GPS定位的坐标系统与时间系统
- 格式:ppt
- 大小:277.50 KB
- 文档页数:34
定位坐标系和时间标准讲义定位坐标系和时间标准是在地理和天文领域中广泛使用的工具,用于确定地球表面上的位置和测量时间。
本讲义将介绍三种常用的定位坐标系和一些常见的时间标准。
一、地理坐标系地理坐标系是用经度和纬度来描述地球表面上任意位置的一种坐标系统。
经度是指一个位置相对于东西方经线的角度,以0度为本初子午线。
纬度是指一个位置相对于南北方纬线的角度,以赤道为基准。
地理坐标系可以通过全球定位系统(GPS)等技术来测量和确定位置。
例如,北京的经度为116.4度东经,纬度为39.9度北纬。
二、UTM坐标系UTM(Universal Transverse Mercator)坐标系是一种基于横轴墨卡托投影的坐标系统,将地球划分为60个标准带和20个副带。
每个标准带宽度6度,以中央经线为基准。
UTM坐标系采用东北方向的坐标表示位置,适用于大规模的地图制作和测量工程。
例如,北京的UTM坐标为50KU 414547 4400879,其中50KU表示所在的标准带,414547和4400879分别表示东北方向的坐标。
三、国家格网坐标系国家格网坐标系是在UTM坐标系基础上,根据各国的需要制定的一种坐标系统。
每个国家或地区都有自己的国家格网,包括分带、投影方式和坐标体系等。
国家格网坐标系广泛用于地理信息系统(GIS)和空间数据管理。
在中国,国家格网坐标系为2000年国家大地坐标系,采用了高斯-克吕格投影,最常用的带号为3度带。
例如,北京的国家格网坐标为带号33N,X坐标为3407765,Y坐标为439512。
四、时间标准时间标准用于统一和测量时间,使世界各地的时间保持一致。
其中,国际原子时(TAI)是以原子频率标准为基础,提供高精度的时间计量。
协调世界时(UTC)是基于国际原子时,并根据地球自转的变化进行调整的时间标准,通常以格林威治时间(GMT)为参考。
全球定位系统(GPS)时间是由GPS卫星提供的一种时间标准,用于卫星导航定位。
坐标与时间系统坐标与时间系统是维持现代社会运转的重要基础。
它们帮助我们在地球上找到特定的位置和确切的时间,为我们的日常生活提供了许多便利。
在这篇文章中,我们将讨论坐标与时间系统的重要性以及如何使用它们。
坐标系统是一种用来确定地球上特定位置的方法。
全球定位系统(GPS)是最常用的坐标系统之一,通过卫星和接收器,它可以确定我们所处的位置。
我们可以用经度和纬度来表示任何一个地点的坐标。
经度是一个地点相对于本初子午线的度量,范围从0°至180°。
纬度是一个地点相对于地球赤道的度量,范围从0°至90°。
通过这两个坐标,我们可以在地球上的任何地方找到一个特定的位置。
时间系统是一种用来测量时间的方法。
世界协调时间(UTC)是国际上通用的时间标准,它使用原子钟的精确度来确定时间。
我们使用小时、分钟和秒来表示时间。
此外,时区也是时间系统的重要组成部分。
地球上被划分为24个时区,每个时区覆盖约15°经度。
每个时区都对应着一个标准时间,并根据地理位置决定当地时间。
通过使用时区,我们可以在世界范围内同步并协调时间。
坐标和时间系统在现代社会中有着广泛的应用。
它们不仅仅用在导航领域,如汽车导航、航空导航等,还被广泛用于科学研究、地图制作、天文观测和数据收集等领域。
它们还在航运、铁路和物流等行业中起到关键作用,确保货物能够准时送达。
此外,坐标和时间系统也对我们日常生活产生了深远的影响。
我们可以使用手机或手表上的时间来安排日程,预约会议或计划旅行。
当我们在城市中迷路时,我们可以使用地图应用或GPS系统来找到正确的路线。
不仅如此,通过坐标和时间系统,我们能够准确地知道不同地区的时间,这对于国际商务和跨国合作非常重要。
综上所述,坐标和时间系统是现代社会不可或缺的一部分。
它们帮助我们准确地定位和测量地球上的位置和时间,为我们的日常生活提供了巨大的便利。
无论是科学研究、导航领域还是日常生活中,我们都离不开这些系统的帮助。
GPS测量原理及应用各章知识点总结桂林理工大学测绘08-1 JL(纯手打)第一章绪论1、GPS系统是以卫星为基础的无线电导航定位系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时的功能。
能为各个用户提供三维坐标和时间。
2、GPS卫星位置采用WGS-84大地坐标系3、GPS经历了方案论证、系统论证、生产试验三个阶段。
整个系统包括卫星星座、地面监控部分、用户接收机部分。
4、GPS基本参数为:卫星颗数为21+3,卫星轨道面个数为6,卫星高度为20200km,轨道倾角为55度,卫星运行周期为11小时58分,在地球表面任何时刻,在高度较为15度以上,平均可同时观测到6颗有效卫星,最多可以达到9颗。
5、应用双定位系统的优越性:能同时接收到GPS和GLONASS卫星信号的接收机,简称为双系统卫星接收机。
(1)增加接收卫星数。
这样有利于在山区和城市有障碍物遮挡的地区作业(2)提高效率。
观测卫星数增加,所以求解整周模糊度的时间缩短,从而减少野外作业时间,提高了生产效率。
(3)提高定位的可靠性和精度。
因观测的卫星数增加,用于定位计算的卫星数增加,卫星几何分布也更好,所以提高了定位的可靠性和精度。
6、在GPS信号导航的定位时,为了解算测站的三维坐标,必须观测4颗(以上)卫星,称为定位星座。
7、PRN----------卫星所采用的伪随机噪声码8、在导航定位测量中,一般采用PRN编号。
9、用于捕获信号和粗略定位的为随机码叫做C/A码(又叫S码),用于精密定位的精密测距码叫P码10、GPS系统中各组成部分的作用:卫星星座1、向广大用户发送导航定位信息。
2、接收注入站发送到卫星的导航电文和其他相关信息,并通过GPS信号电路,适时的发送给广大用户。
3、接收地面主控站通过注入站发送到卫星的调度命令,适时的改正运行偏差和启用备用时钟等。
地面监控系统地面监控系统包括1个主控站,3个注入站和5个监测站。
1、监测和控制卫星上的设备是否正常工作,以及卫星是否一直沿着预定轨道运行。
第一章绪论1.GPS:是接收人造卫星电波,准确求顶接收机自身位置的系统。
目前世界上有那些全球性的卫星导航系统?(俄罗斯GLONASS、欧洲Galileo、中国北斗、美国GPS)欧空局的全球卫星定位系统的名称是什么?2. GPS系统组成:(1)空间星座部分:24颗卫星提供星历和时间信息,发射伪距和载波信号,提供其他辅助信息。
(2)用户部分:接收并观测卫星信号,记录和处理数据,提供导航定位信息。
(3)地面控制部分:中心控制系统,实现时间同步,跟踪卫星进行定轨。
【5个监测站、1个主控站、3个注入站】3. GPS按接收机用途分为三类:导航型、测量型、授时型;接收机由天线单元、机主机单元和电源组成。
4、精密工程测量采用那种类型的GPS接收机?5、GPS接收机中采用的是铷钟、铯钟还是石英钟?6.与传统测量方法相比,GPS系统特点:1)全球性---全球范围连续覆盖;(4~12颗);2)全能性-—三维位置、时间、速度;3)全天侯4)实时性----定位速度快;;5)连续性;6)高精度;7)抗干扰性能好,保密性好;8)控制性强;9)观测站之间无需通视;10)提供三维坐标;11)操作简便。
7、gps有哪些新的应用领域8、GPS在测量上的用途有那些?9.常见GPS卫星信号接收机(例举几个著名的中外GPS生产厂商):Ashtech系列GPS接收机、Trimble(天宝)系列GPS接收机、Leica(莱卡) 系列GPS接收机、中纬系列GPS接收机、南方系列GPS接收机、中海达系列GPS接收机第二章 GPS定位的坐标系统与时间系统1.天球:是指以地球质心M为中心,半径r为任意长的一个假想的球体。
黄道:即当地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹称为黄道黄赤交角:黄道平面与赤道平面的夹角ε称为黄赤交角,约为23.5°春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ称为春分点。
时间系统与坐标参照系时间系统和坐标参照系是当今科学和日常生活中不可或缺的两个概念。
时间系统是为了测量和描述事件发生的先后顺序以及事件之间的时间间隔而创建的一种系统。
坐标参照系则是为了描述和测量物体在空间中的位置和移动而建立的一种系统。
时间系统的起源可以追溯到古代。
人们最初是通过观察天空中的自然现象,如太阳的位置、月亮的相位等来判断时间的流逝。
随着时间的推移,人们开始根据不同地区的地理条件以及社会需求而发展出各种不同的时间系统。
例如,格林尼治标准时间(GMT)是根据英国伦敦的本初子午线而设立的时间系统,世界各地的时间都是相对于GMT来表示的。
随着科技的进步,时间系统也变得越来越精确。
现代的时间系统一般采用原子钟来测量时间,其中铯原子钟的误差仅约为每亿年一秒。
此外,国际原子时(TAI)和世界协调时(UTC)也是国际通用的时间系统,用于各种科学研究、航空航天以及国际交流等领域。
坐标参照系则用于描述物体在空间中的位置和运动。
人们通常使用直角坐标系,也称笛卡尔坐标系,来表示物体在三维空间中的坐标。
在直角坐标系中,我们可以使用三个互相垂直的坐标轴(通常是x、y和z轴)来描述一个物体的位置。
这样,我们可以利用这些坐标轴上的数值来计算物体之间的距离和方向。
除了直角坐标系,人们还经常使用极坐标、球坐标等其他坐标系来描述物体在不同情况下的位置。
例如,极坐标系适用于描述圆形和环形运动;球坐标系适用于描述物体在三维球体上的位置。
时间系统和坐标参照系在许多领域都起着关键作用。
例如,物理学中的力学、天文学中的星体运动、地理学中的地球表面描述等都离不开时间系统和坐标参照系的应用。
此外,全球定位系统(GPS)也是基于时间系统和坐标参照系的工作原理来实现对地球上任意位置的准确定位。
总而言之,时间系统和坐标参照系是现代科技和文明中不可或缺的概念。
它们为人类提供了准确测量和描述时间和空间的工具,极大地推动了科学研究和社会发展。
时间系统和坐标参照系是当今科学和日常生活中不可或缺的两个概念。
GPS测量的坐标系统与时间系统全球定位系统(GPS)是一种由美国政府运营的卫星导航系统,可提供全球定位、导航和时间服务。
它是许多现代技术和应用的基础,例如车辆导航、飞行导航、航海、地图绘制等。
GPS测量提供了一种在地球上确定位置的精确方法,但是它的坐标系统和时间系统需要特定的标准和约定来确保精度。
本文将介绍GPS测量中使用的坐标系统和时间系统,并讨论它们与其他GPS应用和技术的关系。
坐标系统GPS测量使用经纬度和高度来确定位置,这是因为它可以提供全球范围内的定位。
经度是一个位置相对于本初子午线的度数,可以从0度到360度,东经为正,西经为负。
纬度是一个位置相对于赤道的度数,可以从-90度到90度,北纬为正,南纬为负。
高度是一个位置相对于海平面的高度。
GPS测量使用的坐标系统是WGS 84(World Geodetic System 1984),这是一种由美国国防部和国家海洋和大气管理局发展的全球定位系统坐标系统。
WGS 84使用地球模型作为椭球体,将地球视为一个近似椭球体。
这个椭球体的参数被称为参考椭球体,在WGS 84中,参考椭球体的参数为a=6378137.0 m,f=1/298.257223563。
WGS 84是GPS定位用的最通用的地理坐标系,在大多数现代地图上都采用了WGS 84坐标。
此外,许多其他地理信息系统(GIS)和工程应用也使用WGS 84坐标系来表示地球上的位置。
时间系统在GPS测量中,时间系统也是至关重要的。
GPS测量使用一个基于原子钟的时间系统来测量信号的传播时间,并计算出接收器的位置。
原子钟比基于机械振荡器的钟表更为精确,可以维持极高的准确性。
GPS测量使用的时间系统是GPS时间,它是由GPS卫星提供的21个原子钟的平均值。
GPS时间以UTC(协调世界时)为基础,但它使用了其他一些修正来保持与UTC同步。
UTC是一个国际标准时间系统,它基于原子钟的时间,但考虑了地球自转的变化。