第二章 电力系统网络矩阵20110409讲解
- 格式:ppt
- 大小:1.00 MB
- 文档页数:61
第二章电力系统网络矩阵作业:2-1, 2-6, 2-722.1 节点导纳矩阵Y●N 个节点(不含地),b 条支路●A 0-(N+1)×b 阶, y b -b ×b 阶●则(N+1)×(N+1)阶节点不定导纳矩阵为:T 00b 0Y A y A2.1.1 Y 的性质、特点及物理意义(1)节点不定导纳矩阵0Y301bT k k kk y ===∑Y M M k kkky y yy --想象:透明胶片的叠加4节点方程1,11,21,1,1112,12,22,2,122,1,2,,1`1,11,21,1,111N N N N N N N N N N N N N N N NN N N N Y Y Y Y V I Y Y Y Y V I Y Y Y Y V I Y Y Y Y V I ++++++++++⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦参考节点6节点不定导纳矩阵Y 0的性质性质1:无移相器时,Y 0对称:=T 00b 0Y A Y A中的每个非零元都是实数,而Y b 是对角线矩阵。
0A 由于=T 00Y Y8性质3:Y 0是奇异矩阵,并有0Y 1=0证明:=T 00b 0Y A Y A01bT k k kk y =∴==∑Y M M k k kky y y y --011()()b bT T k k kk k kk k y y ==∴==∑∑Y 1M M 1M M 10T k=M 1而9◆齐次方程存在非零解,所以Y 0奇异(数学上的理解);◆所有节点电位相同时,支路无电流(物理意义上的理解);0Y 1=0怎样理解?10T ∴1I = 0∴T1Y =0 V 0Y 1=00T1Y =0对任意节点电压都成立13241I 2I 3I 4I 1,11,21,31,4112,12,22,32,4223,13,23,33,4334,14,24,34,444Y Y Y Y V I Y Y Y Y V I Y Y Y Y V I Y Y Y Y V I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦12340I I I I +++= N=3, N+1=411如果电力网络无接地支路,这时是一个浮空网:13241I 2I 3I 4I 40I = 1230I I I ++= N 个节点的网络Y 0奇异此时不独立3I 例12(2)节点定导纳矩阵Y选地为参考节点,排在N+1位置,参考电压是零T Iy = V 0o T oo o y I ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Y y I y V 是地节点电流平衡方程是网络方程,不含地节点Y =IV 不独立1313241I 2I 3I 4I 1,11,21,31,4112,12,22,32,4223,13,23,33,4334,14,24,34,440Y Y Y Y I V Y Y Y Y I V Y Y Y Y I V Y Y Y Y I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1,11,21,3112,12,22,3223,13,23,333Y Y Y V I Y Y Y V I Y Y Y V I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦节点不定导纳矩阵节点定导纳矩阵例Y =IV14433Y V 411Y V 14,14,24,3243V Y Y Y V I V ⎡⎤⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦4411422433I Y V Y V Y V =++ 13241I 2I 3I 4I 422Y V 411y V 4141Y y =-地节点电流平衡方程4123I I I I =--- 各节点接地支路电流•天网上节点注入电流之和=接地支路电流之和的负值=流出地节点电流TI y = V15节点定导纳矩阵的性质性质1:无移相器支路时,Y 是N ×N 阶对称矩阵Tb Y =Ay A性质2:Y 是稀疏矩阵对Y 的贡献k k kky y y y --iky j16[]T lm l l k T mk ky y yy ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦M M M M T T T Tl l ll m kk m lk k ky y y y =+++M M M M M M M M1l m lm m k mk z z y y z z y y -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ilz jpkz qmz 两条支路有互感时,它们对应的支路导纳子矩阵是:对节点导纳矩阵的贡献是17l m l m m k m k l m l m mkmki p j q y y y y i y y y y p y y y y j y y y y q ⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦对节点导纳矩阵的贡献是ijpq新增耦合等值支路ilz jpkz qmz ijpqm y -my -my my l y ky18性质3:有接地支路时,Y非奇异,Y每行元素之和等于该节点接地导纳13241I 2I 3I 4I 1,11,21,32,12,22,33,13,23,3Y Y Y Y Y Y Y Y Y ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦节点4不包括在内如果节点接地支路的导纳较小时,Y接近奇异例19121310121321122320233132132330y y y y y y y y y y y y y y y ++--⎡⎤⎢⎥=-++-⎢⎥⎢⎥--++⎣⎦Y N =3,b =6,N +1=41321I 2I 3I 0I 节点定导纳矩阵的形态例21(3)Y 的物理意义表示短路参数:在节点i 接单位电压源,其余节点短路接地,流入节点i 的电流数值为自导纳Y ii ,流入节点j 的电流数值为互导纳Y ji32Y 12312Y 22Y +_1[]1222321Y Y Y ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Y2213222112I Y y ==- 111121310I Y y y y ==++ 12y 33113I Y y ==- 13y 10y 1+_ 示例例(自导纳)(互导纳)(互导纳)242.1.3 Y 的修改◆支路追加和移去T l l ly '=±Y Y M M◆节点合并(母联开关合上)注意移去连支、树支、桥支路的情况行相加(电流之和等于总电流)1,11,21,3112,12,22,3223,13,23,333Y Y Y V I Y Y Y V I Y Y Y V I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2V 3V 23V V = 23I I I +=列相加(节点电压相等)251,11,21,3112,12,22,3223,13,23,323Y Y Y V I Y Y Y V I Y Y Y V I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1,11,21,3112,12,22,3223,13,23,33Y Y Y I V Y Y Y I V Y Y Y I ⎡⎤⎡⎤+⎡⎤⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥+⎣⎦⎣⎦1,11,21,3112,13,12,22,33,23,3232Y Y Y I V Y Y Y Y Y Y I I V +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+++++⎣⎦⎣⎦⎣⎦23V V = 23I I I +=26节点p消去n p T p pp Y ⎡⎤⎢⎥⎣⎦Y Y Y p T ppp Y ⎡⎤⎢⎥⎣⎦Y Y 1T n n p pp pY -=-Y Y Y Y 1T p pp pY --Y Ypp擦除增加27◆某节点s 电压给定,V s 是已知量,求其余节点的电压n s n n T sss s s Y V I ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Y Y ΙY V n n n s sV =-Y ΙY V 把节点s的电压源变成电流源减少一个待求量,方程减少一阶和s 相连的节点,注入电流有一个增量28◆变压器变比变化时的修正变比由变成tt '[]111/1/l y tt ⎡⎤⎢⎥⎢⎥=-⎢⎥-⎢⎥⎣⎦Y []111/1/l y t t ⎡⎤⎢⎥⎢⎥''=-'⎢⎥-⎢⎥⎣⎦Y '∆=-Y Y Y可在原网络上贴◆支路参数变化时的修正l y l y '参数由变成在原网络上贴y y y'∆=-变压器支路对导纳矩阵的贡献29(1)以地为参考节点的Z ,N ⨯N 阶(有接地支路)2.2 节点阻抗矩阵Z1-=Z Y2.2.1 Z 的性质、特点及其物理意义.Z I = V(2)Z 元素的物理意义开路参数(3)Z 矩阵的性质Z矩阵对称(互易定理)Z是非奇异的满阵(为什么非奇异?为什么满阵?)对纯感性支路组成的无源网,节点自阻抗更大,即| Z ii|≥| Z ij|对纯感性支路组成的无源网,节点对的自阻抗更大,| Z ij,ij|≥| Z ij,kl|节点对的自阻抗| Z ij,ij|≠0,除非ij端口存在短路。
网络矩阵系统说明
网络矩阵指的是矩阵和矩阵之间通过RS485控制线组成一个完整的控制系统,各网络矩阵之间可以单独的形成一个系统,同时控制中心又可通过网络键盘去控制整个矩阵网络中的任何一台矩阵。
在本系统中,主要由一个主控中心和两个独立的分控室组成,三个控制室相互独立而又连成一个整体。
分控室的管理人员只可以控制属于他权限的摄像机图像。
控制中心的管理人员则可以通过网络键盘调取各个分控室的图像。
可以通过网络键盘对两个分控中心矩阵的图像进行调看和控制球机。
分控室矩阵的输出通过分配器一分为二,一路到本地显示,一路到控制中心显示。
通过给每台矩阵设定一个站点号。
控制中心则只需要简单的选择分控矩阵的站点号就可以控制分控室矩阵的图像调取和球机的控制。
在控制中心监看每个分控制室的图像。
连接系统图如下图所示:。
电力系统正序、负序、零序网络画法1 电力系统各元件数学模型及其正、负、零序等值电路1.1 发电机发电机采用次暂态模型,用图2.9(a )所示电路表示,图中X d ''为次暂态电抗,忽略定子回路电阻,并设发电机的负序电抗等于次暂态电抗,即X X d 2=''。
''E为次暂态电动势。
发电机的中性点一般不接地,从而没有零序回路;同步发电机在对称运行时,只有正序电势和正序电流,此时的电机参数,就是正序参数。
1.2负荷负荷采用恒阻抗模型,其正序阻抗由潮流计算求得的负荷功率和负荷节点电压计算,即:Z U P Q L L L L 12=-() (51)负序电抗由经验公式计算或由用户给定,默认为与正序相等。
负荷的中性点一般不接地,从而也没有零序回路。
最新版的故障程序中未考虑负荷。
1.3线路线路采用集中阻抗模型,如图2.10所示,其正、负序参数相等,根据该图计算正负序节点导纳矩阵的有关元素。
零序参数一般与正负序参数不同,当该线路不存在与其它线路的互感时,也采用图2.10所示的等值电路来形成零序节点导纳矩阵。
当该线路与其平行线路之间还存在零序互感时,则在形成零序节点导纳矩阵时需计及互感的影响。
不妨以两条互感支路为例来说明形成零序节点导纳矩阵时对互感的处理,多条线路组成的互感组的处理可以依此类推。
IJ 图2.10 线路模型p q rs(a)pqrs(b)y 'rsy '-my'图2.11 互感支路及其等值电路E'' d X j ''G (a)正序电动势源d''G (b) 正序电流源dX j ''G(c) 负序等值电路图2.9 发电机等值电路由图2.11(a )得两支路的电压-电流方程为:⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--s r qp rs m m pq rs pq rs pq rs m m pq s r q p V V V V y y y y I I I I Z Z Z Z V V V V'''' (52) 由此得消互感后的等值电路如图2.11(b )所示,根据该图即可按照无互感的情况计算零序节点导纳矩阵的有关元素。