高中物理必修二试题
- 格式:doc
- 大小:483.00 KB
- 文档页数:8
教科版高中物理必修二复习试题及答案全套重点强化卷(一) 平抛运动规律的应用一、选择题1. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则()图1A.这些炸弹落地前排列在同一条竖直线上B.这些炸弹都落于地面上同一点C.这些炸弹落地时速度大小方向都相同D.相邻炸弹在空中距离保持不变【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同.两相邻炸弹在空中的距离为Δx=x1-x2=12g(t+1)2-12gt2=gt+12g.由此可知Δx随时间t增大而增大.【答案】AC2.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为()A.v0g B.2v0gC.3v 0gD.2v 0g【解析】 如图所示,gt 为物体落地时竖直方向的速度,由(2v 0)2=v 20+(gt )2得:t =3v 0g ,C 正确.【答案】 C3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A 、B 由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是( )图2A .B 镖的运动时间比A 镖的运动时间长 B .B 镖掷出时的初速度比A 镖掷出时的初速度大C .A 镖掷出时的初速度比B 镖掷出时的初速度大D .A 镖的质量一定比B 镖的质量小【解析】 飞镖A 、B 都做平抛运动,由h =12gt 2得t =2hg ,故B 镖运动时间比A 镖运动时间长,A 正确;由v 0=xt 知A 镖掷出时的初速度比B 镖掷出时的初速度大,B 错误,C 正确;无法比较A 、B 镖的质量大小,D 错误.【答案】 AC4.从O 点抛出A 、B 、C 三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体在空中运动的时间t A 、t B 、t C 的关系分别是( )图3 A.v A>v B>v C,t A>t B>t CB.v A<v B<v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C【解析】三个物体抛出后均做平抛运动,竖直方向有h=12gt2,水平方向有x=v0t,由于h A>h B>h C,故t A>t B>t C,又因为x A<x B<x C,故v A<v B<v C,C正确.【答案】C5.如图4所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s,不计空气阻力.若拦截成功,则v1、v2的关系应满足()图4A.v1=v2B.v1=Hs v2C.v1=Hs v2D.v1=sH v2【解析】设经t时间拦截成功,则平抛的炮弹下落h=12gt2,水平运动s=v1t;竖直上抛的炮弹上升H-h=v2t-12gt2,由以上各式得v1=s H v2,故D正确.【答案】D6.如图5所示,以9.8 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g取9.8 m/s2)()图5A.23s B.223sC. 3 s D.2 s【解析】把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向的速度v0,垂直地撞在斜面上时,既有水平方向分速度v0,又有竖直方向的分速度v y.物体速度的竖直分量确定后,即可求出物体飞行的时间.如图所示,把末速度分解成水平方向分速度v0和竖直方向的分速度v y,则有tan 30°=v0 v yv y=gt,解两式得t=v yg =3v0g= 3 s,故C 正确.【答案】C7.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图6所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的哪些(g 取10 m/s 2)( )图6A .1 m/sB .2 m/sC .3 m/sD .4 m/s【解析】 由h =12gt 2知,面片在空中的运动时间t =2hg =0.4 s ,而水平位移x =v 0t ,故面片的初速度v 0=xt ,将x 1=0.5 m ,x 2=1.5 m 代入得面片的最小初速度v 01=x 1t =1.25 m/s ,最大初速度v 02=x 2t =3.75 m/s ,即1.25 m/s ≤v 0≤3.75 m/s ,B 、C 选项正确.【答案】 BC8.(多选)从同一点沿水平方向抛出的A 、B 两个小球能落在同一个斜面上,运动轨迹如图7所示,不计空气阻力,则小球初速度v A 、v B 的关系和运动时间t A 、t B 的关系分别是( )图7A .v A >vB B .v A <v BC .t A >t BD .t A <t B【解析】 A 小球下落的高度小于B 小球下落的高度,所以根据h =12gt 2知t =2hg ,故t A <t B ,C 错误,D 正确;根据s =v t 知,B 的水平位移较小,时间较长,则水平初速度较小,故v A >v B ,A 正确,B 错误.【答案】AD9. (多选)如图8所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y 轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()图8A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大【解析】x=v0t,y=12gt2,所以t=2y g,由y b=y c>y a,得t b=t c>t a,选项A 错,B 对;又根据v0=x g2y,因为y b>y a,x b<x a,y b=y c,x b>x c,故v a>v b,v b>v c,选项C错,D对.【答案】BD10.如图9所示,P是水平面上的圆弧凹槽,从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A点沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,则()图9A.tan θ2tan θ1=2 B.tan θ1 tan θ2=2C.1tan θ1 tan θ2=2 D.tan θ1tan θ2=2【解析】 OA 方向即小球末速度垂线的方向,θ1是末速度与水平方向的夹角;BA 方向即小球合位移的方向,θ2是位移方向与竖直方向的夹角.由题意知:tan θ1=v y v 0=gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt由以上两式得:tan θ1 tan θ2=2.故B 项正确. 【答案】 B 二、计算题11.从离地高 80 m 处水平抛出一个物体,3 s 末物体的速度大小为 50 m/s ,g 取10 m/s 2.求:(1)物体抛出时的初速度大小; (2)物体在空中运动的时间; (3)物体落地时的水平位移.【解析】 (1)由平抛运动的规律知v =v 2x +v 2y3 s 末v =50 m/s ,v y =gt =30 m/s 解得v x =40 m/s ,即v 0=40 m/s. (2)物体在空中运动的时间t =2hg =2×8010 s =4 s.(3)物体落地时的水平位移x =v 0t =40×4 m =160 m. 【答案】 (1)40 m/s (2)4 s (3)160 m12.如图10所示,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g =10 m/s 2)求:图10(1)A点与O点的距离;(2)运动员离开O点时的速度大小.【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有L sin 37°=12gt2L=gt22sin 37°=75 m.(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即L cos 37°=v0t解得v0=L cos 37°t=20 m/s.【答案】(1)75 m(2)20 m/s重点强化卷(二) 圆周运动及综合应用一、选择题1.如图1所示为一种早期的自行车,这种带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()图1A.提高速度B.提高稳定性C.骑行方便D.减小阻力【解析】 在骑车人脚蹬车轮转速一定的情况下,据公式v =ωr 知,轮子半径越大,车轮边缘的线速度越大,车行驶得也就越快,故A 选项正确.【答案】 A2.两个小球固定在一根长为L 的杆的两端,绕杆的O 点做圆周运动,如图2所示,当小球1的速度为v 1时,小球2的速度为v 2,则转轴O 到小球2的距离是( )图2A.L v 1v 1+v 2B.L v 2v 1+v 2 C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2【解析】 两小球角速度相等,即ω1=ω2.设两球到O 点的距离分别为r 1、r 2,即v 1r 1 =v 2r 2 ;又由于r 1+r 2=L ,所以r 2=L v 2v 1+v 2,故选B.【答案】 B3.汽车在转弯时容易打滑出事故,为了减少事故发生,除了控制车速外,一般会把弯道做成斜面.如图3所示,斜面的倾角为θ,汽车的转弯半径为r ,则汽车安全转弯速度大小为( )图3A.gr sin θB.gr cos θC.gr tan θD.gr cot θ【解析】 高速行驶的汽车转弯时所需的向心力由重力和路面的支持力的合力提供同,完全不依靠摩擦力,如图.根据牛顿第二定律得: mg tan θ=m v 2r 解得:v =gr tan θ 故选C. 【答案】 C4.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图4所示,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )图4A .μmgB .μm v 2R C .μm (g -v 2R )D .μm (g +v 2R )【解析】 小球在最低点时,轨道支持力和重力的合力提供向心力,根据牛顿第二定律得F N -mg =m v 2R ,物体受到的摩擦力为f =μF N =μm (g +v 2R ),选项D 正确.【答案】 D5. (多选)如图5所示,用细绳拴着质量为m 的小球,在竖直平面内做圆周运动,圆周半径为R ,则下列说法正确的是( )图5A.小球过最高点时,绳子张力可能为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度为gRD.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反【解析】绳子只能提供拉力作用,其方向不可能与重力相反,D错误;在最高点有mg+F T=m v2R,拉力F T可以等于零,此时速度最小为v min=gR,故B 错误,A、C正确.【答案】AC6.如图6所示,质量为m的小球固定在长为l的细轻杆的一端,绕轻杆的另一端O在竖直平面内做圆周运动.球转到最高点A时,线速度大小为gl 2,此时()图6A.杆受到12mg的拉力B.杆受到12mg的压力C.杆受到32mg的拉力D.杆受到32mg的压力【解析】以小球为研究对象,小球受重力和沿杆方向杆的弹力,设小球所受弹力方向竖直向下,则N+mg=m v2l ,将v=gl2代入上式得N=-12mg,即小球在A点受杆的弹力方向竖直向上,大小为12mg,由牛顿第三定律知杆受到12mg的压力.【答案】B7. “快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,如图7所示,不考虑空气阻力和绳的质量(选手可看为质点),下列说法正确的是()图7A.选手摆动到最低点时所受绳子的拉力等于mgB.选手摆动到最低点时所受绳子的拉力大于mgC.选手摆动到最低点时所受绳子的拉力大于选手对绳子的拉力D.选手摆动到最低点的运动过程为匀变速曲线运动【解析】由于选手摆动到最低点时,绳子拉力和选手自身重力的合力提供选手做圆周运动的向心力,有T-mg=F向,T=mg+F向>mg,B正确,A错误;选手摆到最低点时所受绳子的拉力和选手对绳子的拉力是作用力和反作用力的关系,根据牛顿第三定律,它们大小相等、方向相反且作用在同一条直线上,故C错误;选手摆到最低点的运动过程中,是变速圆周运动,合力是变力,故D 错误.【答案】B8.如图8所示,两个水平摩擦轮A和B传动时不打滑,半径R A=2R B,A 为主动轮.当A匀速转动时,在A轮边缘处放置的小木块恰能与A轮相对静止.若将小木块放在B 轮上,为让其与轮保持相对静止,则木块离B 轮转轴的最大距离为(已知同一物体在两轮上受到的最大静摩擦力相等)( )图8A.R B 4B.R B 2C .R BD .B 轮上无木块相对静止的位置【解析】 摩擦传动不打滑时,两轮边缘上线速度大小相等.根据题意有:R A ωA =R B ωB 所以ωB =R A R BωA 因为同一物体在两轮上受到的最大静摩擦力相等,设在B 轮上的转动半径最大为r ,则根据最大静摩擦力等于向心力有:mR A ω2A =mrω2B得:r =R A ω2A ⎝ ⎛⎭⎪⎫R A R B ωA 2=R 2B R A =R B 2. 【答案】 B9.如图9所示,滑块M 能在水平光滑杆上自由滑动,滑杆固定在转盘上,M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度ω转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M ( )图9A .所受向心力变为原来的4倍B .线速度变为原来的12C .转动半径r 变为原来的12D .角速度变为原来的12【解析】 转速增加,再次稳定时,M 做圆周运动的向心力仍由拉力提供,拉力仍然等于m 的重力,所以向心力不变,故A 错误;转速增到原来的2倍,则角速度变为原来的2倍,根据F =mrω2,向心力不变,则r 变为原来的14.根据v =rω,线速度变为原来的12,故B 正确,C 、D 错误.【答案】 B10.在较大的平直木板上相隔一定距离钉几个钉子,将三合板弯曲成拱桥形卡入钉子内形成拱形桥,三合板上表面事先铺上一层牛仔布以增加摩擦,这样玩具惯性车就可以在桥面上跑起来了.把这套系统放在电子秤上做实验,关于实验中电子秤的示数下列说法正确的是( )图10A .玩具车静止在拱桥顶端时的示数小一些B .玩具车运动通过拱桥顶端时的示数大一些C .玩具车运动通过拱桥顶端时处于超重状态D .玩具车运动通过拱桥顶端时速度越大(未离开拱桥),示数越小【解析】 根据mg -F N =m v 2R ,F N =mg -m v 2R ,可见玩具车通过拱桥顶端时失重,速度越大,电子秤的示数越小.选D.【答案】 D二、计算题11.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m=0.6mg=m v2r,由速度v=30 m/s,得弯道半径r=150 m.(2)汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg-F N=m v2R,为了保证安全,车对路面间的弹力F N必须大于等于零,有mg≥m v2R,则R≥90 m.【答案】(1)150 m(2)90 m12.如图11所示,一光滑的半径为0.1 m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道对小球的压力恰好为零,g取10 m/s2,求:图11(1)小球在B点速度是多少?(2)小球落地点离轨道最低点A多远?(3)落地时小球速度为多少?【解析】(1)小球在B点时只受重力作用,竖直向下的重力提供小球做圆周运动的向心力,根据牛顿第二定律可得:mg=m v2Br代入数值解得:v B =gr =1 m/s.(2)小球离开B 点后,做平抛运动.根据平抛运动规律可得:2r =12gt 2s =v B t ,代入数值联立解得:s =0.2 m.(3)根据运动的合成与分解规律可知,小球落地时的速度为v =v 2B +(gt )2=5 m/s.【答案】 (1)1 m/s (2)0.2 m (3) 5 m/s重点强化卷(三) 万有引力定律的应用一、选择题1.两个密度均匀的球体相距r ,它们之间的万有引力为10-8N ,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为( )A .10-8NB .0.25×10-8 NC .4×10-8ND .10-4N【解析】 原来的万有引力为:F =G Mm r 2后来变为:F ′=G 2M ·2m (2r )2=G Mm r 2 即:F ′=F =10-8N ,故选项A 正确.【答案】 A2.已知引力常量G =6.67×10-11N·m 2/kg 2,重力加速度g =9.8 m/s 2,地球半径R =6.4×106 m ,则可知地球质量的数量级是( )A .1018 kgB .1020 kgC .1022 kgD .1024 kg【解析】 根据mg =G Mm R 2得地球质量为M =gR 2G ≈6.0×1024 kg.故选项D 正确.【答案】 D3.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A .已知它的质量是1.24 t ,若将它的质量增为2.84 t ,其同步轨道半径将变为原来的2倍B .它的运行速度大于7.9 km/sC .它可以绕过北京的正上方,所以我国能利用它进行电视转播D .它距地面的高度约为地球半径的5倍,故它的向心加速度约为其下方地面上物体的重力加速度的136【解析】 同步卫星的轨道半径是固定的,与质量大小无关,A 错误;7.9 km/s 是人造卫星的最小发射速度,同时也是卫星的最大环绕速度,卫星的轨道半径越大,其线速度越小.同步卫星距地面很高,故其运行速度小于7.9 km/s ,B 错误;同步卫星只能在赤道的正上方,C 错误;由G Mm r 2=ma n 可得,同步卫星的加速度a n =G M r 2=G M (6R )2=136G M R 2=136g ,故选项D 正确. 【答案】 D4.如图1所示,在同一轨道平面上的几个人造地球卫星A 、B 、C 绕地球做匀速圆周运动,某一时刻它们恰好在同一直线上,下列说法中正确的是( )图1A .根据v =gr 可知,运行速度满足v A >vB >v CB .运转角速度满足ωA >ωB >ωCC .向心加速度满足a A <a B <a CD .运动一周后,A 最先回到图示位置【解析】 由G Mm r 2=m v 2r 得,v =GMr ,r 大,则v 小,故v A <v B <v C ,A错误;由G Mm r 2=mω2r 得,ω=GMr 3,r 大,则ω小,故ωA <ωB <ωC ,B 错误;由G Mm r 2=ma 得,a =GM r 2,r 大,则a 小,故a A <a B <a C ,C 正确;由G Mm r 2=m 4π2T 2r 得,T =2πr 3GM ,r 大,则T 大,故T A >T B >T C ,因此运动一周后,C 最先回到图示位置,D 错误.【答案】 C5.(多选)据英国《卫报》网站2015年1月6日报道,在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b”.假设该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍.则该行星与地球的( )A .轨道半径之比为3p 2qB .轨道半径之比为3p 2C .线速度之比为3q pD .线速度之比为1p【解析】 行星公转的向心力由万有引力提供,根据牛顿第二定律,有G Mm R 2=m 4π2T 2R ,解得:R =3GMT 24π2,该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍,故:R 橙R 太=3(M 橙M 太)(T 行T 地)2=3qp 2,故A 正确,B 错误;根据v =2πR T ,有:v 行v 地=R 行R 地·T 地T 行=3qp 2·1p =3q p ;故C 正确,D 错误.【答案】 AC6.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 31GT 2C.4π2r 3GT 2 D.4π2r 2r 1GT 2【解析】 设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得,对S 1有G m 1m 2r 2=m 1(2πT )2r 1,解之可得m 2=4π2r 2r 1GT 2,则D 正确,A 、B 、C 错误.【答案】 D7.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R 和r ,则( )A .甲、乙两颗卫星的加速度之比等于R ∶rB .甲、乙两颗卫星所受的向心力之比等于1∶1C .甲、乙两颗卫星的线速度之比等于1∶1D .甲、乙两颗卫星的周期之比等于R ∶r【解析】 由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43G πRmρ,又由牛顿第二定律F =ma 可得,A 正确;卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误;由F =43G πRmρ,F =m v 2R 可得,选项C 错误;由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.【答案】 A8.嫦娥三号探测器绕月球表面附近飞行时的速率大约为1.75 km/s(可近似当成匀速圆周运动),若已知地球质量约为月球质量的81倍 ,地球第一宇宙速度约为7.9 km/s ,则地球半径约为月球半径的多少倍( )A .3倍B .4倍C .5倍D .6倍【解析】 根据万有引力提供向心力知,当环绕天体在中心天体表面运动时,运行速度即为中心天体的第一宇宙速度,由G Mm R 2=m v 2R 解得:v =GMR ,故地球的半径与月球的半径之比为R 1R 2=M 1M 2·v 22v 21,约等于4,故B 正确,A 、C 、D 错误. 【答案】 B9.如图2所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )图2A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度【解析】 b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GM r 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω= GM r 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v =GM r 知a 、c 的线速度大小相等,且大于d 的线速度,D 错.【答案】 B10.登上火星是人类的梦想.“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大【解析】 火星和地球都绕太阳做圆周运动,万有引力提供向心力,由GMmr 2=m 4π2T 2r =ma 知,因r 火>r 地,而r 3T 2=GM4π2,故T 火>T 地,选项A 错误;向心加速度a =GMr 2,则a 火<a 地,故选项B 正确;地球表面的重力加速度g 地=GM 地R 2地,火星表面的重力加速度g 火=GM 火R 2火,代入数据比较知g 火<g 地,故选项C 错误;地球和火星上的第一宇宙速度:v 地=GM 地R 地,v 火=GM 火R 火,v 地>v 火,故选项D 错误.【答案】 B 二、计算题11.经天文学家观察,太阳在绕着银河系中心(银心)的圆形轨道上运行,这个轨道半径约为3×104光年(约等于2.8×1020m),转动一周的周期约为2亿年(约等于6.3×1015s).太阳做圆周运动的向心力是来自位于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看做集中在银河系中心来处理问题.(G =6.67×10-11N·m 2/kg 2)用给出的数据来计算太阳轨道内侧这些星体的总质量.【解析】 假设太阳轨道内侧这些星体的总质量为M ,太阳的质量为m ,轨道半径为r ,周期为T ,太阳做圆周运动的向心力来自于这些星体的引力,则G Mm r 2=m 4π2T 2r故这些星体的总质量为M=4π2r3GT2=4×(3.14)2×(2.8×1020)36.67×10-11×(6.3×1015)2kg≈3.3×1041kg.【答案】 3.3×1041kg12.质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常量为G.图3(1)求两星球做圆周运动的周期.(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022kg.求T2与T1两者平方之比.(结果保留三位小数)【解析】(1)两星球围绕同一点O做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设OB为r1,OA为r2,则对于星球B:G MmL2=M4π2T2r1对于星球A:G MmL2=m4π2T2r2其中r1+r2=L由以上三式可得T=2πL3G(M+m).(2)对于地月系统,若认为地球和月球都围绕中心连线某点O做匀速圆周运动,由(1)可知地球和月球的运行周期T 1=2πL 3G (M +m )若认为月球围绕地心做匀速圆周运动,由万有引力与天体运动的关系:G MmL 2=m 4π2T 22L解得T 2=4π2L 3GM则T 22T 21=M +m M =1.012. 【答案】 (1)2πL 3G (M +m )(2)1.012重点强化卷(四) 动能定理和机械能守恒定律一、选择题1.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大【解析】 不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A 正确.【答案】 A2.(多选)质量为m 的物体,从静止开始以a =12g 的加速度竖直向下运动h 米,下列说法中正确的是( )A .物体的动能增加了12mgh B .物体的动能减少了12mghC.物体的势能减少了12mghD.物体的势能减少了mgh【解析】物体的合力为ma=12mg,向下运动h米时合力做功12mgh,根据动能定理可知物体的动能增加了12mgh,A对,B错;向下运动h米过程中重力做功mgh,物体的势能减少了mgh,D对.【答案】AD3.如图1所示,AB为14圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A从静止下滑时,恰好运动到C处停止,那么物体在AB段克服摩擦力做功为()图1A.12μmgR B.12mgRC.mgR D.(1-μ)mgR【解析】设物体在AB段克服摩擦力所做的功为W AB,物体从A到C的全过程,根据动能定理有mgR-W AB-μmgR=0,所以有W AB=mgR-μmgR=(1-μ)mgR.【答案】D4.如图2所示,木板长为l,木板的A端放一质量为m的小物体,物体与板间的动摩擦因数为μ.开始时木板水平,在绕O点缓慢转过一个小角度θ的过程中,若物体始终保持与板相对静止.对于这个过程中各力做功的情况,下列说法中正确的是()图2A.摩擦力对物体所做的功为mgl sin θ(1-cos θ)B.弹力对物体所做的功为mgl sin θcos θC.木板对物体所做的功为mgl sin θD.合力对物体所做的功为mgl cos θ【解析】重力是恒力,可直接用功的计算公式,则W G=-mgh;摩擦力虽是变力,但因摩擦力方向上物体没有发生位移,所以W f=0;因木块缓慢运动,所以合力F合=0,则W合=0;因支持力F N为变力,不能直接用公式求它做的功,由动能定理W合=ΔE k知,W G+W N=0,所以W N=-W G=mgh=mgl sin θ.【答案】C5. (多选)如图3所示,一个质量为m的物体以某一速度从A点冲上倾角为30°的光滑斜面,这个物体在斜面上上升的最大高度为h,则在此过程中()图3A.物体的重力势能增加了mghB.物体的机械能减少了mghC.物体的动能减少了mghD.物体的机械能不守恒【解析】物体在斜面上上升的最大高度为h,重力对物体做负功W=-mgh,物体的重力势能增加了mgh,故A正确;物体在上升过程中,只有重力做功,重力势能与动能之间相互转化,机械能守恒,故B、D均错误;由于物体所受的支持力不做功,只有重力做功,所以合力做功为-mgh,由动能定理可知,物体的动能减少了mgh,故C正确.。
一、选择题1.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就。
已知地球的质量为M,引力常量为G,飞船的质量为m,设飞船绕地球做匀速圆周运动的轨道半径为r,则()ABC.飞船在此圆轨道上运行的周期为2D2.“木卫二”在离木星表面高h处绕木星近似做匀速圆周运动,其公转周期为T,把木星看作一质量分布均匀的球体,木星的半径为R,万有引力常量为G。
若有另一卫星绕木星表面附近做匀速圆周运动,则木星的质量和另一卫星的线速度大小分别为()A.()3222R hGTπ+B.()3222R hGTπ+C.()3224R hGTπ+D.()3224R hGTπ+3.2020年10月22日,俄“联盟MS-16”载人飞船已从国际空间站返回地球,在哈萨克斯坦着陆。
若载人飞船绕地球做圆周运动的周期为090minT=,地球半径为R、表面的重力加速度为g,则下列说法正确的是()A.飞船返回地球时受到的万有引力随飞船到地心的距离反比例增加B.飞船在轨运行速度一定大于7.9km/sC.飞船离地高度大于地球同步卫星离地高度D4.对于绕地球做匀速圆周运动的人造地球卫星,下列说法错误的是()A.卫星做匀速圆周运动的向心力是由地球对卫星的万有引力提供的B.轨道半径越大,卫星线速度越大C.轨道半径越大,卫星线速度越小D.同一轨道上运行的卫星,线速度大小相等5.如图所示的三个人造地球卫星,则说法正确的是()A .卫星可能的轨道为a 、b 、cB .卫星可能的轨道为a 、cC .同步卫星可能的轨道为a 、cD .同步卫星可能的轨道为a 、b6.如图所示,甲、乙为两颗轨道在同一平面内的地球人造卫星,其中甲卫星的轨道为圆形,乙卫星的轨道为椭圆形,M 、N 分别为椭圆轨道的近地点和远地点,P 点为两轨道的一个交点,圆形轨道的直径与椭圆轨道的长轴相等。
以下说法正确的是( )A .卫星乙在M 点的线速度小于在N 点的线速度B .卫星甲在P 点的线速度小于卫星乙在N 点的线速度C .卫星甲的周期等于卫星乙的周期D .卫星甲在P 点的加速度大于卫星乙在P 点的加速度7.“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”。
最新人教版高中物理必修二单元测试题全套带答案第五章曲线运动单元测试题一、选择题(本大题共12小题,每小题4分,共48分)1.关于曲线运动,下列说法正确的是()A.物体在恒力作用下不可能做曲线运动B.物体在变力作用下一定做曲线运动C.做曲线运动的物体,其速度大小可能不变D.速度大小和加速度大小均不变的运动不可能是曲线运动2.关于平抛运动和圆周运动,下列说法正确的是()A.平抛运动是匀变速曲线运动B.匀速圆周运动是速度不变的运动C.圆周运动是匀变速曲线运动D.做平抛运动的物体落地时的速度一定是竖直向下的3.如图所示,平面直角坐标系xOy与水平面平行,在光滑水平面上,一做匀速直线运动的质点以速度v 通过坐标原点O,速度方向与x轴正方向的夹角为α,与此同时给质点加上沿x轴正方向的恒力F x和沿y 轴正方向的恒力F y,则此后()A.因为有F x,质点一定做曲线运动B.如果F y<F x,质点相对原来的方向向y轴一侧做曲线运动C.如果F y=F x tan α,质点做直线运动D.如果F x>F y cot α,质点相对原来的方向向y轴一侧做曲线运动4.乘坐如图所示游乐园的过山车时,质量为m的人随车在竖直平面内沿圆周轨道运动,下列说法正确的是( )A.车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去B.人在最高点时对座位仍可能产生压力,但压力一定小于mgC.人在最高点和最低点时的向心加速度大小相等D.人在最低点时对座位的压力大于mg5.一辆卡车匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是( )[来源:学科网ZXXK]A.a处B.b处C.c处 D.d处6.用跨过定滑轮的绳把湖中小船拉靠岸,如图所示,已知拉绳的速度v不变,则船速()A. 逐渐增大B. 逐渐减小C. 不变D.先增大后减小7.甲乙两同学在一幢楼的三楼窗口沿水平方向比赛掷垒球,甲掷垒球的水平距离正好是乙的两倍,若乙要想水平掷出相当于甲在三楼窗口掷出的距离,则乙应 ( ) A .在12楼窗口水平掷出 B .在9楼窗口水平掷出 C .在6楼窗口水平掷出 D .在5楼窗口水平掷出8.如图所示,靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍,A 、B 分别为大、小轮边缘上的点,C 为大轮上一条半径的中点,则( )A .两轮转动的角速度相等B .小轮转动的角速度是大轮的2倍C .质点加速度a A =2a BD .质点加速度a B =2a C9.如图右图所示,将完全相同的两个小球A 、B ,用长L=0.8 m 的细绳悬于以s m v o 4=向右匀速运动的小车的顶部,两球恰与小车前后壁接触,由于某种原因,小车突然停止运动,此时悬线的拉力之比F B ∶F A 为( 210s m g =)( )A.1∶4.B.1∶3C.1∶2D. 1∶110.质量m 的物体随水平传送带一起匀速运动,A 为传送带的终端皮带轮.皮带轮半径为r ,要使物体通过终端时能做平抛运动,皮带轮的转速n 至少为( )[来源:ZA.12πg rB.g rC.grD.gr2π11.如图所示,小物体位于半径为R 的半球顶端,若给小物体以水平初速度v 0时,小物体对球顶恰无压力,则下列说法错误的是( )A .物体立即离开球面做平抛运动B .物体落地时水平位移为2RC .物体的初速度v 0=gRD .物体着地时速度方向与地面成45°角12.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s二、实验题(本大题共2小题,共16分)13.小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,让小钢珠在水平桌面上从同一位置以相同初速度v 0运动,得到不同轨迹.图中a 、b 、c 、d 为其中四条运动轨迹,磁铁放在位置A 时,小钢珠的运动轨迹是________(填轨迹字母代号),磁铁放在位置B 时,小钢珠的运动轨迹是________(填轨迹字母代号).实验表明,当物体所受合外力的方向跟它的速度方向________(选填“在”或“不在”)同一直线上时,物体做曲线运动. 14.(1)在探究平抛运动的规律时,可以选用图甲所示的各种装置图,以下操作合理的是( )甲乙A .选用装置1研究平抛物体竖直分运动,应该用眼睛看A 、B 两球是否同时落地B .选用装置2时,要获得稳定的细水柱所显示的平抛轨迹,竖直管上端A 一定要低于水面C .选用装置3时,要获得钢球的平抛轨迹,每次不一定要从斜槽上同一位置由静止释放钢球D .除上述装置外,也能用数码照相机拍摄钢球做平抛运动的每秒十几帧至几十帧的照片,获得平抛轨迹(2)如图乙所示为一小球做平抛运动闪光照片的一部分,图中背景格的边长均为5 cm ,如果g 取10 m/s 2,求: ①闪光频率是________Hz ;②小球运动的水平分速度的大小是____m/s ; ③小球经过B 点时速度的大小是______m/s 。
物理必修模块2参考样卷(人教版)本试卷共4页,考试时间60分钟,满分100分。
一、本题共10小题,在每小题给出的四个选项中,只有一个选项......是符合题意的。
(每小题5分,共50分)1.做匀速圆周运动的物体,在运动过程中保持不变的物理量是A .动能B .速度C .加速度D .合外力 2.如图1所示,在光滑水平面上,一质量为m 的小球在绳的拉力作用下做半径为r 的匀速圆周运动,小球运动的线速度为v ,则绳的拉力F 大小为 A .rvmB . r v m 2C .mvrD .mvr 23.一颗运行中的人造地球卫星,到地心的距离为r 时,所受万有引力为F ;到地心的距离为2r 时,所受万有引力为A .FB .3FC .41F D .31F 4.如图2所示,一物块在与水平方向成θ角的拉力F 的作用下,沿水平面向右运动一段距离s . 则在此过程中,拉力F 对物块所做的功为A .FsB .Fs cos θC .Fs sin θD .Fs tan θ5.图3中虚线是一跳水运动员在跳水过程中其重心运动的轨迹,则从起跳至入水的过程中,该运动员的重力势能A .一直减小B .一直增大C .先增大后减小D .先减小后增大 6.关于弹性势能,下列说法正确的是 A .弹性势能与物体的形变量有关 B .弹性势能与物体的形变量无关C .物体运动的速度越大,弹性势能越大D .物体运动的速度越大,弹性势能越小7.下列所述的实例中(均不计空气阻力),机械能守恒的是A .小石块被水平抛出后在空中运动的过程B .木箱沿粗糙斜面匀速下滑的过程C .人乘电梯加速上升的过程D .子弹射穿木块的过程8.如图4所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8m. 取g=10m/s 2,则运动员跨过壕沟所用的时间为A .3.2sB .1.6sC . 0.8sD . 0.4s9.在公路上常会看到凸形和凹形的路面,如图5所示. 一质量为m 的汽车,通过凸形路面的最高处时对路面的压力为N 1,通过凹形路面最低处时对路面的压力为N 2,则A .N 1 > mgB .N 1 < mgC .N 2 = mgD .N 2 < mg10.汽车在水平公路上转弯,沿曲线由M 向N 行驶. 图6中分别画出了汽车转弯时所受合力F 的四种方向,你认为正确的是选择题答题卡12345678910二、实验题(共16分,其余每空2分)11.某同学用打点计时器研究物体自由下落过程中动能和势能的变化,来验证机械能守恒定律。
一、选择题1.一条船在静水中的速度为4m/s ,它要渡过一条40m 宽的大河,河水的流速为3m/s ,则下列说法错误的是( )A .船可以垂直于河岸航行B .船渡河的速度有可能为5m/sC .船到达对岸的最短时间为8sD .船到达对岸的最短距离为40m 2.如图所示,小船船头始终垂直于河岸行驶,且船速保持不变。
从A 点出发行驶至B 点,小船轨迹如图所示。
则下列说法正确的是( )A .河岸中心水速最大B .船可能做匀速运动C .水速将影响渡河时间,水速越大,渡河时间越短D .改变船速方向不会影响渡河时间3.如图所示,小球自足够长的斜面上的O 点水平抛出,落至斜面时速度与斜面方向的夹角用α表示,不计空气阻力,对小球在空中的运动过程以下说法正确的是( )A .初速度越大,α角越大B .初速度越大,α角越小C .运动时间与初速度成正比D .下落的高度与初速度成正比4.一小船在静水中的速度为3m /s ,它在一条河宽为300m 、水流速度为4m /s 的河流中渡河,下列说法正确的是( )A .小船到达正对岸的时间为100sB .小船渡河的时间可能为75sC .当小船以最短时间渡河时,小船相对河岸的速度大小为3m /sD .当小船以最短时间渡河时,渡河的位移大小为500m5.冬奥会跳台滑雪比赛,它是利用山势特点建造的一个特殊跳台。
简化模型如图所示,一运动员穿着专用滑雪板,在助滑路上获得高速后从A 点水平飞出,在空中飞行一段距离后在山坡上B 点着陆。
已知可视为质点的运动员水平飞出的速度020m/s v =,山坡看成倾角为37︒的斜面,不考虑空气阻力,(sin370.6︒=,cos370.8︒=)则关于运动员以下说法正确的是( )A .在空中飞行的时间为1.5sB .落到斜面上B 点时离A 点的距离为60mC .若运动员水平飞出速度减半,则落到斜面上时离A 点的距离减半D .若运动员水平飞出速度减半,则落到斜面上时速度方向不变6.用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图所示。
物理高中必修二试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,下列说法正确的是:A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 物体运动不需要力D. 力与加速度无关2. 物体做匀速圆周运动时,下列说法正确的是:A. 线速度不变B. 角速度不变C. 向心加速度大小不变D. 向心力大小不变3. 根据能量守恒定律,下列说法不正确的是:A. 能量既不能被创造也不能被消灭B. 能量可以在不同形式之间转化C. 能量的总量在转化过程中会减少D. 能量的转化和转移具有方向性4. 机械波的传播速度与介质有关,与波源无关。
下列说法正确的是:A. 波速只与介质有关B. 波速只与波源有关C. 波速与介质和波源都有关D. 波速与介质和波源都无关5. 根据热力学第一定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量的总量是不变的D. 能量的总量是可变的6. 根据理想气体状态方程,下列说法正确的是:A. 温度不变时,压强与体积成反比B. 体积不变时,压强与温度成正比C. 压强不变时,体积与温度成反比D. 以上说法都不正确7. 根据麦克斯韦方程组,下列说法正确的是:A. 变化的磁场可以产生电场B. 变化的电场可以产生磁场C. 恒定的磁场可以产生电场D. 恒定的电场可以产生磁场8. 根据光电效应,下列说法正确的是:A. 光子的能量与光的频率成正比B. 光子的能量与光的波长成反比C. 光子的能量与光的强度成正比D. 光子的能量与光的强度成反比9. 根据狭义相对论,下列说法不正确的是:A. 时间会随着速度的增加而变慢B. 长度会随着速度的增加而缩短C. 质量会随着速度的增加而增加D. 光速在任何惯性参考系中都是常数10. 根据量子力学,下列说法不正确的是:A. 粒子的位置和动量不能同时准确测量B. 粒子的状态可以用波函数描述C. 粒子的行为具有确定性D. 粒子的行为具有概率性答案:1. B2. C3. C4. A5. C6. B7. A8. A9. C 10. C二、填空题(每空2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小______,方向______,作用在______不同的物体上。
最新高中物理必修二单元测试题全套带答案详解(教科版)第一章抛体运动单元质量评估(90分钟 100分)[来源:学*科*网Z*X*X*K][来源:学§科§网]一、选择题(本大题共10小题,每小题4分,共40分。
每小题至少一个答案正确)1.某人游长江,他以一定的速度面部始终垂直河岸向对岸游去。
江中各处水流速度相等,他游过的路程,过河所用的时间与水速的关系是()A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关2.在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描述下落速度的水平分量大小vx 、竖直分量大小vy与时间t的图像,可能正确的是()3.滑雪运动员以20 m/s的速度从一平台水平飞出,落地点与飞出点的高度差为3.2 m。
不计空气阻力,g取10 m/s2。
运动员飞过的水平距离为s,所用时间为t,则下列结果正确的是()A.s=16 m,t=0.50 s B.s=16 m,t=0.80 sC.s=20 m,t=0.50 s D.s=20 m,t=0.80 s4.做曲线运动的物体,一定变化的物理量是()A.速率B.速度C.加速度D.合外力5.如图所示,沿y方向的一个分运动的初速度v1是沿x方向的另一个分运动的初速度v2的2倍,而沿y方向的分加速度a1是沿x方向的分加速度a2的一半。
对于这两个分运动的合运动,下列说法中正确的是()A.一定是曲线运动B.一定是直线运动C.可能是曲线运动,也可能是直线运动D.无法判定6.如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度va 和vb沿水平方向抛出,经过时间ta和tb后落到与两抛出点水平距离相等的P点。
若不计空气阻力,下列关系式正确的是()A.ta >tb,va<vbB.ta>tb,va>vbC.ta <tb,va<vbD.ta<tb,va>vb7.如图所示,斜面上有a、b、c、d四个点,且ab=bc=cd。
一、选择题1.如图所示,一个小球在F作用下以速率v做匀速圆周运动,若从某时刻起,小球的运动情况发生了变化,对于引起小球沿a、b、c三种轨迹运动的原因,下列说法正确的是()A.沿a轨迹运动,可能是F减小了一些B.沿b轨迹运动,一定是v增大了C.沿b轨迹运动,可能是F减小了D.沿c轨迹运动,一定是v减小了2.如图所示,长为0.3m的轻杆一端固定质量为m的小球(可视为质点),另一端与水平转轴O连接。
现使小球在竖直面内绕O点做匀速圆周运动,轻杆对小球的最大作用力为74mg,已知转动过程中轻杆不变形,取重力加速度g=10m/s2。
下列说法正确的是()A.小球转动的角速度为0.5rad/sB.小球通过最高点时对杆的作用力为零C.小球通过与圆心等高的点时对杆的作用力大小为54 mgD.小球在运动的过程中,杆对球的作用力总是沿杆方向3.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须()A.减为原来的12倍B.减为原来的14倍C.增为原来的2倍D.增为原来的4倍4.如图所示,质量为m的物块随水平转盘绕竖直固定轴做匀速圆周运动,角速度为ω,物块到轴的距离为l,则物块受到的摩擦力大小为()A.ml2ω2B.mlωC.ml 2ωD.mlω25.如图所示是两个圆锥摆,两个质量相等、可以看做质点的金属小球有共同的悬点,在相同的水平面内做匀速圆周运动,下面说法正确的是()A.A球对绳子的拉力较大B.A球圆周运动的向心力较大C.B球圆周运动的线速度较大D.B球圆周运动的周期较大L L=的细线拴在同一6.如图所示,两个质量相同的小球A、B,用长度之比为:3:2A B点,并在同一水平面内做匀速圆周运动,则它们的()ωω=A.角速度之比为:3:2A Bv v=B.线速度之比为:1:1A BF F=C.向心力之比为:2:3A BT T=D.悬线的拉力之比为:3:2A B7.下列关于运动和力的叙述中,正确的是()A.做曲线运动的物体,其加速度方向一定是变化的B .物体做圆周运动,所受的合力一定指向圆心C .物体所受合力方向与运动方向相反,该物体一定做直线运动D .物体运动的速率在增加,所受合力方向一定与运动方向相同8.长短不同、材料相同的同样粗细的两根绳子,各栓着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么( )A .两个小球以相同的线速度运动时,长绳易断B .两个小球以相同的角速度运动时,长绳易断C .两个小球以相同的周期运动时,短绳易断D .不论如何,长绳易断9.顺时针摇动水平放置的轮子,图为俯视图。
一、选择题1.“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年,则关于“坦普尔一号”彗星的下列说法中正确的是( )A .彗星绕太阳运动的角速度不变B .彗星在近日点处的线速度大于远日点处的线速度C .彗星在近日点处的加速度小于远日点处的加速度D .彗星在近日点处的机械能小于远日点处的机械能2.下列关于万有引力定律的说法中,正确的是( )①万有引力定开普勒在实验室发现的②对于相距很远、可以看成质点的两个物体,万有引力定律2Mm F Gr = 中的r 是两质点间的距离③对于质量分布均匀的球体,公式中的r 是两球心间的距离④质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力. A .①③ B .②④ C .②③ D .①④ 3.2020年12月17日,嫦娥五号成功返回地球,创造了我国到月球取土的伟大历史。
如图所示,嫦娥五号取土后,在P 点处由圆形轨道Ⅰ变轨到椭圆轨道Ⅱ,以便返回地球。
已知嫦娥五号在圆形轨道Ⅰ的运行周期为T 1,轨道半径为R ;椭圆轨道Ⅱ的半长轴为a ,经过P 点的速率为v ,运行周期为T 2。
已知月球的质量为M ,万有引力常量为G ,则( )A .3132T T a R =B .GM v a =C .GM v R =D .23214πR M GT = 4.如图所示,某极地轨道卫星的运行轨道平面通过地球的南北两极,已知该卫星从北纬60︒的正上方按图示方向第一次运行到南纬60︒的正上方时所用时间为1h ,则下列说法正确的是( )A.该卫星的运行速度—定大于7.9km/sB.该卫星与同步卫星的运行半径之比为1:4C.该卫星与同步卫星的运行速度之比为1:2D.该卫星的机械能一定大于同步卫星的机械能5.下面说法正确的是()A.曲线运动一定是变速率运动B.匀变速曲线运动在任意时间内速度的变化量都相同C.匀速圆周运动在相等时间的位移相同D.若地球自转角速度增大,则静止在赤道上的物体所受的支持力将减小6.已知一质量为m的物体分别静止在北极与赤道时对地面的压力差为ΔN,假设地球是质量分布均匀的球体,半径为R。
江苏省上冈高级中学2011-2012学年度第二学期期中考试高一物理试卷 2012.4.16一.单项选择题(本题共7小题,每小题3分,共21分) 1. 关于功,下列说法中正确的是( )A .力和位移都是矢量,所以功也是矢量B .功只有大小而无方向,所以功是标量C .功的大小仅由力决定,力越大,做功越多D .功的大小仅由位移决定,位移越大,做功越多2.如图直线AB 和CD 表示彼此平行且笔直的河岸。
若河水不流动,小船船头垂直河岸由A 点匀速驶向对岸,小船的运动轨迹为直线P 。
若河水以稳定的速度沿平行河岸方向流动,且整个河中水的流速处处相等,现仍保持小船船头垂直河岸由A 点匀速驶向对岸,则小船实际运动的轨迹可能是图中的( ) A .直线P B .曲线Q C .直线R D .曲线 S3. 放在光滑水平面上的物体,仅在两个互相垂直的水平力的共同作用下开始运动,若这两个力分别做了6J 和8J 的功,则该物体的动能增加了( )A .14JB .48JC .10JD .2J4.关于重力和万有引力的关系,下列认识错误的是( )A .地面附近物体所受的重力就是万有引力B .重力是由于地面附近的物体受到地球的吸引而产生的C .在不太精确的计算中,可以认为物体的重力等于万有引力D .严格来说重力并不等于万有引力,除两极处物体的重力等于万有引力外,在地球其他各处的重力都略小于万有引力5.如图有一个足够长倾角α=30º的斜坡,一个小孩在做游戏时,从该斜坡顶端将一足球沿水平方向水平踢出去,已知足球被踢出时的初动能为9J ,则该足球第一次落在斜坡上时的动能为( )A .12JB .21JC .27JD .36J6.如图是演示小蜡块在玻璃管中运动规律的装置.现让玻璃管沿水平方向做初速度为零的匀加速直线运动,同时小蜡块从O 点开始沿竖直玻璃管向上做匀速直线运动,那么下图中能够大致反映小蜡块运动轨迹的是( )A B C D7.将行星绕恒星运动的轨道当做成圆形,那么它运行的周期T 的平方与轨道半径R 的三次yxxyxyxyxyQR S PA BDC方之比为一常数k ,即K=T 2 /R 3,则常数k 的大小( )A .只与行星的质量有关B .只与恒星的质量有关C .与恒星的质量及行星的质量均没有关系D .与恒星的质量及行星的质量都有关系二.多项选择题(本题共5小题,每小题4分,共20分。
选对的得4分,选不全的得2分。
) 8.如图所示的皮带传动中,两轮半径不等,下列说法正确的是( )A .两轮角速度相等B .两轮边缘线速度的大小相等C .同一轮上各点的向心加速度跟该点与中心的距离成正比D .大轮边缘一点的向心加速度大于小轮边缘一点的向心加速度9.关于同步卫星(它相对于地面静止不动),下列说法中正确的是( ).A .它可以定位在我们伟大的首都北京的正上空B .世界各国发射的同步卫星的高度和速率,数值分别都是相同的C .它运行的线速度一定小于第一宇宙速度D .它运行的线速度一定介于第一宇宙速度和第二宇宙速度之间10. 图为测定运动员体能的装置,轻绳拴在腰间沿水平线跨过定滑轮(不计滑轮的质量与摩擦),下悬重为G 的物体。
设人的重心相对地面不动,人用力向后蹬传送带,使水平传送带以速率v 逆时针转动。
则( )A .人对重物做功,功率为GvB .人对传送带的摩擦力大小等于G ,方向水平向左C .在时间t 内人对传送带做功消耗的能量为GvtD .若增大传送带的速度,人对传送带做功的功率不变11.我国“嫦娥二号”探月卫星经过无数人的协作和努力,于2010年10月1日18时59分57秒在四川西昌卫星发射中心发射升空。
如图所示,“嫦娥二号”探月卫星在由地球飞向月球时,沿曲线从M 点向N 点飞行的过程中,速度逐渐减小。
在此过程中探月卫星所受合力下列图中方向不可能的是 ( )12.质量为m 的物体沿着半径为R 的半球形金属球壳滑到最低点时的速度大小为υ,如图所示,若物体与球壳之间的摩擦因数为μ,则物体在最低点时的( )A .向心加速度为υ2rB .向心力为m (g+υ2r)C .对球壳的压力为mυ2rD .受到的摩擦力为μm (g +υ2r)江苏省上冈高级中学2011-2012学年度第二学期期中考试高一物理答题纸 2012.4.16A B C D一.单项选择题(本题共7小题,每小题3分,共21分)二.多项选择题(本题共5小题,每小题4分,共20分)★选择题答案请涂在答题卡上★三.实验题(本题共2小题,每空3分,共15分)13.在研究平抛物体运动实验中,用一张印有小方格的纸记录轨迹,小方格的边长L=1.25cm.若小球在平抛运动途中的几个位置如图中的a、b、c、d所示,则小球平抛的初速度的计算式为V0=______________(用L、g表示),其值是____________.(取g=9.8米/秒2)14.小胡同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度。
他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度。
如上图所示是自行车的传动示意图,其中Ⅰ是大齿轮,Ⅱ是小齿轮,Ⅲ是后轮。
当大齿轮Ⅰ(脚踏板)的转速通过测量为n(r/s)时,则大齿轮的角速度是 rad/s。
若要知道在这种情况下自行车前进的速度,除需要测量大齿轮Ⅰ的半径r1,小齿轮Ⅱ的半径r2外,还需要测量的物理量是。
用上述物理量推导出自行车前进速度的表达式为:。
四.计算题.本题共4小题,共44分.解答应写出文字说明、方程式和重要演算步骤,只写出最后答案的不能给分.有数值计算的题,答案中必须明确写出数值和单位.15、(9分)如图所示,板长为L,板的B端静止放有质量为m的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,求在这个过程中:(1)重力对小物体做的功;(2)摩擦力对小物体做的功;(3)板对小物体做的功.16、(10分)已知地球半径为R,地球表面的重力加速度为g,不考虑地球自转的影响。
求:(1)地球第一宇宙速度v1的表达式;(2)若地球自转周期为T,计算地球同步卫星距离地面的高度h;R=,平台与轨道的最高点17.(12分)如图竖直平面内有一光滑圆弧轨道,其半径为0.5m等高.一质量0.8kgm=的小球从平台边缘的A处水平射出,恰能沿圆弧轨道上P点的切线方向进入轨道内侧,轨道半径OP与竖直线的夹角为53°,已知sin53°=0.8,cos53°=0.6,g取10/m2.试求:(1)小球从平台上的A点射出时的速度大小v;(2)小球从平台上的射出点A到圆轨道人射点P之间的距离l;(结果可用根式表示)(3)小球沿轨道通过圆弧的最高点Q时对轨道的压力大小.18.(13分)如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,装置静止时细线AB水平,细线AC与竖直方向的夹角θ=37º.已知小球的质量m=1kg,细线AC长L =1m, B点距C 点的水平和竖直距离相等.(重力加速度g取10m/s2,3sin375︒=,4cos375︒=)(1)若装置匀速转动的角速度为ω1时,细线AB上的张力为零而细线AC与竖直方向夹角仍为37º,求角速度ω1的大小;(2)若装置匀速转动的角速度2ω=,求细线AC与竖直方向的夹角;(3)装置可以以不同的角速度匀速转动,试通过计算在坐标图中画出细线AC 上张力T 随角速度的平方ω2变化的关系图象.(计算过程可在草稿纸上完成)5)2江苏省上冈高级中学2011-2012学年度第二学期期中考试高一物理答案 2012.4.16一.单项选择题1.B2.C3.A 4.A 5.B 6.C 7.B二.多项选择题8. BC 9. BC 10. BC 11. ABD三.实验题13. 20.70米/秒14.2πn, r 3, 2πn 231r r r四.计算题.15、解:(1)根据重力功的特点可求得 W G = - mglsin α ------(2分) (2) 由于静摩擦力沿板向上,运动中它始终与速度垂直,所以它不做功,即W f = 0 ------(3分) (3)对小物体在此过程中用动能定理∑∆=KEW即有 W G + W 板 =0 ------(3分) 解得 W 板 = mglsin α ------(1分)16、解:(1)第一宇宙速度等于近地卫星的环绕速度,对近地卫星列牛顿第二定律方程有 Rvm mg 21=------(3分)解得第一宇宙速度 gR v =1------(2分)(2)对同步卫星列牛顿第二定律方程有22)2)(()(T h R m h R GMm π+=+------(2分) 式中 GM=gR 2------(1分) 联立解得 R T gR h -=32224π------(2分) 17.(1)3m/s (2)5132m (3)6.4N18.解(1)细线AB 上张力恰为零时有21tan 37sin 37mg m l ω︒=︒ 解得 1505rad/s 2rad/s cos3742g l ω===︒(2)250rad/s 3ω=>150rad/s 4ω=时,细线AB 应松弛22tan 'sin 'mg m l θωθ= 解得 3cos '5θ= '53θ=︒ 此时细线AB 恰好竖直,但张力为零.(3)152rad/s 2ωω≤=时,细线AB 水平,细线AC 上张力的竖直分量等于小球的重力 cos T mg θ=12.5N cos mgT θ==12ωωω≤≤时细线AB 松弛细线AC 上张力的水平分量等于小球做圆周运动需要的向心力2sin sin T m l θωθ= 2T m l ω=2ωω>时,细线AB 在竖直方向绷直,仍然由细线AC 上张力的水平分量提供小球做圆周运动需要的向心力 2sin sin T m l θωθ= 2T m l ω=综上所述 152rad/s 2ωω≤=时,12.5N T =不变 1ωω>时,22(N)T m l ωω==2T ω-关系图象如图所示。