x 1112211...,则⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=∂∂∑∑∑∑∑∑∑∑∑=========ni ni in in ni ni in i ni ni ini ni i i in ni i i i ni i i i ni i i in ni i i i ni i i i a a x a a xa a x a a x a a xa a x a a x a a x a a x X y 112111221222122111111121111)(...)()(..................)(...)()()(...)()(第二章 习题2、1、为了提高合成纤维的抗拉强度,根据以前的经验,工程师知道在合成纤维中棉花所占的比例可能会影响到抗拉强度,而且棉花所占比例的范围应该在10%到40%之间,为此,她选定棉花所占比例的五个水平:15%,20%,25%,30%,35%,并在每个水平下试验四个样品,其数据如表所示。