SPSS应用案例
- 格式:ppt
- 大小:907.00 KB
- 文档页数:43
SPSS典型相关分析案例典型相关分析(Canonical Correlation Analysis,CCA)是一种统计方法,用于研究两组变量之间的相关性。
它可以帮助研究人员了解两组变量之间的关系,并提供有关这些关系的详细信息。
在SPSS中,可以使用典型相关分析来探索两个或多个变量之间的关系,并进一步理解这些变量如何相互影响。
下面我们将介绍一个典型相关分析的案例,以展示如何在SPSS中执行该分析。
案例背景:假设我们有一个医学研究数据集,包含30名患者的多个生物标记物和他们的疾病严重程度评分。
我们希望了解这些生物标记物与疾病严重程度之间的关系,并查看是否可以建立一个线性模型来预测疾病严重程度。
以下是执行这个案例的步骤:第1步:准备数据首先,我们需要准备数据,确保所有变量都是数值型。
在SPSS中,我们可以通过检查数据集的描述性统计信息或查看变量视图来做到这一点。
第2步:导入数据在SPSS中,我们可以通过选择菜单中的"File"选项,然后选择"Open"来导入数据集。
我们应该选择包含待分析数据的文件,并确保正确指定变量的类型。
第3步:执行典型相关分析要执行典型相关分析,我们可以选择菜单中的"Analyze"选项,然后选择"Canonical Correlation"。
在弹出的对话框中,我们应该选择我们希望研究的生物标记物变量和疾病严重程度评分变量。
然后,我们可以选择一些选项,如方差-协方差矩阵、相关矩阵和判别系数,并点击"OK"执行分析。
第4步:解释结果完成分析后,SPSS将提供几个输出表。
我们应该关注典型相关系数和标准化典型系数,以了解两组变量之间的关系。
我们可以使用这些系数来解释生物标记物如何与疾病严重程度相关联,并找到最重要的变量。
此外,我们还可以使用SPSS提供的其他统计结果来进一步解释模型的效果和预测能力。
spss案例分析报告(精选)本文通过分析一份 SPSS 数据,展示 SPSS 在统计分析中的应用。
数据概述本数据为一家咖啡馆的销售数据,共有 200 条记录,包括 7 个变量:日期、时间、收银员、商品名、销售价格、数量和总价。
SPSS 分析1. 描述性统计使用 SPSS 的描述性统计功能,可以获取数据的基本信息,如均值、标准偏差、最大值、最小值等。
其中,销售价格的均值为 44.71 元,标准偏差为 13.29 元,最小值为 23 元,最大值为 78 元。
数量的均值为 1.62 个,标准偏差为 0.51 个,最小值为 1 个,最大值为3 个。
总价的均值为 73.25 元,标准偏差为 21.89 元,最小值为 23 元,最大值为 156 元。
2. 单样本 t 检验假设一杯咖啡的平均售价为 50 元,我们可以使用单样本 t 检验对这个假设进行检验。
首先,我们需要用 SPSS 的数据透视表功能,计算出每杯咖啡的平均售价。
然后,使用单样本 t 检验功能,输入样本均值、假设的总体均值(50 元)、样本标准差、样本大小以及置信度水平。
在这个数据集中,单样本 t 检验得出的 t 值为 -2.36,P 值为 0.019,显著性水平为 0.05,因此我们可以拒绝原假设,认为该咖啡馆的咖啡售价不是 50 元。
4. 相关分析假设我们想要了解商品数量和销售额之间的关系,我们可以使用 SPSS 的相关分析功能来进行分析。
首先,我们需要使用数据透视表功能,计算出每个订单的总价和数量。
然后,使用相关分析功能,输入这两个变量的值,得出相关系数和显著性水平。
在这个数据集中,商品数量和销售额之间的相关系数为 0.749,P 值为 0,显著性水平非常显著。
因此,我们可以认为商品数量和销售额之间存在极强的正相关关系。
结论本文通过 SPSS 对一份咖啡馆销售数据进行分析,展示了 SPSS 在统计分析中的应用。
通过描述性统计、单样本 t 检验、双样本 t 检验和相关分析等功能,我们可以获得数据的基本信息,检验假设,分析变量之间的关系,从而帮助企业更好地决策和管理。
大学生spss数据分析案例大学生SPSS数据分析案例。
在大学教育中,数据分析是一个非常重要的环节,尤其是对于社会科学和商业管理专业的学生来说。
SPSS(Statistical Package for the Social Sciences)是一个专业的统计分析软件,广泛应用于学术研究和商业决策中。
本文将以一个大学生SPSS数据分析案例为例,介绍如何使用SPSS进行数据分析。
案例背景:某大学社会科学专业的学生对大学生活满意度进行了调查,并收集了相关数据,包括学生的性别、年级、专业、宿舍类型、课程质量、宿舍环境、社交活动等方面的信息。
现在需要对这些数据进行分析,以了解不同因素对大学生活满意度的影响。
数据准备:首先,需要将调查所得的数据录入SPSS软件中,确保数据的准确性和完整性。
在录入数据时,要注意将不同的变量分别录入不同的列中,以便后续的分析和处理。
数据分析:1. 描述统计分析。
首先,可以对各个变量进行描述统计分析,包括计算均值、标准差、频数分布等。
通过描述统计分析,可以直观地了解各个变量的分布情况,为后续的分析提供基础。
2. 相关性分析。
接下来,可以进行各个变量之间的相关性分析,通过相关系数的计算来了解不同变量之间的关联程度。
例如,可以分析学生的性别、年级、专业与大学生活满意度之间的相关性,以及宿舍类型、课程质量、社交活动等因素对大学生活满意度的影响程度。
3. 方差分析。
针对分类变量,可以进行方差分析,比较不同组别之间的均值差异是否显著。
例如,可以分析不同年级、不同专业的学生对大学生活满意度的差异情况,以及不同宿舍类型对大学生活满意度的影响是否显著。
4. 回归分析。
最后,可以利用回归分析来探讨不同因素对大学生活满意度的影响程度。
通过建立回归模型,可以了解各个自变量对因变量的影响情况,以及它们之间的关系强度和方向。
结论与建议:通过以上的数据分析,可以得出不同因素对大学生活满意度的影响程度,为学校和相关部门提供决策建议。
多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析;可以建立因变量y与各自变量x j j=1,2,3,…,n之间的多元线性回归模型:其中:b0是回归常数;b k k=1,2,3,…,n是回归参数;e是随机误差;多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量头;x2为4月上、中旬百束小谷草把累计落卵量块;x3为4月中旬降水量毫米,x4为4月中旬雨日天;预报一代粘虫幼虫发生量y头/m2;分级别数值列成表2-1;预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级;预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~毫米为1级,~毫米为2级,~毫米为3级,毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级;表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 1 2 1 10 1 1961 300 1 440 3 1 1 1 4 1 1962 699 3 67 1 1 1 1 9 1 1963 1876 4 675 4 4 7 4 55 4 1965 43 1 80 1 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 2 3 2 28 3 1976 115 1 240 2 1 2 1 7 1 1971 718 3 1460 4 4 4 2 45 4 1972 803 3 630 4 3 3 2 26 3 1973 572 2 280 2 2 4 2 16 2 1974 264 1 330 3 4 3 2 19 2数据保存在“”文件中;1准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据;再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生;编辑后的数据显示如图2-1;图2-1或者打开已存在的数据文件“”;2启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口;图2-2 线性回归对话窗口3 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度y”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里;设置自变量:将左边变量列表中的“蛾量x1”、“卵量x2”、“降水量x3”、“雨日x4”变量,选移到“IndependentS”自变量显示栏里;设置控制变量: 本例子中不使用控制变量,所以不选择任何变量;选择标签变量: 选择“年份”为标签变量;选择加权变量: 本例子没有加权变量,因此不作任何设置;4回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选;因此在“Method”框中选中“Enter”选项,建立全回归模型;5设置输出统计量单击“Statistics”按钮,将打开如图2-3所示的对话框;该对话框用于设置相关参数;其中各项的意义分别为:图2-3 “Statistics”对话框①“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量;“Confidence interval”回归系数的95%置信区间;“Covariance matrix”回归系数的方差-协方差矩阵;本例子选择“Estimates”输出回归系数和相关统计量;②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验;“Casewise diagnostic”输出满足选择条件的观测量的相关信息;选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量;本例子都不选;③其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表;“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化;“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵;“Part and partial correlation”相关系数和偏相关系数;“Collinearity diagnostics”显示单个变量和共线性分析的公差;本例子选择“Model fit”项;6绘图选项在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口;该对话框用于设置要绘制的图形的参数;图中的“X”和“Y”框用于选择X轴和Y轴相应的变量;图2-4“Plots”绘图对话框窗口左上框中各项的意义分别为:•“DEPENDNT”因变量;•“ZPRED”标准化预测值;•“ZRESID”标准化残差;•“DRESID”删除残差;•“ADJPRED”调节预测值;•“SRESID”学生氏化残差;•“SDRESID”学生氏化删除残差;“Standardized Residual Plots”设置各变量的标准化残差图形输出;其中共包含两个选项:“Histogram”用直方图显示标准化残差;“Normal probability plots”比较标准化残差与正态残差的分布示意图;“Produce all partial plot”偏残差图;对每一个自变量生成其残差对因变量残差的散点图;本例子不作绘图,不选择;7 保存分析数据的选项在主对话框里单击“Save”按钮,将打开如图2-5所示的对话框;图2-5 “Save”对话框①“Predicted Values”预测值栏选项:Unstandardized 非标准化预测值;就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回归模型拟合的预测值;Standardized 标准化预测值;Adjusted 调整后预测值;. of mean predictions 预测值的标准误;本例选中“Unstandardized”非标准化预测值;②“Distances”距离栏选项:Mahalanobis: 距离;Cook’s”: Cook距离;Leverage values: 杠杆值;③“Prediction Intervals”预测区间选项:Mean: 区间的中心位置;Individual: 观测量上限和下限的预测区间;在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值;Confidence Interval:置信度;本例不选;④“Save to New File”保存为新文件:选中“Coefficient statistics”项将回归系数保存到指定的文件中;本例不选;⑤“Export model information to XML file”导出统计过程中的回归模型信息到指定文件;本例不选;⑥“Residuals” 保存残差选项:“Unstandardized”非标准化残差;“Standardized”标准化残差;“Studentized”学生氏化残差;“Deleted”删除残差;“Studentized deleted”学生氏化删除残差;本例不选;⑦“Influence Statistics” 统计量的影响;“DfBetas”删除一个特定的观测值所引起的回归系数的变化;“Standardized DfBetas”标准化的DfBeta值;“DiFit” 删除一个特定的观测值所引起的预测值的变化;“Standardized DiFit”标准化的DiFit值;“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率;本例子不保存任何分析变量,不选择;8其它选项在主对话框里单击“Options”按钮,将打开如图2-6所示的对话框;图2-6 “Options”设置对话框①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定;其中各项为:“Use probability of F”如果一个变量的F值的概率小于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值Removal,则该变量将从回归方程中被剔除;由此可见,设置“Use probability of F”时,应使进入值小于剔除值;“Ues F value”如果一个变量的F值大于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值Removal,则该变量将从回归方程中被剔除;同时,设置“Use F value”时,应使进入值大于剔除值;本例是全回归不设置;②“Include constant in equation”选择此项表示在回归方程中有常数项;本例选中“Include constant in equation”选项在回归方程中保留常数项;③“Missing Values”框用于设置对缺失值的处理方法;其中各项为:“Exclude cases listwise”剔除所有含有缺失值的观测值;“Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量;“Replace with mean”用变量的均值取代缺失值;本例选中“Exclude cases listwise”;9提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中;主要结果见表2-2至表2-4;10 结果分析主要结果:表2-2表2-2 是回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度所占比例;Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差;表2-3表2-3 回归模型的方差分析表,F值为,显著性概率是,表明回归极显著;表2-4分析:建立回归模型:根据多元回归模型:把表6-9中“非标准化回归系数”栏目中的“B”列系数代入上式得预报方程:预测值的标准差可用剩余均方估计:回归方程的显著性检验:从表6-8方差分析表中得知:F统计量为,系统自动检验的显著性水平为;F,4,11值为,F,4,11 值为,F,4,11 值为;因此回归方程相关非常显著;F值可在Excel中用FINV 函数获得;回代检验需要作预报效果的验证时,在主对话框图6-8里单击“Save”按钮,在打开如图3-6所示对话框里,选中“Predicted Values”预测值选项栏中的“Unstandardized”非标准化预测值选项;这样在过程运算时,就会在当前文件中新添加一个“PRE_1”命名的变量,该变量存放根据回归模型拟合的预测值;然后,在SPSS数据窗口计算“y”与“PRE_1”变量的差值图2-7,本例子把绝对差值大于视为不符合,反之则符合;结果符合的年数为15年,1年不符合,历史符合率为%;图2-7多元回归分析法可综合多个预报因子的作用,作出预报,在统计预报中是一种应用较为普遍的方法;在实际运用中,采取将预报因子和预报量按一定标准分为多级,用分级尺度代换较大的数字,更能揭示预报因子与预报量的关系,预报效果比采用数量值统计方法有明显的提高,在实际应用中具有一定的现实意义;。
统计学课SPSS数据分析实战案例SPSS(统计分析系统)是一款常用的统计软件,被广泛应用于社会科学、商业、医学等领域的数据分析工作中。
通过这个案例,我们将运用SPSS软件进行数据分析,以展示统计学课的实战应用。
案例背景假设你是一位市场研究员,你的公司正在调查消费者对某产品的满意度。
你已经收集了一份随机抽样的数据集,包含了消费者的满意度评分以及他们的一些个人信息。
你的任务是对这些数据进行分析,以了解消费者满意度与个人信息之间是否存在关联。
数据集说明数据集包括了500个消费者的信息,具体变量如下:1. 变量1:满意度评分(连续变量,取值范围从1到10);2. 变量2:性别(分类变量,取值为男性和女性);3. 变量3:年龄(连续变量);4. 变量4:收入水平(分类变量,取值为低、中、高三个层次);5. 变量5:购买次数(连续变量,表示过去一年内购买该产品的次数)。
数据分析步骤以下是对这份数据集进行分析的步骤:1. 数据清洗和准备首先,我们需要检查数据集中是否存在缺失值或异常值,并进行数据清洗。
在SPSS中,我们可以使用数据查看和数据清洗的功能来完成这一步骤。
确保数据集中的每一列都没有缺失值,并且所有的异常值已经得到恰当的处理。
2. 描述性统计分析接下来,我们可以使用SPSS的描述性统计分析功能,对数据集进行描述性统计分析。
我们可以计算满意度评分、年龄和购买次数的平均值、标准差、最小值、最大值,并生成频数分布表和柱状图。
3. 相关性分析为了确定满意度评分与其他个人信息变量之间的关联性,我们可以使用SPSS的相关性分析功能。
通过计算满意度评分与性别、年龄、收入水平和购买次数之间的相关系数,我们可以评估它们之间的相关性。
4. 单因素方差分析我们可以使用SPSS进行单因素方差分析,以了解不同收入水平的消费者在满意度评分上是否存在显著差异。
通过观察方差分析表和显著性水平,我们可以得出初步结论。
5. 多元线性回归分析最后,我们可以使用SPSS的多元线性回归分析功能来建立一个回归模型,以预测满意度评分。
SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。
通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。
2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。
下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。
•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。
•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。
最小值为5小时,最大值为10小时。
•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。
最早就寝时间为22:00,最晚就寝时间为01:00。
•健康问题:共有45%的大学生存在健康问题。
3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。
利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。
T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。
3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。
使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。
F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。
3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。
利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。
SPSS统计分析案例专业:经济学姓名:000 学号:00000000一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论页脚内容1居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
spss数据分析案例SPSS数据分析案例。
在实际的数据分析工作中,SPSS(Statistical Product and Service Solutions)是一个非常常用的统计分析软件。
它提供了强大的数据处理和分析功能,可以帮助研究人员快速、准确地进行数据处理和分析。
本文将通过一个实际的案例,介绍如何使用SPSS进行数据分析,并展示分析结果。
案例背景:某公司想要了解员工满意度与工作绩效之间的关系,为了达到这个目的,他们进行了一项调查,收集了员工的满意度评分和绩效评分数据。
现在,他们希望通过这些数据,利用SPSS进行分析,找出员工满意度和工作绩效之间的关系。
数据收集:首先,我们收集了100名员工的满意度评分和绩效评分数据。
满意度评分采用了1-5的五级评分制,绩效评分采用了1-100的百分制评分。
数据导入:将收集到的数据导入SPSS软件中,创建一个新的数据集,并将员工的满意度评分和绩效评分数据分别录入到不同的变量中。
数据描述统计分析:首先,我们对数据进行描述性统计分析,包括计算满意度评分和绩效评分的均值、标准差、最大值、最小值等。
这些统计量可以帮助我们更好地了解数据的分布情况。
相关性分析:接下来,我们使用SPSS进行相关性分析,探索员工满意度评分和绩效评分之间的相关关系。
通过相关性分析,我们可以计算出两个变量之间的相关系数,进而判断它们之间是否存在显著的相关性。
回归分析:在确定了员工满意度评分和绩效评分之间存在相关性的基础上,我们可以进一步进行回归分析,建立员工满意度评分对绩效评分的预测模型。
通过回归分析,我们可以得到员工满意度评分对绩效评分的影响程度,以及其他可能影响绩效评分的因素。
结论:通过SPSS数据分析,我们发现员工满意度评分与绩效评分之间存在显著的正相关关系,即员工满意度评分越高,其绩效评分也越高。
这为公司提高员工绩效提供了重要的参考依据,可以通过提升员工满意度来提高整体绩效水平。
总结:在本案例中,我们利用SPSS软件进行了员工满意度和绩效之间的数据分析。