不同级别碳纤维结构特点
- 格式:docx
- 大小:14.28 KB
- 文档页数:1
研究与开发合成纤维工业ꎬ2018ꎬ41(5):5CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2018 ̄05 ̄14ꎻ修改稿收到日期:2018 ̄08 ̄07ꎮ作者简介:钟俊俊(1986 )ꎬ女ꎬ工程师ꎬ主要从事高性能碳纤维检测表征工作ꎮE ̄mail:zhongjj@nimte.ac.cnꎮ基金项目:中科院创新基金项目(CXJJ ̄17 ̄M160)ꎻ装备发展部领域基金重点项目(6140922010103)ꎮ㊀∗通讯联系人ꎮE ̄mail:qx3023@nimte.ac.cnꎮ不同直径的T800级高强中模碳纤维的结构对比钟俊俊ꎬ钱㊀鑫∗ꎬ张永刚ꎬ王雪飞ꎬ李德宏ꎬ宋书林(中国科学院宁波材料技术与工程研究所碳纤维制备技术国家工程实验室ꎬ浙江宁波315201)摘㊀要:对自制的两种不同直径的T800级高强中模碳纤维(NBF1ꎬNBF2)的结构与性能进行了研究ꎬ并与日本东丽公司T800碳纤维进行了比较ꎮ结果表明:NBF1ꎬNBF2的直径分别为5.64ꎬ6.31μmꎬ均高于日本东丽公司T800碳纤维(5.45μm)ꎬ截面比日本东丽公司T800碳纤维规整ꎻNBF1ꎬNBF2的拉伸强度分别为5.58ꎬ5.56GPaꎬ略高于日本东丽公司T800碳纤维(5.52GPa)ꎬ拉伸模量分别为293ꎬ295GPaꎬ略高于日本东丽公司T800碳纤维(290GPa)ꎬ断裂伸长率分别为1.97%ꎬ1.89%ꎬ均高于日本东丽公司T800碳纤维(1.80%)ꎻNBF2的石墨微晶层间距为0.3527nmꎬ显著低于日本东丽公司T800碳纤维(0.3555nm)ꎬNBF2具有更高的石墨化程度ꎻ碳纤维表面无序化程度越低ꎬ其拉伸强度越高ꎮ关键词:碳纤维㊀聚丙烯腈纤维㊀高强中模㊀结构㊀性能中图分类号:TQ342+.742㊀㊀文献标识码:A㊀㊀文章编号:1001 ̄0041(2018)05 ̄0005 ̄04㊀㊀聚丙烯腈(PAN)基碳纤维具有高强度㊁高模量㊁耐高温㊁耐腐蚀㊁导电㊁导热等独特性能ꎬ因而广泛用作先进复合材料的增强体[1-3]ꎮPAN基碳纤维按照力学性能可以分为高强中模㊁高模和高强高模三大类ꎬ高强中模碳纤维以日本东丽公司T300ꎬT700ꎬT800等为典型代表ꎮ近年来碳纤维发展迅速ꎬ新性能产品不断出现ꎬ因而高模和高强高模概念有所延伸ꎮ目前高模是以日本M40JꎬM50JꎬM55J中强高模碳纤维为代表ꎬ并逐渐取代了最初M40ꎬM50等低强高模纤维ꎻ而高强高模则是最近几年国内外研究热点ꎬ该产品特点是同时具有高强度㊁高模量ꎬ以日本东丽T1100G(拉伸强度7.0GPa㊁拉伸模量324GPa)㊁美国佐治亚理工学院研制的高性能碳纤维(拉伸强度5.5~5.8GPa㊁拉伸模量354~357GPa)[4]为代表ꎮ近期中国科学院宁波材料技术与工程研究所研制出拉伸强度5.24GPaꎬ拉伸模量593GPa型碳纤维也呈现出兼具高强度㊁高模量的特征ꎮ目前碳纤维市场仍然被日本及美国等垄断ꎬ经过多年自主研发ꎬ国内碳纤维发展迅速ꎬ主体性能指标也不断突破ꎬ但由于国内产品大多是参照国外尤其是日本东丽公司产品性能指标发展及分级ꎬ对于结构或性能等不同规格的碳纤维研发有待开展ꎮ依据Weibull最弱链接理论ꎬ纤维拉伸断裂出现在最大缺陷处ꎬ纤维尺寸越大ꎬ出现较大缺陷概率也随之增高ꎬ因而纤维直径越细ꎬ碳纤维拉伸强度越高[5]ꎮ若在不同纤维直径下获得的碳纤维力学性能相同或相近ꎬ其内部结构是否存在显著区别ꎬ对此目前国内外尚未有报道ꎮ基于上述碳纤维研究现状分析ꎬ作者以自制两种不同直径的T800级碳纤维为研究对象ꎬ对比研究了相近力学性能下不同直径的自制T800级碳纤维微观结构的差异ꎬ同时以日本东丽T800碳纤维作为对比ꎮ本研究对阐明高强中模碳纤维的结构㊁性能关联性ꎬ尤其不同规格产品的开发具有一定的指导意义ꎮ1㊀实验1.1㊀主要原料及试样丙烯腈:纯度大于等于99.0%ꎬ台州市中海医药化工有限公司提供ꎻ衣康酸(化学纯)㊁偶氮二异丁氰(分析纯):国药集团化学试剂有限公司提供ꎻ东丽PAN基碳纤维:规格T800ꎬ12Kꎬ简称T800碳纤维ꎬ日本东丽公司生产ꎮ1.2㊀实验方法T800级碳纤维的制备:以丙烯腈㊁衣康酸为原料ꎬ偶氮二异丁腈为引发剂ꎬ采用湿法纺丝工艺ꎬ经聚合㊁纺丝㊁高温拉伸㊁上油等工艺制备得到PAN原丝ꎬ再经过180~260ħ预氧化㊁300~800ħ低温碳化㊁1000~1600ħ高温碳化工艺制备得到PAN基碳纤维ꎬ其中通过PAN原丝制备过程中喷丝孔径调控来获得不同直径纤维ꎮ小直径丝束规格为12Kꎬ大直径丝束规格为6Kꎬ分别标记为NBF1ꎬNBF2试样ꎮ1.3㊀测试力学性能:按照GB/T3362 2005试验标准ꎬ使用美国Instron公司5569型万能材料试验机测试碳纤维的拉伸强度ꎬ加载速度2.0mm/minꎬ测试8个试样取平均值ꎮ形貌结构:利用美国FEI公司QuantaFEG250型场发射扫描电镜(SEM)对两种自制T800㊁东丽T800碳纤维表面㊁断面形貌进行观察ꎻ同时ꎬ通过截面形貌对纤维直径进行了统计分析ꎬ纤维直径取30根纤维直径的平均值ꎮX射线衍射(XRD):采用日本Rigaku公司D8AdvanceDavinci型X射线衍射仪进行测试ꎮ测试条件:采用Ni过滤的CuKα辐射(波长为0.15418nm)ꎬ管压40kVꎮ测试时将纤维研磨成粉末放置在载物台上ꎬ采用对称透射几何安排进行纤维衍射并进行赤道扫描ꎮ拉曼光谱:使用英国Renishaw公司inVia ̄re ̄flex型激光拉曼光谱仪对碳纤维拉曼光谱进行测试ꎮ激发光波长为532nm(氩离子)ꎬ扫描时间为10~30sꎬ光谱分辨率为1cm-1ꎬ拉曼光谱扫描波数为600~2100cm-1ꎬ采用高斯 ̄洛伦兹拟合以获得峰结构信息ꎮ2㊀结果与讨论2.1㊀力学性能从表1可以看出ꎬ两种规格T800级碳纤维NBF1ꎬNBF2拉伸强度与拉伸模量均略高于日本东丽T800碳纤维ꎬ而自制T800级碳纤维断裂伸长率也明显高于日本东丽T800碳纤维ꎮ表1㊀自制T800级碳纤维与T800碳纤维性能对比Tab.1㊀PerformancecomparisonofChina ̄madeT800carbonfiberandT800carbonfibers试样线密度/tex体密度/(g cm-3)拉伸强度/GPa拉伸模量/GPa断裂伸长率ꎬ%NBF14501.785.582931.97NBF23151.805.562951.89T800碳纤维4501.805.522901.80㊀㊀对于碳纤维线密度ꎬNBF1试样与日本东丽T800碳纤维同为12K规格碳纤维ꎬ两者线密度相同均为450texꎻ根据产品信息日本东丽T800碳纤维6K规格的线密度为224texꎬ而NBF2试样的丝束规格同为6K情况下ꎬ纤维的线密度高达315texꎬ线密度越高ꎬ说明获得相同质量所需纤维长度越短ꎬ即纤维直径越大ꎮ2.2㊀形貌结构由图1试样的表面SEM照片可以看出ꎬ自制T800级碳纤维(NBF1ꎬNBF2试样)与日本东丽T800碳纤维均存在明显的轴向沟槽ꎬ该结构产生与PAN原丝制备过程中双扩散过程有关[6]ꎮ从图1还可以看出ꎬ日本东丽T800碳纤维沟槽结构更为明显ꎬ这是由于其原丝制备过程中双扩散过程更为剧烈ꎮ而从纤维断面形貌图中也可以看出ꎬ自制NBF1ꎬNBF2试样断面较日本东丽T800碳纤维截面要规整ꎮ图1㊀碳纤维的表面及断面形貌的SEM照片Fig.1㊀SEMsurfaceandcross ̄sectionalphotosofcarbonfibers㊀㊀按照GB/T29762 2013碳纤维纤维直径和横截面积的测定ꎬ对自制NBF1ꎬNBF2及日本东丽T800碳纤维直径理论值按公式(1)进行计算ꎮd=4tˑ103/πρn(1)式中:d为纤维的理论直径ꎻt为纤维的线密度ꎻρ为纤维的体密度ꎻn为纤维单丝根数ꎮ㊀㊀同时使用SEM对纤维截面测量计算得到纤6㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2018年第41卷维直径数据如表2所示ꎮ表2㊀碳纤维的直径Tab.2㊀Diametersofcarbonfibers试样直径/μm理论值实测值NBF15.185.64ʃ0.22NBF26.096.31ʃ0.13T800碳纤维5.155.45ʃ0.12㊀㊀按照公式(1)计算ꎬ在小直径NBF1试样与日本东丽T800碳纤维具有相同丝束规格情况下ꎬ由于小直径NBF1试样体密度较小ꎬ因而纤维理论直径要稍微高于东丽T800碳纤维ꎬ经SEM截面实测的小直径NBF1试样要高于日本东丽T800碳纤维ꎮ而对于大直径NBF2试样ꎬ纤维直径的理论值和实测值均显著高于小直径NBF1和日本东丽T800碳纤维ꎬ其实测值达到6.31μmꎮ2.3㊀微晶结构石墨微晶层间距(d002)及微晶堆砌厚度(Lc)是评价碳纤维石墨特征结构两个重要参数ꎮd002值的大小和(002)晶面衍射峰峰形的宽窄可以反映材料的石墨化程度的高低ꎬd002值越小ꎬ(002)峰越窄ꎬ表示石墨化程度越高ꎮd002和Lc可利用XRD赤道扫描图中的(002)峰的半峰宽(FWHM)通过布拉格公式和谢乐公式进行计算[7]ꎮ通过对XRD赤道扫描分析计算得到3种碳纤维结构参数如表3所示ꎮ表3㊀碳纤维的XRD结构参数Tab.3㊀XRDstructuralparametersofcarbonfibers试样2θ(002)/(ʎ)d002/nmFWHM(002)/ (ʎ)Lc/nmNBF125.130.35414.561.98NBF225.230.35274.591.97T800碳纤维25.030.35554.661.94㊀㊀从表3可以看出ꎬ自制T800级碳纤维的d002要显著低于日本东丽T800碳纤维ꎬ而Lc也略高于日本东丽T800碳纤维ꎮ对于大直径NBF2纤维ꎬd002为0.3527nm略低于小直径NBF1的0.3541nmꎬ但远低于日本东丽T800碳纤维的0.3555nmꎬ说明NBF2试样的石墨化度要高于其他两种纤维ꎬ在3种碳纤维拉伸强度及拉伸模量相近情况下ꎬNBF2试样高石墨化度将更有利于制备高模碳纤维ꎮ2.4㊀拉曼光谱拉曼光谱是碳纤维微观结构最为常用且有效的表征手段之一[8-9]ꎬ但其检测范围局限在一定范围内ꎬ通常可对纤维表面数十纳米范围内结构进行明确表征[10]ꎮ碳纤维拉曼光谱在1000~2000cm-1波数内会出现两个典型峰ꎬ分别是位于1580~1600cm-1附近的G峰和1350~1360cm-1附近的D峰ꎬ其中G峰是石墨化层平面内碳原子(SP2杂化)的伸缩振动峰ꎬ代表了有序石墨化结构峰ꎻD峰则是石墨片层边缘碳原子(SP3杂化)的伸缩振动峰ꎬ代表了无序结构峰[5ꎬ11-12]ꎮ两个峰面积比值(ID/IG)代表了碳纤维无序化程度ꎬ数值越大㊁纤维无序化程度越高ꎮ从图2可以看出ꎬ3种纤维均存在显著的无序结构D峰和石墨结构G峰ꎬ其中D峰位于1360cm-1附近ꎬG峰位于1600cm-1附近ꎮ图2㊀碳纤维的拉曼光谱Fig.2㊀Ramanspectraofcarbonfibers1 NBF1试样ꎻ2 NBF2试样ꎻ3 T800碳纤维㊀㊀经拟合分峰得到峰结构详细参数如表4所示ꎮ从表4可以看出ꎬ小直径NBF1试样的ID/IG值要显著低于其他两种纤维ꎮ表4㊀碳纤维的拉曼光谱分析结果Tab.4㊀Ramanpeakparametersofcarbonfibers试样D峰峰位/(cm-1)FWHM/(cm-1)峰面积G峰峰位/(cm-1)FWHM/(cm-1)峰面积ID/IGNBF11360.6232.8572.571594.489.0121.493.38NBF21359.6224.1570.991600.184.9618.913.75T800碳纤维1362.1242.2072ꎬ681598.488.2119.203.79㊀㊀这说明NBF1中纤维表面的无序化程度较低ꎬ结合表1中的纤维力学性能数据可以看出ꎬID/IG与碳纤维拉伸强度存在一定对应关系ꎬID/IG越低㊁碳纤维的拉伸强度越高ꎬ其原因在于纤维表面结构越有序ꎬ表面的缺陷结构也越少ꎬ因7第5期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀钟俊俊等.不同直径的T800级高强中模碳纤维的结构对比而碳纤维越有利于获得优异的性能ꎮ通过对比大直径NBF2与日本东丽T800碳纤维结构参数可看出ꎬ虽然两种纤维在直径上存在较大差异(见表2)ꎬ但两种纤维表面石墨化有序结构程度差异并不大ꎮ3㊀结论a.自制T800级碳纤维截面较日本东丽T800碳纤维截面要规整ꎬNBF1ꎬNBF2试样的纤维直径分别5.64ꎬ6.31μmꎬ均高于日本东丽T800碳纤维的5.45μmꎮb.大直径T800级碳纤维NBF2的d002显著低于日本东丽T800碳纤维的d002ꎬ证明该规格纤维具有更高的石墨化程度ꎮc.碳纤维表面无序化程度与碳纤维拉伸强度存在对应关系ꎬ纤维表面无序化程度越低ꎬ碳纤维的拉伸强度也越高ꎮ参㊀考㊀文㊀献[1]㊀ZhaoMinꎬMengLinghuiꎬMaLichunꎬetal.Layer ̄by ̄layergraftingCNTsontocarbonfiberssurfaceforenhancingthein ̄terfacialpropertiesofepoxyresincomposites[J].CompSciTechꎬ2018ꎬ154:28-36.[2]㊀QianXinꎬZouRuifenꎬOuyangQinꎬetal.Surfacestructuralevolvementintheconversionofpolyacrylonitrileprecursorstocarbonfibers[J].ApplSurfSciꎬ2015ꎬ327:246-252. [3]㊀AndidehMꎬEsfandehM.Effectofsurfacemodificationofelectrochemicallyoxidizedcarbonfibersbygraftinghydroxylandaminefunctionalizedhyperbranchedpolyurethanesonin ̄terlaminarshearstrengthofepoxycomposites[J].Carbonꎬ2017ꎬ123:233-242.[4]㊀HanGCꎬNewcombBAꎬGulgunjePVꎬetal.Highstrengthandhighmoduluscarbonfibers[J].Carbonꎬ2015ꎬ93:81-87.[5]㊀FitzerE.PAN ̄basedcarbonfibers ̄presentstateandtrendofthetechnologyfromtheviewpointofpossibilitiesandlimitstoinfluenceandtocontrolthefiberpropertiesbytheprocesspa ̄rameters[J].Carbonꎬ1989ꎬ27(5):621-645. [6]㊀YuMeijieꎬXuYongꎬWangChengguoꎬetal.Heredityanddifferenceofmultiple ̄scalemicrostructuresinPAN ̄basedcar ̄bonfibersandtheirprecursorfibers[J].JApplPolymSciꎬ2012ꎬ125(4):3159-3166.[7]㊀HuangYꎬYoungRJ.EffectoffibremicrostructureuponthemodulusofPAN ̄andpitch ̄basedcarbonfibres[J].Carbonꎬ1995ꎬ33(2):97-107.[8]㊀MelanitisNꎬTetlowPLꎬGaliotisC.CharacterizationofPAN ̄basedcarbonfibreswithlaserRamanspectroscopy.1.EffectofprocessingvariablesonRamanbandprofiles[J].JMaterSciꎬ1996ꎬ31(4):851-860.[9]㊀FrankOꎬTsoukleriGꎬRiazIꎬetal.Developmentofauniver ̄salstresssensorforgrapheneandcarbonfibres[J].NatCom ̄munꎬ2011ꎬ2(1):255.[10]GaliotisCꎬBatchelderDN.Straindependencesofthefirst ̄andsecond ̄orderRamanspectraofcarbonfibres[J].JMaterSciLettꎬ1988ꎬ7(5):545-547.[11]TuinstraFꎬKoenigJL.Ramanspectrumofgraphite[J].JChemPhysꎬ1970ꎬ53(3):1126-1130.[12]TuinstraFꎬKoenigJL.Characterizationofgraphitefibersur ̄faceswithRamanspectroscopy[J].JCompMaterꎬ1970ꎬ4(4):492-499.StructurecontrastofT800high ̄strengthandintermediate ̄moduluscarbonfiberswithdifferentdiametersZhongJunjunꎬQianXinꎬZhangYonggangꎬWangXuefeiꎬLiDehongꎬSongShulin(NationalEngineeringLaboratoryofCarbonFiberPreparationTechnologyꎬNingboInstituteofMaterialTechnologyandEngineeringꎬChineseAcademyofSciencesꎬNingbo315201)Abstract:Thestructureandpropertiesofself ̄madeT800high ̄strengthandintermediate ̄moduluscarbonfiberswithdifferentdiameters(NBF1andNBF2)werestudiedandwascomparedwithJapanTorayT800carbonfiber.TheresultsshowedthatNBF1andNBF2hadthediametersof5.64and6.31μmꎬhigherthanthediameterofJapanTorayT800carbonfiber(5.45μm)ꎬandthecrosssectionofNBF1andNBF2wasmoreregularthanthatofJapanTorayT800carbonfiberꎻNBF1andNBF2hadtheten ̄silestrengthof5.58and5.56GPaꎬslightlyhigherthanthatofJapanTorayT800carbonfiber(5.52GPa)ꎬthetensilemodulusof293and295GPaꎬslightlyhigherthanthatofJapanTorayT800carbonfiber(290GPa)ꎬandtheelongationatbreakof1.97%and1.89%ꎬhigherthanthatofJapanTorayT800carbonfiber(1.80%)ꎻNBF2hadthegraphitemicrocrystallineinter ̄layerdistanceof0.3527nmꎬprofoundlylowerthanthatofJapanTorayT800carbonfiber(0.3555nm)ꎬindicatingthehighergraphitedegreeofNBF2ꎻthelowerthesurfacedisorderdegreeofcarbonfiberꎬthehigherthetensilestrength.Keywords:carbonfiberꎻpolyacrylonitrilefiberꎻhighstrengthandintermediatemodulusꎻstructureꎻproperty8㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2018年第41卷。
碳纤维t的分级
碳纤维是一种具有高强度、轻质和耐腐蚀性的材料,被广泛应用于航空航天、汽车制造、体育器材等领域。
根据不同的性能指标和用途,碳纤维可以分为不同等级。
一级碳纤维是最高级别的碳纤维,具有出色的强度和刚度。
它由高质量的原材料制成,经过精密的加工工艺。
一级碳纤维的纤维间距非常均匀,纤维的直径也非常一致,使得整体材料具有非常好的机械性能。
在航空航天领域,一级碳纤维常用于制造飞机的机身和机翼等关键部件,以确保飞行安全和性能优越。
二级碳纤维相对于一级碳纤维来说,强度和刚度稍低一些,但仍然具有良好的性能。
它的制造工艺和原材料质量相对简单,所以成本也相对较低。
二级碳纤维在汽车制造领域得到了广泛应用,用于制造车身和车架等部件。
由于碳纤维的轻量化特性,能够显著降低汽车的重量,提高燃油经济性和行驶性能。
三级碳纤维是最低级别的碳纤维,虽然其性能不如一级和二级碳纤维,但仍具备一定的强度和刚度。
三级碳纤维主要用于体育器材制造,如网球拍、高尔夫球杆和自行车车架等。
这些器材对强度和轻量化要求相对较低,所以三级碳纤维是一个经济实惠的选择。
碳纤维根据性能和用途可以分为一级、二级和三级等级。
每个等级的碳纤维都有其特定的应用领域和优势,可以根据需要进行选择。
碳纤维的广泛应用使得各行各业都能受益于其轻量化和高强度的特性,促进了技术的发展和进步。
随着制造工艺的不断改进和碳纤维材料的不断创新,相信碳纤维的应用领域还会进一步扩大,为人们的生活带来更多的便利和舒适。
碳纤维t的分级全文共四篇示例,供读者参考第一篇示例:碳纤维是一种高性能的材料,具有轻质、高强度、耐腐蚀和耐疲劳等优点,广泛应用于航空航天、汽车、体育器材等领域。
碳纤维的分级是根据其纤维直径、纤维成分和结构等因素来划分的,不同的级别有着不同的性能和应用领域。
下面来详细介绍碳纤维的分级:一、根据纤维直径分级根据碳纤维的纤维直径的不同,可以将碳纤维分为微细纤维、中等纤维和粗大纤维三个级别。
1. 微细纤维微细纤维是指直径小于5微米的碳纤维,通常由原始纤维经过微型化处理得到。
微细纤维具有很高的比表面积和拉伸强度,适用于制作高性能的复合材料和纤维增强材料,也可以用于生物医学领域的应用。
2. 中等纤维中等纤维是指直径在5-10微米之间的碳纤维,具有较高的强度和刚度,适用于航空航天、汽车和船舶等领域的结构材料,也可以用于体育器材和工业设备的制造。
3. 粗大纤维粗大纤维是指直径大于10微米的碳纤维,主要用于制作耐磨、耐高温和耐化学腐蚀的材料,如制动片、耐火材料和化工设备等。
1. 聚丙烯腈基碳纤维聚丙烯腈基碳纤维是最常见的碳纤维材料,通常由聚丙烯腈纤维经氧化、碳化等工艺处理得到。
聚丙烯腈基碳纤维具有优异的机械性能和化学稳定性,广泛应用于航空航天、汽车和体育器材等领域。
芳纶基碳纤维是一种高强度、高模量的碳纤维材料,具有良好的耐热性和耐磨性,适用于高温、高速和高强度要求的领域,如航空发动机、高速列车和船舶等。
3. 其它特种碳纤维除了上述两种常见的碳纤维材料外,还有一些特种碳纤维,如含硼、含硅和含氧碳纤维等,具有特殊的性能和应用特点,适用于特定的高端领域。
三、根据结构特点分级纤维束是将多根碳纤维捆绑在一起形成的束状材料,有着较高的拉伸强度和弯曲性能,适用于各种复合材料的增强。
纤维布是将碳纤维穿织或编织成布状材料,具有良好的成型性和抗拉性能,适用于制作各种复杂形状和大面积的复合材料。
3. 非织造布总结:碳纤维的分级是根据其纤维直径、纤维成分和结构等因素来划分的,不同的碳纤维级别有着不同的性能和应用领域。
碳纤维分类标准
1. 碳纤维按原料分,就像做饭用不同食材一样,有 PAN 基碳纤维,这就好比我们常用的大米呀,用处广泛着呢!比如好多高端的自行车车架就是用它做的!
2. 还有沥青基碳纤维哦,它就像是独特风味的调料,虽然不那么常见,但在一些特殊领域可是大显身手,像一些高温环境下的零部件就有它的身影!
3. 按性能来分呢,也有高强型碳纤维呀,嗨,这简直就是个大力士,能承受超强的力量,航空航天领域可少不了它的助力!
4. 中强型碳纤维也有它的用武之地呀,就好像团队里可靠的中间人,虽然不是最突出的,但也是不可或缺的,一些日常的工业制品中就能见到它啦!
5. 高模型碳纤维呢,那像是舞蹈家一样,柔韧性超棒的,在对精度要求高的地方可吃香了,比如精密仪器的制作!
6. 按丝束大小分,小丝束碳纤维就跟小巧玲珑的宝石似的,精致且珍贵,往往用在要求非常高的地方,像一些医疗器材!
7. 大丝束碳纤维呢,那就是大块头有大用处呀,在大规模的生产中那可是发挥大作用,比如风力发电的叶片制造!
8. 碳纤维还能按用途分类呢,竞技体育领域用到的碳纤维,那就是让运动员如虎添翼的利器,能提升装备的性能呀!
9. 民用领域的碳纤维,就像是我们生活中的好帮手,让各种产品更轻便、更耐用呀!总之,碳纤维的分类标准可多了,每个分类都有它独特的魅力和价值呢!。
碳纤维材料等级范文
首先是标准模量碳纤维材料,其弯曲强度通常在350~400GPa之间,弹性模量在230~300GPa之间。
这种碳纤维材料具有较高的强度和模量,可以用于制造航空航天器件、大型机械设备和高端体育器材等。
其次是中模量碳纤维材料,其弯曲强度通常在250~350GPa之间,弹性模量在150~230GPa之间。
中模量碳纤维材料具有较好的强度和模量平衡性能,适用于制造汽车零部件、建筑结构和高性能电子产品等。
还有低模量碳纤维材料,其弯曲强度通常在150~250GPa之间,弹性模量在100~150GPa之间。
低模量碳纤维材料具有较低的强度和模量,但具有良好的韧性和抗冲击性能,适用于制造运动器材、自行车车架和一些高性能船舶结构等。
此外,还有超高模量碳纤维材料,其弯曲强度和弹性模量都非常高,通常在400GPa以上。
超高模量碳纤维材料具有极高的强度和刚度,但脆性较高,一般适用于特殊领域,如高性能航空器件和先进兵器技术等。
除了以上几个等级外,还有一些特殊的碳纤维材料,如高导电碳纤维材料和热导率较高的碳纤维材料等,在特定领域有着独特的应用。
总的来说,不同等级的碳纤维材料具有不同的力学性能,适用于不同的应用领域。
随着科技的不断进步,碳纤维材料的研发和生产技术也在不断提高,相信未来会有更多更优秀的碳纤维材料涌现出来,为各个领域的应用提供更好的解决方案。
碳纤维物理性质分析碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的新型纤维材料。
它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。
作为高性能纤维的一种,碳纤维碳材料已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。
因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。
一、碳纤维性质碳纤维是一种力学性能优异的新材料。
他的比重不到钢的1/4,比铝还要轻,比强度是铁的20倍。
同钛、钢、铝等金属材料相比,碳纤维在物理性能上具有强度大、模量高、密度低、线膨胀系数小等特点,可以称为新材料之王。
因此,可以应用于飞机制造等军工领域、风力发电叶片等工业领域、GOLF球棒等体育休闲领域。
由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。
采用碳纤维与塑料制成的复合材料制造的飞机以及卫星、火箭等宇宙飞行器,噪音小,而且因质量小而动力消耗少,可节约大量燃料。
据报道,航天飞行器的质量每减少1kg,就可使运载火箭减轻500kg。
碳纤维除了具有一般碳素材料的特性:耐高温, 耐磨擦, 导电, 导热及耐腐蚀等, 其外形有显著的各向异性, 柔软, 可加工成各种织物, 又由于比重小, 沿纤维轴方向表现出很高的强度, 碳纤维增强环氧树脂复合材料, 其比强度、比模量综合指标, 在现有结构材料中是最高的。
碳纤维还具有极好的纤度〔纤度的表示法之一是9000米长纤维的克数〕,一般仅2约为19克, 拉力高达300kg/mm。
目前几乎没有其他材料像碳纤维那样具有那么多一系列的优异性能, 因此在旨度、刚度、重度、疲劳特性等有严格要求的领域,在要求高温,化学稳定性高的场合,碳纤维复合材料具备不可替代的仇势。
碳纤维的物理性质如下:3(1)碳纤维的密度在1.5—2.0g/cm之间,这除与原丝结构有关外,主要决定于炭化处理3的温度。
碳素碳纤强度排名
碳纤维是一种高强度、高模量的材料,其强度和模量都比钢铁和铝合金高很多。
碳纤维的强度排名因不同的生产工艺和用途而有所不同。
以下是一些常见的碳纤维强度排名:
1. 高温石墨化碳纤维:这种碳纤维经过高温处理,具有非常高的强度和模量,是碳纤维中最高级别的材料之一。
其拉伸强度和抗拉强度均超过3500MPa 和8000MPa,是其他碳纤维无法比拟的。
2. T700级碳纤维:这是目前世界上性能最好的碳纤维之一,其拉伸强度和抗拉强度分别达到3500MPa和6000MPa左右。
T700级碳纤维具有轻质、高强、高刚性的特点,广泛应用于航空、航天、军事、体育等领域。
3. T600级碳纤维:这种碳纤维的拉伸强度和抗拉强度分别达到3000MPa和5500MPa左右。
T600级碳纤维是较为常见的航空航天材料,用于制造飞机、卫星、火箭等结构件。
4. T300级碳纤维:这种碳纤维的拉伸强度和抗拉强度分别达到2500MPa和4500MPa左右。
T300级碳纤维具有较好的综合性能,适用于各种需要高强度、高刚性的场合,如汽车、体育器材等。
总之,不同级别的碳纤维具有不同的特点和用途,选择适合自己需要的碳纤维材料是至关重要的。
HCF:采用日本东丽24T高级碳纤维材料。
SCF采用日本东丽30T高级碳纤维材料。
VCF采用日本东丽40T~50T特级碳纤维材料。
TCF采用日本东丽55T~80T顶级碳纤维材料。
HVF:High Volume Fiber碳纤维材料30T-40T。
HCF:High Volume Carbon Fiber碳纤维材料24T。
以上意思是高碳纤维。
SVF:Super High Volume Fibe碳纤维材料40T-60T。
SCF:Super Volume Carbon Fiber碳纤维材料30T。
意思为超高碳纤维日本东丽(TORAY)顶级碳纤维材料(TCF)采用日本东丽55T~80T顶级碳纤维材料TCF。
优越的力学性能、高系数、高模数、重量轻。
2000℃以上高模碳纤维最终处理温度,导电性,热传导性、阻尼性能(振动频率),振频高,振动衰减快,敏锐性非常高,所以特别敏感,连小鱼吃饵的微波均可以感觉到,掌控鱼吃饵的瞬间,相对钓鱼获鱼率提高,非其他碳布所能比拟。
顶级碳纤布,更显现日本东丽新高科技的生产技术,所向疲靡。
日本东丽(TORAY)特级碳纤维材料(VCF)采用日本东丽40T~50T特级碳纤维材料VCF。
优越的力学性能、模数高、重量轻。
2000℃以上高模碳纤维最终处理温度,导电性,热传导性、阻尼性能(振动频率),振频高,振动衰减快,敏锐性非常高,所以特别敏感,连小鱼吃饵的微波均可以感觉到,相对钓鱼获鱼率大大提升。
特级碳纤布,高科技的生产技术,非一般碳纤维制造商所能生产,是日本东丽公司的得意代表作。
日本东丽(TORAY)高高级碳纤维材料(SCF)采用日本东丽30T高级碳纤维材料SCF。
抗疲劳性能、允许施加材料弯曲强度90%应力,比钢材料弯曲强度高一倍。
力学性能优越,强度大、模数高、重量轻、物性稳定。
日本东丽SCF碳布,是世界碳纤维生产商及钓竿制造商公认品质尖端的高上级材料。
日本东丽(TORAY)高级碳纤维材料(HCF)采用日本东丽24T高级碳纤维材料HCF。
碳纤维布强度等级划分碳纤维布是一种由碳纤维纱线编织而成的布料,具有轻质、高强度、耐腐蚀等优点,广泛应用于航空航天、汽车制造、体育器材等领域。
根据其强度等级的不同,碳纤维布可以分为多个类别,本文将从低强度等级到高强度等级依次介绍。
一、标准强度等级标准强度等级的碳纤维布是最常见的一种,其强度通常在1000MPa 左右。
这种碳纤维布具有较好的屈服强度和断裂强度,广泛用于航空航天领域中的结构件制造。
其制作工艺相对简单,成本相对较低,因此应用范围较广。
二、高强度等级高强度等级的碳纤维布强度一般在2000MPa以上,具有更高的强度和刚度,适用于对强度要求较高的领域。
例如,高强度等级的碳纤维布可以用于汽车制造中的车身结构件,能够提高车身的强度和刚度,提升车辆的安全性能。
三、超高强度等级超高强度等级的碳纤维布强度达到3000MPa以上,是目前市面上最高强度的碳纤维布。
这种碳纤维布通常采用特殊的制作工艺,经过多次纺织和预处理,以确保其纤维间的结合力和强度。
超高强度等级的碳纤维布被广泛应用于航空航天领域,如制造航空器的结构件、航天器的外壳等。
四、超高模量等级超高模量等级的碳纤维布具有极高的弹性模量,通常在100-200GPa 之间。
这种碳纤维布具有非常好的刚度和稳定性,适用于需要抗弯抗曲性能的领域。
例如,体育器材制造中的高尔夫球杆、网球拍等常采用超高模量等级的碳纤维布,以提高器材的稳定性和反弹性能。
碳纤维布的强度等级决定了其在不同领域的应用范围。
标准强度等级的碳纤维布适用于一般结构件的制造;高强度等级的碳纤维布适用于对强度要求较高的领域;超高强度等级的碳纤维布适用于航空航天领域;超高模量等级的碳纤维布适用于需要抗弯抗曲性能的领域。
随着科技的不断进步,碳纤维布的强度等级还将不断提升,为各个领域的应用提供更好的选择。
碳纤维强度等级碳纤维是一种轻质、高强度的材料,被广泛应用于航空航天、汽车、体育用品等领域。
根据其强度等级的不同,碳纤维可以分为不同等级,下面将就碳纤维强度等级进行介绍。
一、低强度碳纤维低强度碳纤维通常是指其拉伸强度在1000MPa以下的碳纤维。
这种碳纤维主要用于一些对强度要求不高的领域,比如一些日常生活用品、装饰品等。
尽管强度较低,但低强度碳纤维的优点在于价格相对较低,制造成本低廉。
因此,在一些对强度要求不高但对轻量化有需求的产品中,低强度碳纤维也有着广泛的应用。
二、中强度碳纤维中强度碳纤维的拉伸强度在1000MPa到3000MPa之间。
这种碳纤维已经具备了相当高的强度,可以满足一些对强度要求较高的领域,比如航空航天、汽车制造等。
中强度碳纤维的重量轻、刚性高、耐腐蚀等特点使其在这些领域有着广泛的应用。
在航天器、赛车、高端运动器材等领域,中强度碳纤维的身影随处可见。
三、高强度碳纤维高强度碳纤维的拉伸强度超过3000MPa,有的甚至可以达到7000MPa以上。
这种碳纤维是当前市场上最高端的产品,具备极高的强度和刚性,被广泛应用于一些对强度要求极高的领域,如航空航天的导弹、火箭、卫星等部件制造。
高强度碳纤维的应用领域非常有限,主要集中在一些对产品质量要求极高的领域。
四、超高强度碳纤维超高强度碳纤维是目前市场上最先进的碳纤维产品,其拉伸强度可以达到甚至超过10000MPa。
这种碳纤维是未来发展的方向之一,具备极高的强度和刚性,被广泛应用于一些对产品性能要求极高的领域,如高速列车、太空电梯等领域。
超高强度碳纤维的研发和应用将推动碳纤维材料的发展,为人类社会带来更多的科技创新和发展机遇。
总的来说,碳纤维的强度等级不仅决定了其在不同领域的应用范围,也反映了其在市场上的地位和竞争力。
随着科技的不断进步和碳纤维材料的不断创新,相信碳纤维在未来会有着更广阔的发展前景。
碳纤维的分类
碳纤维可以根据不同的分类方式进行分类,以下是几种常见的分类方式:
1. 基于织构结构:根据纤维的排列方式,分为两种类型:
- 纺织碳纤维:由织物编织而成,通常具有较高的柔韧性和拉伸强度。
- 铺蜂窝碳纤维:多为蜂窝状的结构,具有较高的刚性和压缩强度。
2. 基于纤维尺寸:根据纤维直径的不同,可分为:
- 高模碳纤维:直径较小,一般在5-7 μm之间,具有高强度和高模量。
- 中模碳纤维:直径在7-10 μm之间,具有较高的强度和适中的模量。
- 低模碳纤维:直径较大,一般在10-15 μm之间,具有较高的韧性和变形能力。
3. 基于纤维表面形态:根据纤维表面的形态和结构,可分为: - 平纹碳纤维:纤维表面平整,光滑,一般用于要求表面光洁度的应用。
- 毛刺碳纤维:表面有微小的毛刺,可以提供更好的粘附性能,适用于需要与其他材料结合的应用。
- 脱脂碳纤维:经过脱脂处理,表面光滑,去除了表面的毛刺,具有优异的表面质量。
4. 基于纤维制备方法:根据碳纤维的制备方法,可分为:
- 气相法制备的碳纤维(如气相吹纺、碳纳米管拉拔等):具有较高的强度和模量。
- 糊状或煤焦油浸渍法制备的碳纤维:具有较高的韧性和可塑性。
这些分类方式可以根据不同的需求和应用选择适合的碳纤维。
碳纤维—搜狗百科碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。
通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。
高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。
强度大于4000MPa的又称为超高强型;模量大于450GPa的称为超高模型。
随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。
用量最大的是聚丙烯腈PAN基碳纤维。
目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。
碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。
其间伴随的化学变化包括,脱氢、环化、氧化及脱氧等。
第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。
制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。
制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。
作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。
第二、预氧化(聚丙烯腈纤维200~300℃)、不融化(沥青200~400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。
第三、碳化,其温度为:聚丙烯腈纤维1000~1500℃,沥青1500~1700℃,粘胶纤维400~2000℃。
第四、石墨化,聚丙烯腈纤维为2500~3000℃,沥青2500~2800℃,粘胶纤维3000~3200℃。
第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。
第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。
所得纤维具有各种不同的断面结构。
要想得到质量好碳纤维,需要注意一下技术要点:(1)实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。
高性能纤维——碳纤维碳纤维是由碳元素组成的纤维,其90%以上的组成元素为比金刚石结构规整性稍差,力学性能也较金刚石稍差。
碳纤维结构近乎石墨结构,所以也具有很高的抗拉强度和模量。
其强度约为钢的四倍,密度仅为钢的四分之一。
碳纤维具有很高的比强度和比模量。
具有耐高温、使用温度2000℃。
在3000 ℃非氧化气氛中劳等一系列优良性能。
既可以作为结构材料承载负荷,又可以作为功能材料发挥按原料分粘胶基碳纤维(Rayon基CF)聚丙烯腈基碳纤维(PAN基CF)沥青基碳纤维(Pitch 基CF)目前能够工业化生产按制造步骤分碳纤维(C F)石墨纤维(G F)活性碳纤维(ACF)按力学性能分通用级(GP) 高性能级(HP)具有图示的结构,这种结构容易形成共轭结构的梯形高分子,使其能够承受较快的速度热解而保持原有的纤维状基本结构。
强度的进展:碳纤维之所以具有很高的抗拉强度主要由于类石墨高度取向。
其基本结构如图所示。
层片分子取向度主要因素。
碳纤维内部结构示意图N大分子结构式:CH 2CH CNn但是,由于其大分子链上有强极性和体积较大的氰基,使其分子间形成强的偶极力。
氰基的氮原子能与相邻分C CN H C CNCH2CH2C CN H C CNCH2CH2HC CN C CNPAN纤维的x-射线衍射图有二个显著特点:有明显的反射点(2)不存在晕圈只是二维有序,没有严格的结晶结构,只有相对有序的区域,形成所谓准结晶态在光学显微镜和电子显微镜下能直接观察到的纤维结构 截面形状原纤表面形态不同的溶剂路线,不同的工艺路线得到的PAN纤维形态结构也不一样。
纤各结其性的石墨晶体理论强度184GPa碳纤维实际强度9GPa 缺陷是影响碳纤维强度的主要因素,碳纤维的整个制且在向碳纤维的结构转化过程产生较少新的缺陷。
⏹原料及环境污染,以无机盐水溶液作溶剂湿法纺丝所得PAN 纤维,这类污染更多一些。
⏹直径为1-4微米带有典型的双圆锥空间的有机杂质,形状象彼此连接成群,这种缺陷主要呈现在湿法纺制的纤维中。
碳纤维规格与等级碳纤维,这玩意儿可真是神奇啊!你想想看,它又轻又强,就像一个小小的超级英雄藏在各种物品里。
碳纤维有不同的规格和等级呢,就跟咱人有高矮胖瘦、能力大小一样。
咱先说规格,那可多了去了。
有粗的有细的,粗的就像大力士的胳膊,能承受更大的力量;细的呢,就像小姑娘的发丝,灵活又精巧。
不同的规格适用于不同的场合呀,你总不能拿粗的去做精细活儿,也不能指望细的来扛大梁吧!再说说等级。
高等级的碳纤维那质量,简直没话说!那强度、那韧性,杠杠的!就好像学校里的学霸,啥难题都能轻松搞定。
低等级的呢,也不是说不好,就是在一些要求没那么高的地方也能发挥作用呀,就像成绩普通的同学,也有自己的闪光点嘛。
你看那些高端的自行车、赛车,好多都用上了碳纤维。
为啥呀?轻呗!速度快呗!让选手们就像长了翅膀一样在赛道上飞驰。
还有那些航天器材,对碳纤维的要求可高了,必须得是最顶尖的等级,不然怎么能在宇宙中经受住各种考验呢?咱平常生活里也能看到碳纤维的影子呢。
有些高级的球拍,用了碳纤维,打起来更带劲。
还有些精致的电子产品外壳,碳纤维让它们既好看又耐用。
这就好像一个普通人突然有了超能力,变得与众不同了。
那怎么判断碳纤维的规格和等级呢?这可得有点专业知识啦。
你得看看它的编织方式,摸摸它的质感,甚至要做些实验来检测它的性能。
这可不是随便谁都能搞定的,得有经验的人来才行。
就像医生看病,得通过各种检查和观察才能诊断出病情。
有人可能会问啦,那是不是越高级越好呢?嘿,这可不一定!得看具体需求呀。
如果只是做个简单的小玩意,用高等级的碳纤维不是浪费嘛。
但要是做重要的东西,那可不能马虎,就得用最好的。
这就跟咱吃饭一样,平常吃个家常菜就行,但要是请客吃饭,那就得弄点好菜了。
总之,碳纤维的规格和等级可是很有讲究的。
咱得了解它们,才能让它们在合适的地方发挥最大的作用。
别小看这小小的碳纤维,它说不定就能给我们的生活带来大变化呢!它就像是隐藏在各种物品里的魔法,等待着我们去发现和利用。
碳纤维材料牌号
1.T300系列
T300系列是一种应用广泛的碳纤维,具有高强度和中等模量。
该系列碳纤维适用于各种结构性应用,如航空航天船舶和汽车制造等。
它的优点在于重量轻、刚度高、疲劳寿命长,是一种性能出众的基础碳纤维。
2. T700系列
T700系列碳纤维具有较高的强度和刚度,广泛应用于航空航天、船舶、汽车和运动器材制造等领域。
相较于T300系列,T700系列具有更高的强韧性和更好的耐热性能,适用于高温环境下的工程应用。
3.T800系列
T800系列碳纤维是一种高性能碳纤维,综合力学性能非常优异。
它具有更高的强度、弹性模量和疲劳寿命,广泛应用于高端领域,如航空航天、赛车、体育器材等。
T800系列碳纤维还具有较低的热膨胀系数和优异的耐热性能,适用于高温工况下的特殊应用。
4.M40系列
M40系列碳纤维是一种高强度、中等模量的特种纤维。
它具有出色的强度和刚度,广泛应用于需求较高强度的领域。
M40系列碳纤维通常用于航空航天、武器装备、运动器
材等领域,是一种高性能的碳纤维。
不同级别碳纤维结构特点
不同级别的碳纤维结构特点有所不同,以下是各级别碳纤维的结构特点:
1. 一级碳纤维:具有高强度、高模量、低蠕变等特点,其拉伸强度和弹性模量均高于钢,且在高温下仍能保持较高的力学性能。
2. 二级碳纤维:高强度、高模量、良好的耐腐蚀性和抗氧化性、尺寸稳定性好、低蠕变、优良的耐磨损性、良好的导电导热性、阻燃性能好、可设计性强。
3. 三级碳纤板:表面光滑无接缝、厚度均匀、有韧性、耐高温可达300°C、绝缘性好、防静电、耐油污、使用寿命长。
4. 四级碳纤板:表面平滑、厚度一致,可以用于制作防弹背心和潜水艇等特殊场合。
总之,不同级别的碳纤维结构特点各异,根据不同的应用场景选择合适的碳纤维材料才能达到最佳的性能。