【全国市级联考】山东省德州市2016-2017学年高二下学期期末考试数学(理)试题
- 格式:docx
- 大小:320.46 KB
- 文档页数:21
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
高二数学(理科)试题第Ⅰ卷(共60分)一、选择题(本大题共12个小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的为()A BC2.)A3.)AC4.)A.0.20 B.0.30 C.0.70 D.0.805.)A6.从1,2,3,4,5,6,7,8,9中不放回地依次取2数”)A7.时,要做的假设是()A BC D8.)A.21 B.63 C.189 D.7299.)ABCD10.)A.3 D.111.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.26 C.7 D.1212.)A第Ⅱ卷(共90分)二、填空题(每小题5分,共计20分)13.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表附:14.围成的封闭图形的面积是.15.定义:“拐点”,有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.16..下列函数为2倍值函数的是(填上所有正确的序号).三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17...18..19.某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.9箱水时,预计收入为多少元?.1(inb==∑bx20.如图(1成,如图(2).为了美观,米,容积为4立方分米(不计厚度),假设该首饰盒的制作费用只与其表面积有关,下半部分的制作费用为每平方分米2百元,上半部制作费用为每平方分米4百元,设该首饰盒的制作.21.垂直..22.选修4-4:坐标系与参数方程,.23.选修4-5:不等式选讲.高二数学(理科)试题参考答案一、选择题1-5: CABBD 6-10: BDCCD 11、12:BA二、填空题13. 99.5 14. 1 15. 2018 16. ①②④三、解答题17.解:-3,2.18.19.解:19212b +=206元;0,300,500,600,800,1000;20.解:...21.解:..恒成立,.22.解:.23.解:,。
高二数学(理科)试题第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知命题,则为()A. B.C. D.2. 抛物线的焦点坐标是()A. B. C. D.3. 过点且与直线平行的直线方程是()A. B.C. D.4. 若变量满足约束条件,则的最大值为()A. 1B. 2C. 3D. 45. 如图是一个几何体的三视图,根据图中的数据(单位:),可知此几何体的体积是()......A. B.C. D.6. 圆与圆的位置关系为()A. 内切B. 相交C. 外切D. 相离7. “”是“方程表示双曲线”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 过点引直线与曲线相交于两点,为坐标原点,当的面积取最大值时,直线的斜率等于()A. B. C. D.9. 设是两条不同直线,是两个不同的平面,下列命题正确的是()A. 且,则B. 且,则C. ,则D. ,则10. 设分别是双曲线的左、右焦点.圆与双曲线的右支交于点,且,则双曲线离心率为()A. B. C. D.11. 在正方体中,分别是中点,则与所成角的余弦值为()A. B. C. D.12. 已知,抛物线的焦点为,射线与抛物线相交于点,与其准线相交于点中,若,则三角形面积为()A. B. C. 4 D.第Ⅱ卷非选择题(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在空间直角坐标系中,正方体的顶点的坐标为,其中心的坐标为,则该正方体的棱长等于__________.14. 某隧道的拱线设计半个椭圆的形状,最大拱高为6米(如图所示),路面设计是双向车道,车道总宽为米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽至少应是__________米.15. 已知是球的球面上两点,为该球面上的动点.若三棱锥体积的最大值为,则球的表面积为__________.16. 已知圆,圆,若圆上存在点,过点作圆的两条切线,切点为,使得,则实数的最大值与最小值之和为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知圆,直线.(1)当为何值时,直线与圆相切;(2)当直线与圆相交于两点,且时,求直线的方程.18. 如图,已知所在的平面,是的直径,是上一点,且是中点,为中点.(1)求证:面;(2)求证:面;(3)求三棱锥的体积.19. 已知命题直线和直线垂直;命题三条直线将平面划分为六部分.若为真命题,求实数的取值集合.20. 已知四棱锥,四边形是正方形,.(1)证明:平面平面;(2)若为的中点,求二面角的余弦值.21. 已知抛物线上一点到其焦点的距离为2.(1)求抛物线的方程;(2)若直线与圆切于点,与抛物线切于点,求的面积.22. 椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线与轴平行时,直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)在轴上是否存在异于点的定点,使得直线变化时,总有?若存在,求出点的坐标;若不存在,请说明理由.。
2016-2017学年度高二第二学期期末考试理科数学试题及答案试卷类型:A高二数学(理科)试题2017.7注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚,并粘好条形码。
请认真核准条形码上的准考证号、姓名和科目。
3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答。
答在本试卷上无效。
5.第(22)、(23)小题为选考题,请按题目要求从中任选一题作答,并用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
6.考试结束后,将本试卷和答题卡一并收回。
附:回归方程ˆˆˆy bx a =+中斜率与截距的最小二乘估计公式分别为:∑∑∑∑====--=---=n i i ni ii n i i ni iixn x yx n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-= 第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)已知复数iiz +-=122,其中i 是虚数单位,则z 的模等于(A )2- (B) 3 (C) 4 (D) 2(2)用反证法证明某命题时,对结论:“自然数cb a ,,中恰有一个偶数”正确的反设为(A) cb a ,,中至少有两个偶数 (B)c b a ,,中至少有两个偶数或都是奇数(C)cb a ,,都是奇数 (D)cb a ,,都是偶数(3)用数学归纳法证明:对任意正偶数n ,均有41212111...4131211+++=--++-+-n n n n ( )21...n++,在验证2=n 正确后,归纳假设应写成(A )假设)(*N k k n ∈=时命题成立 (B )假设)(*N k k n ∈≥时命题成立(C )假设)(2*N k k n ∈=时命题成立 (D )假设))(1(2*N k k n ∈+=时命题成立(4)从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有(A )30种 (B) 32 种 (C) 34种 (D) 35种(5)曲线xe y =在点()22e ,处的切线与坐标轴所围三角形的面积为(A)22e (B)2e (C)22e (D)492e(6)已知随机变量X服从正态分布()2,3σN ,且)3(41)1(>=<X P X P ,则)5(<X P 等于(A) 81 (B) 85 (C) 43 (D) 87(7)已知⎰≥3sin 2πxdxa ,曲线)1ln(1)(++=ax aax x f 在点())1(,1f 处的切线的斜率为k ,则k 的最小值为(A)1 (B) 23 (C)2 (D) 3 (8)甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为p ,4332,,且他们是否通过测试互不影响.若三人中只有甲通过的概率为161,则甲、丙二人中至少有一人通过测试的概率为(A) 87 (B) 43 (C) 85 (D) 76(9)函数)1(2)(3-'+=f x x x f ,则函数)(x f 在区间[]3,2-上的值域是(A)]9,24[- (B)]24,24[- (C) ]24,4[(D)[]9,4 (10)设()()5522105)1(...1)1(1x a x a x a a x +++++++=-,则420a a a++等于(A) 242 (B) 121 (C) 244 (D)122 (11)已知函数)()()(2R b xbx x e x f x ∈-=.若存在⎥⎦⎤⎢⎣⎡∈2,21x ,使得)()(>'+x f x x f ,则实数b 的取值范围是(A) ⎪⎭⎫⎝⎛∞-65, (B) ⎪⎭⎫ ⎝⎛∞-38, (C)⎪⎭⎫⎝⎛-65,23 (D)⎪⎭⎫⎝⎛∞+,38(12)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设)0(,,>m m b a 为整数,若a 和b被m 除得的余数相同,则称a 和b 对模m 同余,记为)(mod m b a =.如9和21被6除得的余数都是3,则记)6(mod 219=.若20202022201200202...22⋅++⋅+⋅+=C C C C a ,)10(mod b a =,则b 的值可以是(A) 2011 (B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。
山东省德州市高二下学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015高二上·福建期末) 下列有关命题的说法正确的是()A . “若x≠a且x≠b,则x2﹣(a+b)x+ab≠0”的否命题为:“若x=a且x=b,则x2﹣(a+b)x+ab=0”B . “x=﹣1”是“x2﹣5x﹣6=0”的根的逆命题是真命题C . 命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D . 命题“若x=y,则sinx=siny”的逆否命题为真命题2. (2分) (2016高二下·丰城期中) 已知a,b∈R,i是虚数单位,若a+i与2﹣bi互为共轭复数,则(a+bi)2=()A . 3﹣4iB . 3+4iC . 5﹣4iD . 5+4i3. (2分) (2019高二上·龙江月考) 已知双曲线的焦距为,且双曲线的一条渐近线方程为,则双曲线的方程为()A .B .C .D .4. (2分) (2015高二上·葫芦岛期末) 下列命题中错误的是()A . 命题“若x2﹣5x+6=0则x=2”的逆否命题是“若x≠2则x2﹣5x+6≠0”B . 命题“已知x、y∈R,若x+y≠3,则x≠2或y≠1是真命题”C . 已知命题p和q,若p∨q为真命题,则命题p与q中必一真一假D . 命题p:∃x0∈R,x02+x0+1<0,则¬p:∀x0∈R,x02+x0+1≥05. (2分) (2016高二上·郑州期中) 已知p:关于x的方程ax2+2x+1=0至少有一个负根,q:a≤1,则¬p 是¬q的()A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 不充分也不必要条件6. (2分)已知直棱柱的底面是边长为3的正三角形,高为2,则其外接球的表面积()A . 6B . 8C . 12D . 167. (2分)椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到其准线的距离是()A .B .C .D .8. (2分)以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是()A .B .C .D .9. (2分) (2016高二上·成都期中) 已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A . (¬p)∨qB . p∧qC . (¬p)∧(¬q)D . (¬p)∨(¬q)10. (2分) (2017高二下·太仆寺旗期末) 如图所示,阴影部分的面积为()A .B . 1C .D .11. (2分)一个空间几何体的三视图及其相关数据如图所示,则这个空间几何体的表面积是()A .B .C . 11πD .12. (2分)18×17×16×…×9×8等于()A .B .C .D .二、填空题 (共4题;共7分)13. (1分) (2017高二下·临淄期末) 已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=________.14. (1分)(2017·自贡模拟) 已知n= x3dx,则(x﹣)n的展开式中常数项为________.15. (1分)(2017·延边模拟) 已知抛物线y= x2 , A,B是该抛物线上两点,且|AB|=24,则线段AB 的中点P离x轴最近时点的纵坐标为________.16. (4分)(理)现在有A、B、C、D 四人在晚上都要从桥的左边到右边.此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒.四人过桥最快所需时间如下为:A 2 分;B 3 分;C 8 分;D 10分.走的快的人要等走的慢的人,要求四人在21分钟内全部从左边走到桥的右边,那么你来安排一下如何过桥:先是A 和B一起过桥,然后________独自返回.返回后将手电筒交给________和________,让他们一起过桥,到达对岸后,将手电筒交给________,让他将手电筒带回,最后A、B再次一起过桥.三、解答题 (共8题;共70分)17. (10分) (2015高三上·连云期末) 在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,已知sinA=,tan(A﹣B)=﹣.(1)求tanB的值;(2)若b=5,求c.18. (5分)(2017·沈阳模拟) 为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).报考“经济类”不报“经济类”合计男62430女14620合计203050(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.附:参考数据:P(X2≥k)0.050.010k 3.841 6.635(参考公式:X2= )19. (5分) (2017高三下·静海开学考) 如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,BC∥AD,CD⊥平面PAD,点O,E分别是AD,PC的中点,已知PA=PD,PO=AD=2BC=2CD=2.(Ⅰ)求证:AB⊥DE;(Ⅱ)求二面角A﹣PC﹣O的余弦值;(Ⅲ)设点F在线段PC上,且直线DF与平面POC所成角的正弦值为,求线段DF的长.20. (10分) (2016高二上·长春期中) 已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21. (10分) (2015高二下·登封期中) 某商店商品每件成本10元,若售价为25元,则每天能卖出288件,经调查,如果降低价格,销售量可以增加,且每天多卖出的商品件数t与商品单价的降低值x(单位:元,0≤x≤15)的关系是t=6x2 .(1)将每天的商品销售利润y表示成x的函数;(2)如何定价才能使每天的商品销售利润最大?22. (10分)如图,CA,CB分别与圆O切于A,B两点,AE是直径,OF平分∠BOE交CB的延长线于F,BD∥AC.(1)证明:OB2=BC•BF;(2)证明:∠DBF=∠AOB.23. (10分) (2016高二下·卢龙期末) 已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数),点A的极坐标为(,),设直线l与圆C交于点P、Q.(1)写出圆C的直角坐标方程;(2)求|AP|•|AQ|的值.24. (10分)(2017·临川模拟) 已知函数f(x)=|x+a|+|x+ |(a>0,m∈R,m≠0).(1)当a=2时,求不等式f(x)>3的解集;(2)证明:.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共7分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共70分) 17-1、17-2、18-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。
绝密★启用前【全国市级联考】2016-2017学年山东省德州市高二上学期期末检测数学(文)试卷(带解析)试卷副标题考试范围:xxx ;考试时间:66分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .2、已知分别是椭圆的左右焦点,点是椭圆的右顶点,为坐标原点,若椭圆上的一点满足,则椭圆的离心率为( ) A .B .C .D .3、设抛物线的焦点为,过点的直线交抛物线于两点,若线段的中点到轴的距离为3,则弦的长为( )A .5B .8C .10D .124、已知点,若直线与线段相交,则实数的取值范围是( ) A .B .或C .D .或5、点为圆上一点,过的圆的切线为,且与:平行,则与之间的距离是( )A .B .C .D .6、已知是两个不重合的平面,是两条不同的直线,则下列命题中正确的是( )A .若,则B .若,则C .若,则D .若,则7、已知,则“”是“直线与直线垂直”的( )A .充要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件8、命题“,使”的否定为( ) A .,使 B .,使C .,D .,A. B. C. D.10、直线与函数的图象有相异三个交点,则的取值范围是()A. B. C. D.11、当满足条件时,目标函数的最大值是()A.3 B.4 C.5 D.612、下列双曲线中,渐近线方程为的是()A. B.C. D.第II卷(非选择题)二、填空题(题型注释)13、体积为8的正方体的顶点都在同一个球面上,则该球的体积为__________.14、已知是定义在上的奇函数,又,若时,,则不等式的解集是__________.15、已知抛物线上一点到焦点的距离,则焦点的坐标为__________.16、圆和圆的位置关系为__________.三、解答题(题型注释)17、某商店销售某种商品,经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式其中,a为常数。
2016—2017学年度第二学期教学质量检查 高二理科数学考生注意:本卷共三大题,22小题,满分150分. 考试用时120分钟,不能使用计算器.第Ⅰ卷 选择题一、选择题:本大题共12小题,每小题5分,共60分. 每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号在答题卡中的相应位置涂黑.1.已知i 为虚数单位,则复数21i z i=+的共轭复数z =( ) A. 1i - B. 1i + C. 1i -+ D. 1i --2.函数2()(1)f x x =+的导函数为( )A .1)(+='x x fB .12)(+='x x fC .2)(+='x x fD .22)(+='x x f3.已知随机变量X 服从正态分布即2(,)XN μσ,且()0.6826P X μσμσ-<≤+=,若随机变量(5,1)X N ,则(6)P X ≥=( )A .0.3413B .0.3174C .0.1587D .0.15864.若离散型随机变量ξ的取值分别为,m n ,且3(),(),8P m n P n m E ξξξ=====,则22m n +的值为( )A .14B .516C .58D .13165.'()f x 是()f x 的导函数,'()f x 的图象如右图所示,则()f x 的大致图象只可能是( )A B C D 6.将甲、乙、丙、丁四名学生分配到三个不同的班,每个班至少一名,则不同分法的种数为( )A .18B .24C .36D .727.为直观判断两个分类变量X 和Y 之间是否有关系,若它们的取值分别为{}21,x x 和{}21,y y ,通过抽样得到频数表为:则下列哪两个比值相差越大,可判断两个分类变量之间的关系应该越强( )y 1 y 2 x 1 a b x 2 c d 第5题图A. c a a +与d b b +B. d a a +与c b c +C. d b a +与c a c +D.d c a +与ba c + 8.用数学归纳法证明等式3)12(12)1()1(2122222222+=+++-++-++n n n n n ,当1n k =+时,等式左端应在n k =的基础上加上( )A .222)1(k k ++B .22)1(k k ++C .2)1(+kD .]1)1(2)[1(312+++k k9.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为( )A .516B .1132C .1532D .12 10.由曲线x y =与直线2,0-==x y y 围成封闭图形的面积为( ) A .310 B .4 C .316 D .6 11.已知数列{}n a 满足)(11,21*11N n a a a n n ∈-==+,则使10021<+++k a a a 成立的最大正整数k 的值为( )A .198B .199C .200D .20112.已知函数b ax x x f --=ln )(,若0)(≤x f 对任意0>x 恒成立,则a b +的最小值为( )A .1e -B .0C .1D .e 2第Ⅱ卷 非选择题二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中相应的位置上.13. 已知函数()ln f x x x =,则曲线)(x f y =在点1=x 处切线的倾斜角为__________.14. 若n x )3(-的展开式中所有项的系数和为32,则含3x 项的系数是__________(用数字作答). 15.若随机变量~(,)X B n p ,且52EX =,54DX =,则当(1)P X ==__________(用数字作答). 16.已知)(x f y =为R 上的连续可导函数,且)()()(x f x f x f x '>+',则函数21)()1()(+-=x f x x g 在),1(+∞上的零点个数为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答过程必须写在答题卡相应题号指定的区域内,超出指定区域的答案无效.)17.(本小题满分10分)已知复数12=2 , =34z a i z i +-(a R ∈,i 为虚数单位).(Ⅰ)若12z z ⋅是纯虚数,求实数a 的值;(Ⅱ)若复数12z z ⋅在复平面上对应的点在第二象限,且1||4z ≤,求实数a 的取值范围.18.(本小题满分 12 分)东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限x (单位:年,*x N ∈)和所支出的维护费用y (单位:万元)厂家提供的统计资料如下:使用年限x (年) 1 2 3 4 5维护费用y (万元) 6 7 7.5 8 9(Ⅰ)请根据以上数据,用最小二乘法原理求出维护费用y 关于x 的线性回归方程a x b yˆˆˆ+=; (Ⅱ)若规定当维护费用y 超过13.1万元时,该批空调必须报废,试根据(1)的结论预测该批空调使用年限的最大值.参考公式:最小二乘估计线性回归方程a x b yˆˆˆ+=中系数计算公式:∑∑∑∑====-⋅-=---=n i in i i i n i i n i i i x n x y x n y x x x y y x x b1221121)())((ˆ,x b y a ˆˆ-=,其中x ,y 表示样本均值. 19.(本小题满分 12 分)甲、乙两人想参加《中国诗词大会》比赛,筹办方要从10首诗词中分别抽出3首让甲、乙背诵,规定至少背出其中2首才算合格;在这10首诗词中,甲只能背出其中的7首,乙只能背出其中的8首.(Ⅰ)求抽到甲能背诵的诗词的数量ξ的分布列及数学期望;(Ⅱ)求甲、乙两人中至少有一人能合格的概率.20.(本小题满分 12 分)已知函数23(),()2x f x x e g x x ==.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)求证:R x ∈∀,()()f x g x ≥.21.(本小题满分 12 分) 已知函数32()(,)f x x mx nx m n R =++∈.(Ⅰ)若()f x 在1x =处取得极大值,求实数m 的取值范围;(Ⅱ)若(1)0f '=,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.22.(本小题满分 12 分)已知函数()R a x a x x f ∈-=ln )(2,()()F x bx b R =∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设2,()()()a g x f x F x ==+,若12,x x 12(0)x x <<是)(x g 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.。
试卷类型:A高二数学(理科)试题2017.7 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚,并粘好条形码。
请认真核准条形码上的准考证号、姓名和科目。
3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答。
答在本试卷上无效。
5.第(22)、(23)小题为选考题,请按题目要求从中任选一题作答,并用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
6.考试结束后,将本试卷和答题卡一并收回。
附:回归方程ˆˆˆybx a =+中斜率与截距的最小二乘估计公式分别为: ∑∑∑∑====--=---=ni ini ii ni ini iixn xy x n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-= 第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)已知复数iiz +-=122,其中i 是虚数单位,则z 的模等于 (A )2- (B) 3 (C) 4 (D) 2(2)用反证法证明某命题时,对结论:“自然数c b a ,,中恰有一个偶数”正确的反设为 (A) c b a ,,中至少有两个偶数 (B)c b a ,,中至少有两个偶数或都是奇数 (C) c b a ,,都是奇数 (D) c b a ,,都是偶数 (3)用数学归纳法证明:对任意正偶数n ,均有41212111 (41)31211+++=--++-+-n n n n ( )21...n++,在验证2=n 正确后,归纳假设应写成 (A )假设)(*N k k n ∈=时命题成立 (B )假设)(*N k k n ∈≥时命题成立 (C )假设)(2*N k k n ∈=时命题成立 (D )假设))(1(2*N k k n ∈+=时命题成立(4)从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有 (A )30种 (B) 32 种 (C) 34种 (D) 35种 (5)曲线xe y =在点()22e ,处的切线与坐标轴所围三角形的面积为(A)22e (B)2e (C) 22e (D) 492e(6)已知随机变量X 服从正态分布()2,3σN ,且)3(41)1(>=<X P X P ,则)5(<X P 等于(A)81 (B) 85 (C) 43 (D) 87(7)已知⎰≥3sin 2πxdx a ,曲线)1ln(1)(++=ax aax x f 在点())1(,1f 处的切线的斜率为k ,则k 的最小值为 (A)1 (B)23(C)2 (D) 3 (8)甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为p ,4332,,且他们是否通过测试互不影响.若三人中只有甲通过的概率为161,则甲、丙二人中至少有一人通过测试的概率为 (A)87 (B) 43 (C) 85 (D) 76(9)函数)1(2)(3-'+=f x x x f ,则函数)(x f 在区间[]3,2-上的值域是 (A) ]9,24[- (B) ]24,24[- (C) ]24,4[ (D)[]9,4 (10)设()()5522105)1(...1)1(1x a x a x a a x +++++++=-,则420a a a ++等于(A) 242 (B) 121 (C) 244 (D)122(11)已知函数)()()(2R b x bx x e x f x ∈-=.若存在⎥⎦⎤⎢⎣⎡∈2,21x ,使得0)()(>'+x f x x f ,则实数b 的取值范围是(A) ⎪⎭⎫ ⎝⎛∞-65, (B) ⎪⎭⎫ ⎝⎛∞-38, (C) ⎪⎭⎫⎝⎛-65,23 (D) ⎪⎭⎫⎝⎛∞+,38 (12)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设)0(,,>m m b a 为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为)(mod m b a =.如9和21被6除得的余数都是3,则记)6(m o d 219=.若20202022201200202...22⋅++⋅+⋅+=C C C C a ,)10(mod b a =,则b 的值可以是(A) 2011 (B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。
德州市-高二年级期末考试高二数学(理)一、选择题1.()ii 21-=( )A.i B.i - C. 2 D.-22.在抛物线y 2=2px(p >0)上,横坐标为4的点到焦点的距离是5,则p 的值为( )A.21B.1C.2D.4 3.中心在坐标原点,离心率为35的双曲线焦点在y 轴上,则它的渐近线方程为( )A.y=45±xB.y=54±xC.y=34±xD.y=43±x4.椭圆191622=+y x 的内接正方形的面积是( ) A.52123B.12C.24D.48 5.用数学归纳法证明2413212111>+n n n ⋯⋯++++(n 是正整数)时,当n 由k 到k+1,不等式左边的变化是( )A.增加1)(k 21+一项 B.增加1k 21+和1)(k 21+两项且减少1k 1+一项C 增加1k 21+和1)(k 21+两项D.增加1k 21+一项 6. 空间四边形OABC 中,.,,c OC b OB a OA=== 点M 在OA 上,且 =2,N 为BC 的中点,则等于()A.c b a 213221+-B.c b a 212132++-C.c b a 212121-+D.c b a 213232-+7.己知双曲线的两个焦点为1F )0,5(-,2F )0,5(,p 是此双曲线上一点且21PF PF ⊥2F 21=⋅PF P 则该双曲线的方程为( )A.13222=-y x B. 12322=-y x C. 1422=-y x D. 1422=-y x 8.己知F 1,F 2分别为椭圆)0(12222>>=+b a b y a x 的左右焦点,M 为椭圆上的一点,MF 1垂直于x 轴,且∠F 1MF 2=60°,则椭圆的离心率为( ) A.21B. 22C. 33D.239. |b a |)t (),0,1t 2,t 1(b ),t ,t ,2(a---==则是实数的最小值是()A.5B.6C.2D.310.空间不共面的四点O 、A 、B 、C ,若∙=∙=∙=0,且|OA|=|OB|=|OC|,则<AC AB OC OB OA +++,>=( )A.450B.600C.900D.135011. 在正方体ABCD-A 1B 1C 1D 1中,点p 是侧面BB 1C 1C 内一动点,若点p 到直线 BC 与直线C 1D 1的距离相等,则动点p 的轨迹是( )A.双曲线B.圆C.椭圆D.抛物线 12.在以下命题中,不正确的个数为( )①b a、是b a b a +=-共线的充要条件。
试卷类型:A高二数学(理科)试题2017.7 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的、号填写清楚,并粘好条形码。
请认真核准条形码上的号、和科目。
3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域作答。
答在本试卷上无效。
5.第(22)、(23)小题为选考题,请按题目要求从中任选一题作答,并用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
6.考试结束后,将本试卷和答题卡一并收回。
附:回归方程ˆˆˆybx a =+中斜率与截距的最小二乘估计公式分别为: ∑∑∑∑====--=---=ni ini ii ni ini iixn xy x n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-= 第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)已知复数iiz +-=122,其中i 是虚数单位,则z 的模等于 (A )2- (B) 3 (C) 4 (D) 2(2)用反证法证明某命题时,对结论:“自然数c b a ,,中恰有一个偶数”正确的反设为 (A) c b a ,,中至少有两个偶数 (B)c b a ,,中至少有两个偶数或都是奇数 (C) c b a ,,都是奇数 (D) c b a ,,都是偶数 (3)用数学归纳法证明:对任意正偶数n ,均有41212111 (41)31211+++=--++-+-n n n n ( )21...n++,在验证2=n 正确后,归纳假设应写成 (A )假设)(*N k k n ∈=时命题成立 (B )假设)(*N k k n ∈≥时命题成立 (C )假设)(2*N k k n ∈=时命题成立 (D )假设))(1(2*N k k n ∈+=时命题成立(4)从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有 (A )30种 (B) 32 种 (C) 34种 (D) 35种 (5)曲线xe y =在点()22e ,处的切线与坐标轴所围三角形的面积为(A)22e (B)2e (C) 22e (D) 492e(6)已知随机变量X 服从正态分布()2,3σN ,且)3(41)1(>=<X P X P ,则)5(<X P 等于(A)81 (B) 85 (C) 43 (D) 87(7)已知⎰≥3sin 2πxdx a ,曲线)1ln(1)(++=ax aax x f 在点())1(,1f 处的切线的斜率为k ,则k 的最小值为 (A)1 (B)23(C)2 (D) 3 (8)甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为p ,4332,,且他们是否通过测试互不影响.若三人中只有甲通过的概率为161,则甲、丙二人中至少有一人通过测试的概率为 (A)87 (B) 43 (C) 85 (D) 76(9)函数)1(2)(3-'+=f x x x f ,则函数)(x f 在区间[]3,2-上的值域是 (A) ]9,24[- (B) ]24,24[- (C) ]24,4[ (D)[]9,4 (10)设()()5522105)1(...1)1(1x a x a x a a x +++++++=-,则420a a a ++等于(A) 242 (B) 121 (C) 244 (D)122(11)已知函数)()()(2R b x bx x e x f x ∈-=.若存在⎥⎦⎤⎢⎣⎡∈2,21x ,使得0)()(>'+x f x x f ,则实数b 的取值围是(A) ⎪⎭⎫ ⎝⎛∞-65, (B) ⎪⎭⎫ ⎝⎛∞-38, (C) ⎪⎭⎫⎝⎛-65,23 (D) ⎪⎭⎫⎝⎛∞+,38 (12)中国南北朝时期的著作《子算经》中,对同余除法有较深的研究.设)0(,,>m m b a 为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为)(mod m b a =.如9和21被6除得的余数都是3,则记)6(mod 219=.若20202022201200202...22⋅++⋅+⋅+=C C C C a ,)10(mod b a =,则b 的值可以是(A) 2011 (B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。
绝密★启用前【全国市级联考】山东省德州市2016-2017学年高二下学期期末考试数学(理)试题试卷副标题考试范围:xxx ;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是( ) A .方程没有实根 B .方程至多有一个实根C .方程至多有两个实根D .方程恰好有两个实根2、为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下列联表:做不到“光盘” 能做到“光盘” 男45 10 女 30 15 附:参照附录,得到的正确结论是( )A. 在犯错误的概率不超过的前提下,认为“该市居民能否做到…光盘‟与性别有关”B. 在犯错误的概率不超过的前提下,认为“该市居民能否做到…光盘‟与性别有关”C. 有以上的把握认为“该市居民能否做到…光盘‟与性别无关”D. 有以上的把握认为“该市居民能否做到…光盘‟与性别有关”3、设是虚数单位,若,则复数的共轭复数是( )A .B .C .D .4、,则( )A .B .C .D .5、已知随机变量服从正态分布,且,则( )A .B .C .D .26、已知直线过点,且与曲线在点处的切线互相垂直,则直线的方程为( ) A .B .C .D .7、用数学归纳法证明“”时,由不等式成立,证明时,左边应增加的项数是( )A .B .C .D .8、一批产品的合格率为,检验员抽检时出错率为,则检验员抽取一件产品,检验为合格品的概率为( ) A .B .C .D .9、如果的展开式中各项系数之和为2,则展开式中的系数是( ) A . B .C .16D .10、已知,为的导函数,则的图象大致是( )A .B .C .D .A. B.C. D.第II 卷(非选择题)二、填空题(题型注释)12、如果对定义在区间上的函数,对区间内任意两个不相等的实数,都有,则称函数为区间上的“函数”,给出下列函数及函数对应的区间:①;②;③;④,以上函数为区间上的“函数”的序号是__________.(写出所有正确的序号)13、已知6件不同产品中有2件是次品,现对它们依次进行测试,直至找出所有次品为止,若恰在第4次测试后,就找出了所有次品,则这样的不同测试方法数是( ) A .24B .72C .96D .36014、曲线,所围成的封闭图形的面积为 .15、设某种机械设备能够连续正常工作10000小时的概率为,能够连续正常工作15000小时的概率为,现有一台连续工作了10000小时的这种机械,它能够连续正常工作到15000小时的概率是__________.16、若,则的值为__________.三、解答题(题型注释)17、已知复数.(1)若,求;(2)取什么值时,是纯虚数.18、在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:(1)请用相关系数加以说明与之间存在线性相关关系(当时,说明与之间具有线性相关关系);(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:,,相关系数公式为:.参考数据:,,,.19、已知函数.(1)求函数的单调区间;(2)若关于的不等式恒成立,求整数的最小值.20、在直角坐标系中,曲线的参数方程为: (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直角坐标系下曲线与曲线的方程; (2)设为曲线上的动点,求点到上点的距离的最大值,并求此时点的坐标.21、已知函数. (1)当时,解不等式;(2)若关于的不等式恒成立,求实数的取值范围.22、已知函数.(1)当时,求在上的值域;(2)若函数有三个不同的零点,求的取值范围.23、近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为,后2天均为,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.(1)求至少有1天需要人工降雨的概率; (2)求不需要人工降雨的天数的分布列和期望.参考答案1、A2、D3、D4、B5、D6、B7、C8、B9、C10、A11、A12、①②13、C14、15、16、17、(1) ;(2) .18、(1) 与之间存在线性相关关系;(2)0.38 ,.19、(1) 当时,的单调递增区间为,无减区间,当时,的单调递增区间为,单调递减区间为;(2)2.20、(1) ,;(2) 最大值为, .21、(1) ;(2) .22、(1) ;(2) .23、(1)(2) x的分布列是:3.1【解析】1、反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是:方程没有实根。
本题选择A选项.2、经计算,参照附表,得到的正确结论是有90%以上的把握认为“该市居民能否做到…光盘‟与性别有关”。
本题选择D选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3、由题意可得z=(2+i)(1−i)=3−i,则复数z的共轭复数是:3+i.本题选择D选项.4、由,本题选择B选项.5、由正态分布的性质可知:,结合题意可得:,则.本题选择D选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.6、过点,曲线在点处的切线的斜率,则所求直线的斜率为,直线的方程为.本题选择B选项.7、用数学归纳法证明等式时,时,左边,那么当时,左边,所以由递推到时不等式左边增加了共项,故选C.8、∵一批产品的合格率为90%,检验员抽检时出错率为10%,∴检验员抽取一件产品,检验为合格品的概率是:p=0.9×0.9+0.1×0.1=0.82.本题选择B选项.9、由题意令x=1,则(1+a)×(1−2)4=2,解得a=1.∴即,的通项公式为:,分别令4−2r=0,4−2r=2,解得r=2,1.则展开式中x的系数是.本题选择C选项.10、∵,∴,为奇函数,关于原点对称,排除B,D,设,令,当时, ,时,,,h(x)有极小值:,所以,在x>0时,有两个根,排除C.所以图象A正确,本题选择A选项.11、令,则,由,得f′(x)−2017f(x)>0,故g′(x)>0,g(x)在R递增,故,即,即,本题选择A选项.12、∵对于任意给定的不等实数x1,x2,不等式恒成立,∴不等式等价为(x1-x2)[f(x1)-f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数,①,,函数递增,②,,函数递增,③,,显然函数在(-∞,-2)递增,在(-2,1)递减,④,,函数递减,故答案为:①②.点睛:应用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f′(x)>0(或f′(x)<0)仅是f(x)在某个区间上递增(或递减)的充分条件。
在区间(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应是f′(x)≥0或f′(x)≤0恒成立,且f′(x)在(a,b)的任意子区间内都不恒等于0。
这就是说,函数f(x)在区间上的增减性并不排斥在该区间内个别点x0处有f′(x0)=0.13、根据题意,若恰在第4次测试后,就找出了所有次品,需要分2种情况讨论:①、2件次品一件在前3次测试中找到,另一件在第四次找到,有种情况,②、前4次没有一次发现次品,即前4次都是正品,第四次测试后剩下2件就是次品,有种情况,则不同测试方法数72+24=96种;本题选择C选项.点睛:分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,步与步之间的方法“相互独立,分步完成”.14、试题分析:曲线,的交点为,所求封闭图形面积为.考点:曲边梯形面积.15、设“某种机械设备能够连续正常工作10000小时”为事件A,“某种机械设备能够连续正常工作15000小时”为事件B,P(A)=0.85,P(AB)=0.75,现有一台连续工作10000小时的这种机械,它能够连续正常工作15000小时的概率:.16、∵,令x=0,可得a0=1;再令,可得:,∴,17、试题分析:(1)由题意得到关于实数a的方程组,求解方程组可得;(2)z为纯虚数,则实部为0,虚部不为零,据此可得.试题解析:(1),解得,所以.(2),解得,所以.18、试题分析:(1)由题意求得;,说明与之间存在线性相关关系;(2)结合所给数据可求得回归方程为,.据此预测当时,对应的值为.试题解析:(1)由题意,计算,,且,,.;∵,说明与之间存在线性相关关系;(2).∴.∴与的线性回归方程为.将代入回归方程得.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.19、试题分析:(1)首先对函数求导,然后对参数分类讨论可得当时,的单调递增区间为,无减区间,当时,的单调递增区间为,单调递减区间为;(2)将原问题转化为在上恒成立,考查函数的性质可得整数的最小值是2.试题解析:(1),函数的定义域为.当时,,则在上单调递增,当时,令,则或 (舍负),当时,,为增函数,当时,,为减函数,∴当时,的单调递增区间为,无减区间,当时,的单调递增区间为,单调递减区间为.(2)解法一:由得,∵,∴原命题等价于在上恒成立,令,则,令,则在上单调递增,由,,∴存在唯一,使,.∴当时,,为增函数,当时,,为减函数,∴时,,∴,又,则,由,所以.故整数的最小值为2.解法二:得,,令,,①时,,在上单调递减,∵,∴该情况不成立.②时,当时,,单调递减;当时,,单调递增,∴,恒成立,即.令,显然为单调递减函数.由,且,,∴当时,恒有成立,故整数的最小值为2.综合①②可得,整数的最小值为2.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.20、试题分析:(1)将极坐标、参数方程转化可得直角坐标系下曲线与曲线的方程分别为,;(2)利用点到直线距离公式结合三角函数的性质可得点到上点的距离的最大值是,此时点的坐标是.试题解析:(1)由曲线,可得,两式两边平方相加得:. 即曲线在直角坐标系下的方程为.由曲线,即,所以,即曲线在直角坐标系下的方程为.(2)由(1)知椭圆与直线无公共点,椭圆上的点到直线的距离为,∴当即时,的最大值为.此时点的坐标为.21、试题分析:(1)结合题意零点分段可得不等式的解集为;(2)利用绝对值不等式的性质得到关于实数a的不等式,求解不等式可得实数的取值范围是.试题解析:(1)当时,,等价于①,得;②,无解;③,得综上,解集为.(2),则或,得,所以的取值范围为.22、试题分析:(1)首先对函数求导,然后结合函数的单调性求得函数的最值可得函数在上的值域是;(2)首先利用导函数的性质可得原函数在上单调递减,在,上单调递增,据此得到关于实数b的不等式组,求解不等式可得的取值范围是.试题解析:(1)当时,,.当时,,故函数在上单调递减;当时,,故函数在上单调递增.由,.∴在上的值域为;(2)由(1)可知,,由得,由得或.所以在上单调递减,在,上单调递增;所以,,所以当且,即时,,,,使得,由的单调性知,当且仅当时,有三个不同零点.23、(1)5天全不需要人工降雨的概率是P1=()3·()2=,故至少有1天需要人工降雨的概率是1-P1=1-=.(2)x的取值是0,1,2,3,4,5,由(1)知5天不需要人工降雨的概率是:P(x=5)=P1=,4天不需要人工降雨的概率是:P(x=4)=()3×+()3()2==,3天不需要人工降雨的概率是:P(x=3)=()3()2+()3()()+()3()2=,2天不需要人工降雨的概率是:P(x=2)=()3()2+()3()×()+()3×()2=,1天不需要人工降雨的概率是:P(x=1)=()3()2+()3()()=,0天不需要人工降雨的概率是:P(x=0)=()3()2=,故不需要人工降雨的天数x的分布列是:不需要人工降雨的天数x的期望是:E(x)=0×+1×+2×+3×+4×+5×=3.1.【方法技巧】求离散型随机变量均值与方差的基本方法(1)定义法:已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解.(2)性质法:已知随机变量ξ的均值与方差,求ξ的线性函数η=aξ+b的均值与方差,可直接利用均值、方差的性质求解.(3)公式法:如能分析所给随机变量是服从常用的分布(如两点分布,二项分布等),可直接利用它们的均值、方差公式求解.。