光谱仪工作原理+图
- 格式:docx
- 大小:103.37 KB
- 文档页数:9
傅里叶红外光谱仪工作原理及应用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
FTIR工作原理:光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
FTIR主要特点:1.信噪比高:傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。
2. 重现性好:傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。
3. 扫描速度快:傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。
简单来说,红外光谱具有特征性强、分析快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较高、应用范围广(固态、液态或气态样品都能应用;无机、有机、高分子化合物均可检测)等特点,其与色谱(GC-IR)联用或TGA(TGA-IR)联用,定性功能强大。
光谱仪的工作原理引言概述:光谱仪是一种用于分析物质成分和结构的仪器,通过测量物质吸收、发射或散射光线的特性来获取信息。
光谱仪在化学、生物、物理等领域有着广泛的应用,其工作原理是基于光的波长和能量与物质相互作用的特性。
一、光谱仪的基本组成1.1 光源:光谱仪使用不同类型的光源,如白炽灯、氘灯、钨灯等,产生不同波长范围的光。
1.2 入射光路:入射光路包括准直器、光栅或棱镜等光学元件,用于使入射光线准直并选择特定波长的光。
1.3 探测器:探测器是光谱仪的核心部件,用于测量样品吸收、发射或散射光的强度,并将其转换为电信号。
二、光谱仪的工作原理2.1 吸收光谱:在吸收光谱测量中,样品吸收特定波长的光,使得入射光的强度减弱,根据吸收光强度的变化可以推断样品的成分和浓度。
2.2 发射光谱:在发射光谱测量中,样品受到激发后发射特定波长的光,通过测量发射光的强度可以得到样品的元素组成和浓度。
2.3 散射光谱:在散射光谱测量中,样品散射入射光,根据散射光的特性可以分析样品的形态、大小和结构。
三、光谱仪的工作模式3.1 可见光谱仪:可见光谱仪适用于分析可见光范围内的样品,常用于颜色测量、溶液浓度测量等。
3.2 紫外-可见光谱仪:紫外-可见光谱仪可测量紫外到可见光范围内的样品,广泛用于分析有机物和生物分子。
3.3 红外光谱仪:红外光谱仪用于测量样品在红外波段的吸收特性,可用于有机物、聚合物等的分析。
四、光谱仪的应用领域4.1 化学分析:光谱仪在化学分析中有着广泛的应用,可以用于分析物质的成分、结构和浓度。
4.2 生物医学:光谱仪可用于生物医学领域,如蛋白质结构研究、药物分析等。
4.3 环境监测:光谱仪可用于环境监测,如大气污染物、水质分析等。
五、光谱仪的发展趋势5.1 远程控制:光谱仪趋向于实现远程控制和自动化操作,提高测量效率和准确性。
5.2 多功能化:光谱仪将向多功能化发展,具备多种测量模式和分析功能。
5.3 微型化:光谱仪将朝着微型化和便携化的方向发展,以适应不同场合的使用需求。
ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪原理及使用说明书赞(1发布人:上海铸金分析仪器有限公司2014-11-08 11:32:48ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪原理及使用说明书一、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理和结构(一)、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理:ICP(即电感耦合等离子体)是由高频电流经感应线圈产生高频电磁场,使工作气体(Ar)电离形成火焰状放电高温等离子体,等离子体的最高温度10000K。
试样溶液通过进样毛细管经蠕动泵作用进入雾化器雾化形成气溶胶,由载气引入高温等离子体,进行蒸发、原子化、激发、电离,并产生辐射,光源经过采光管进入狭缝、反光镜、棱镜、中阶梯光栅、准直镜形成二维光谱,谱线以光斑形式落在540×540个像素的CID检测器上,每个光斑覆盖几个像素,光谱仪通过测量落在像素上的光量子数来测量元素浓度。
光量子数信号通过电路转换为数字信号通过电脑显示和打印机打印出结果。
(二)、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪的结构ICP-AES由高频发生器、蠕动泵进样系统、光源、分光系统、检测器(CID)、冷却系统、数据处理等组成。
ICP光谱仪结构示意图:二、ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪操作规程(一).开机预热(若仪器一直处于开机状态,应保持计算机同时处于开机状态)1.确认有足够的氩气用于连续工作(储量≥1瓶)。
2.确认废液收集桶有足够的空间用于收集废液。
3.打开稳压电源开关,检查电源是否稳定,观察约1分钟。
4.打开氩气并调节分压在0.60—0.65Mpa之间。
保证仪器驱气1小时以上。
5.打开计算机。
6.若仪器处于停机状态,打开主机电源。
仪器开始预热。
7.待仪器自检完成后,启动iTEVA软件,双击“iTEVA” 图标,进入操作软件主界面,仪器开始初始化。
X荧光光谱分析仪工作原理用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。
由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型.下图是这两类仪器的原理图。
现将两种类型X射线光谱仪的主要部件及工作原理叙述如下:1、 X射线管两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。
上图是X射线管的结构示意图。
灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线.X 射线管产生的一次X射线,作为激发X射线荧光的辐射源。
只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。
大于lmin 的一次X射线其能量不足以使受激元素激发。
X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。
管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。
但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高.X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。
2 分光系统分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把不同波长的X射线分开。
根据布拉格衍射定律2dsinθ=nλ,当波长为λ的X射线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测到波长为λ=2dsinθ的一级衍射及波长为λ/2,λ/3-—-——等高级衍射。
改变θ角,可以观测到另外波长的X射线,因而使不同波长的X射线可以分开。
傅里叶红外光谱仪器工作原理傅里叶红外光谱仪是一种重要的分析仪器,广泛应用于制药、化学、材料科学、生命科学等领域。
它的工作原理是通过检测物质在不同红外波段的吸收光谱,来确定物质的分子结构和化学性质。
本文将详细介绍傅里叶红外光谱仪的工作原理。
一、傅里叶变换红外光谱仪的原理傅里叶变换红外光谱仪使用红外光作为探测物质的手段,红外光波段通常在4000cm^-1到400cm^-1之间。
样品被辐射的红外光波通过样品后会出现吸收峰,这些峰对应着样品分子中的振动模式。
这些振动模式是与化学键的性质和化学键之间的相互作用有关的。
傅里叶变换红外光谱仪的工作原理可以大致分为以下三个步骤:1. 吸收峰的测量在傅里叶变换红外光谱仪中,一个光源发出的光由于被样品吸收一部分后形成吸收光谱。
通过不同波长的红外光波作用于分析样品,得到样品的不同振动模式,从而确定物质的分子结构和化学性质。
2. 傅里叶变换操作傅里叶变换是将时域信号变成频域信号的数学方法,它可以将时域信号在频域中进行分析。
在傅里叶红外光谱仪中,信号处理器将光谱信号转化为频谱信号。
这个过程类似于通过心电图将心跳信号转化为心率频率。
由于傅里叶变换可以将复杂的时域信号分解成多个单频的信号,因此其可以精确地将样品的振动模式转化为振动频率,是分析傅里叶变换红外光谱仪样品的重要一步。
3. 频率校准和谱图分析将样品转化为频域信号后,可以对信号进行频率校准和谱图分析。
频率校准是根据基准信号对仪器进行精确校准,使得仪器能够提供准确的光谱数据。
谱图分析是将红外吸收谱与已知谱数据进行比较,从而确定样品的光谱特征。
二、傅里叶变换红外光谱仪仪器结构傅里叶变换红外光谱仪通常由三个主要部分组成:光源、样品室和分光器。
1. 光源傅里叶变换红外光谱仪使用红外光区的波长作为样品的检测方法。
仪器通常配备有半导体激光二极管作为光源。
这些设备可在红外光波段范围内轻易地操作。
另一种光源是灯丝。
灯丝光源在样品室中加热并发射光,这种光通常包括红外光波段,因此在经过样品后,红外吸收谱就会产生。
海洋光纤光谱特有的信息1。
光谱仪的工作原理CCD探测器型的海洋光学光谱仪的工作原理如动画展示。
光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。
光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。
当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。
同时,光能被累积,通过A/D 转换数据被读出移位寄存器。
数字化的数据最后显示在计算机上。
2.光学分辨率单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm—1)及光学入瞳直径(光纤或狭缝)。
海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素:1) 光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小.2) 狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。
如何估算光学分辨率(nm,FWHM)2。
1。
确定光栅光谱范围,找到光栅的光谱范围通过:选择光栅:“S”光学平台;选择光栅:“HR"光学平台;选择光栅:“NIR”光学平台。
(有想详细了解的,烦请光纤专家予以解释)2。
2. 光栅光谱范围除以探测器像元数,结果为Dispersion。
Dispersion (nm/pixel)= 光谱范围/像元数探测器像元素见图23.像素分辨率下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率.尽管狭缝入射宽度不同,但高度一致(1000um)。
有想深入了解的版友直接向专家提问。
4.计算光学分辨率(nm)Dispersion (Step 2) x Pixel Resolution (Step 3)举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um 650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5。
海洋光纤光谱特有的信息1.光谱仪的工作原理CCD探测器型的海洋光学光谱仪的工作原理如动画展示。
光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。
光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。
当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。
同时,光能被累积,通过A/D转换数据被读出移位寄存器。
数字化的数据最后显示在计算机上。
2.光学分辨率单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm-1)及光学入瞳直径(光纤或狭缝)。
海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素:1)光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小。
2)狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。
如何估算光学分辨率(nm,FWHM)2.1.确定光栅光谱范围,找到光栅的光谱范围通过:选择光栅:“S”光学平台;选择光栅:“HR”光学平台;选择光栅:“NIR”光学平台。
(有想详细了解的,烦请光纤专家予以解释)2.2.光栅光谱范围除以探测器像元数,结果为Dispersion。
Dispersion(nm/pixel)=光谱范围/像元数探测器像元素见图23.像素分辨率下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率。
尽管狭缝入射宽度不同,但高度一致(1000um)。
有想深入了解的版友直接向专家提问。
4.计算光学分辨率(nm)Dispersion(Step2)xPixelResolution(Step3)举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5.6(像素分辨率)=0.18X5.6nm=1.0nm(FWHM)5.海洋光纤光谱仪的系统灵敏度海洋光纤光谱仪对系统灵敏度的定义打破常规,不需要对影响光谱幅度的各种因素进行校正。
海洋光纤光谱特有的信息1.光谱仪的工作原理CCD探测器型的海洋光学光谱仪的工作原理如动画展示。
光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。
光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。
当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。
同时,光能被累积,通过A/D转换数据被读出移位寄存器。
数字化的数据最后显示在计算机上。
2.光学分辨率单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm-1)及光学入瞳直径(光纤或狭缝)。
海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素:1) 光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小。
2) 狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。
如何估算光学分辨率(nm,FWHM)2. 1. 确定光栅光谱范围,找到光栅的光谱范围通过:选择光栅:“S”光学平台;选择光栅:“HR”光学平台;选择光栅:“NIR”光学平台。
(有想详细了解的,烦请光纤专家予以解释)2. 2. 光栅光谱范围除以探测器像元数,结果为Dispersion。
Dispersion (nm/pixel) = 光谱范围/像元数探测器像元素见图23.像素分辨率下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率。
尽管狭缝入射宽度不同,但高度一致(1000um)。
有想深入了解的版友直接向专家提问。
4.计算光学分辨率(nm)Dispersion (Step 2) x Pixel Resolution (Step 3)举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um 650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5.6(像素分辨率)=0.18X5.6nm=1.0nm(FWHM)5.海洋光纤光谱仪的系统灵敏度海洋光纤光谱仪对系统灵敏度的定义打破常规,不需要对影响光谱幅度的各种因素进行校正。
他们提供一种更有用的方法:NIST-traceable 辐射标准(LS-1-CAL),它可以用能量项来标准化光谱数据。
在他们的SpectraSuite操作软件中,可以使用“I”模式下相对能量分布(0到1)或绝对值(以 W/cm2/nm或流明或勒克斯/单位面积为单位)来标准化光谱数据。
对透射或反射实验,可以使一个物理标准来标准化(归一化)数据如利用空气中的传播或漫射白板来确定。
6.海洋光纤光谱解决影响光谱幅度值的因素1)CCD探测器响应。
各生产商提供原始硅探测器响应曲线,但这只是影响光谱幅度值的部分因素。
在CCD上,海洋光纤光谱增加了一个镀层以破坏掉结构上由SIO2形成的光学腔。
这样便极大的减小了各个波长下的光谱数据幅度不一致的情况。
2)紫外响应。
海洋光纤光谱增加了一个磷镀层。
可以根据生产商提供的数据,为自己的系统探测器响应提供比较好的近似。
3)光纤衰减。
在可见区,各波长下衰减比较平坦,但在紫外区急剧衰减;在近红外区,水吸收带750nm-900nm会影响光纤衰减,会有光谱衰减曲线。
a光栅衍射效率。
所有刻划及全息光栅,在特定波长区都会优化一阶光谱,取决于闪耀波长等因素。
海洋光学提供14种光栅:每种都有其特定衍射效率。
使用这些光栅图表来比较衍射效率;b光线采集器件。
采样光学器件有其特定的光谱特性,比如用于样品池上的准直透镜。
这些是简单的色差透镜,波长不同,焦距不同,可以查看UV样品池透射曲线来查看这些色差;c光源及样品。
光源及样品有他们特定的光谱响应。
若光源自身作为样品,则测量的正是其光谱响应。
若用于透射、反射实验,必须考虑光源的光谱响应。
如海洋提供的LS-1卤钨灯光源的光谱。
4)其它因素。
CCD设计及电子等特性也会影响灵敏度,例如,探测器的电压信号包含一些补偿诸如暗电流及0点放大称之为“暗光谱”。
这些值随像素点而变化,必须要从CCD像元中扣除。
另外,不同像素点响应值也会不同,因此数据标准化,必须逐一像素进行校正。
(称之为固定噪声),唯一有效可行的考虑所有因素的方法是进行校正实验及通过比对样品光谱与参考光谱来标准化数据。
a.%透射(i)或%反射(i)=[S(i)-D(i)]/[R(i)-D(i)],其中S是CCD像素点(i)上的样品光强值,D是像素点(i)上的暗噪声值,R是像素点(i)上的参考光强值。
b. 吸光度(i)=-log[T(i)]c. 能量I(i)= B(i)[T(i)],其中B是标准辐射光谱值。
(想详细了解的版友可以咨询光纤专家或者版主)四、海洋光纤光谱的应用自1992年以来,经过20年的历程,海洋光纤光谱已经出售了超过200,000台Ocean Optics光学传感系统,(平均全球年销售10,000台,还是可以,毕竟起步阶段销售较慢)这让光纤光谱在工业应用领域和其它应用领域拥有无与伦比的知识与经验。
以下列举Ocean Optics部分广受欢迎的系统配置:溶液吸光度、上升流/下降流、氧传感、气体吸收率、荧光测量、LED分析、激光分析、激光诱导击穿光谱(LIBS)、计量学、UV-VIS反射测量、反射颜色测量等等,范围之广在这么短的时间内远非我能所了解,只能慢慢了解,循序渐进。
比较受欢迎的仪器如下:1.微型光谱仪:各种波长范围的光纤光谱仪,适用于实验室或其他多种领域;(我对手持微量金属分析仪比较感兴趣,如MH-5000元素分析仪。
不过卫生指标的检测,估计难以达到,仔细看了一下,基本上适用于ICP-OES检测的所有元素,检测下限为0.1ppm,针对于环境水质检测还可以,对于生活饮用水的卫生指标检测,这样达不到要求的;但是对固体等可以直接检测,所以测定食品还是没有问题,比较感兴趣,容后和冲浪小子版主站短再议)2.光纤:具有专利技术的光纤, 用户定制光纤, 多层次光纤拉丝塔;传感器:海洋光学出产的低成本,创新性的传感器,为传统的化学传感测量提供光辉的前景;3.探测器:用户自定义设计及生产,他们的探测器可应用于实验室,过程监控等多种领域;4.计量器:独特的测量工具,用于薄膜测量,血浆分析和光谱特征检测(这个计量院用的比较多,不知道用于血浆分析的属于哪个型号仪器,想进一步了解);5.附件:校正波长,比色皿,支架,流通池和各种采样系统(计量院用的多,不过自己实验室自校时绝对用得着);五、海洋光纤光谱在世界各国的受欢迎程度海洋光学以灵巧,微型、便利等作为很受欢迎的光谱仪之一。
尤其最新推出的USB4000光谱仪是目前世界上最受欢迎的光谱仪!它内置了先进的探测器和强大的高速电路系统,具有16位A/D转换,4种触发模式,根据温度变化的暗噪声校正和22针的连接口(包括8个用户可编程GPIO端口)。
USB4000可兼容Linux,Mac或Windows等多种操作系统.模块化的USB4000光谱仪可以响应从200到1100nm的光谱范围,通过配合海洋光学生产的各种光学平台组件、光源和采样光纤,可以为上千种吸收、反射和发射测量应用搭建各具特色的系统。
海洋光学的微型光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分析。
更好的是,由于光纤的方便性,用户可以非常灵活的搭建光谱采集系统。
其优势在于测量系统的模块化和灵活性,且测量速度非常快,可以用于在线分析。
而且采用了低成本的通用探测器,降低了光谱仪的成本,从而也降低了整个测量系统的造价。
具有很高的性价比。
六、个人对海洋光纤光谱的意见及建议海洋光学在世界已经走了20个年头,已经成年。
但步入中国才5个年头,还处于幼儿期,市场前景可观,个人认为,在国内的发展问题说难不难,说不难却不容易。
因为市场竞争有四步历程,第一步——早期巨大的市场空间;第二步——众多企业杀入;第三步——市场竞争产生;第四步——竞争白热化。
您觉得海洋光纤光谱在国内正处在哪一步的市场竞争中?同时,市场竞争也有四个领域,一、产品质量的竞争——质量为本;二、售后服务的竞争——实行三包;三、知名程度的竞争——品牌战略;四、价格领域的竞争——价格战。
您觉得海洋光纤光谱现在又介入到哪个领域了?不知道您们留意过没有?整个行业的发展前景都是朝着电子应用前进,比如电子政务、电子商务、电子公务等,这些应用,最需要的就是网络组建,我们假设一下,你我他她四人是企业领导,政府首长,组建一个电子网络,我们会着重从哪些方面考虑?还是网络建设吧?当然还必须具备技术实力,最重要的一点就是必须有关系,打通政界和顾客之间的关系。
也许就三方面,第一、打响海洋光纤光谱在中国的知名度;第二、做好网络建设(人际网路和internet网络)的人才储备;第三、必须抢在所有竞争对手前面,打点好各方面的关系。
这样才可能在下一个五年内,也就是在中国的第十年,光纤光谱会在中国突飞猛进,普及到各个行业的各个实验室。
啰啰嗦嗦说了一大堆废话,也许到最后什么都不是,毕竟海洋光纤光谱有自己的方式,但是作为一个一线的实验室检测人员,对海洋光学已经做了初步的了解,了解了就写出发布了,发布了,心里面也就松了口气,但愿这篇乱七八糟的文字心声能给各个版友提供快捷的了解光纤的方式,但愿我的建议也给光纤光谱官方起到一丁点的敲打作用。
不管如何,已经写完了,花费了很久的时间写完了这篇六千多字的文章。