2018_2019学年八年级数学上学期期末复习检测试卷
- 格式:docx
- 大小:77.70 KB
- 文档页数:9
2018-2019学年广西河池市八年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−12.下列四个汽车标志图中,不是轴对称图形的是()A. B.C. D.3.下列因式分解正确的是()A. 6x+9y+3=3(2x+3y)B. x2+2x+1=(x+1)2C. x2−2xy−y2=(x−y)2D. x2+4=(x+2)24.若分式x−2的值为0,则x的值等于()x+3A. 0B. 2C. 3D. −35.等腰三角形有两条边长为5cm和9cm,则该三角形的周长是()A. 18cmB. 19cmC. 23cmD. 19cm或23cm6.点P(3,4)关于y轴对称的点的坐标是()A. (3,−4)B. (−3,4)C. (−4,−3)D. (−4,3)7.如图,小敏用三角尺按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,其作图原理是:△OMP≌△ONP,这样就有∠AOP=∠BOP,则说明这两个三角形全等的依据是()A. SASB. ASAC. AASD. HL8.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE9.计算(x+2)2的结果为x2+□x+4,则“□”中的数为()A. −2B. 2C. −4D. 410.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A. 2B. √3C. 4D. 2√311.已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A. −72B. −112C. 92D. 3412.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A. 140∘B. 100∘C. 50∘D. 40∘二、填空题(本大题共6小题,共18.0分)13.当x______时,分式x+12x−1有意义.14.计算:6a2b÷2a=______.15.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件______使得△ABC≌△DEF.16.各角都相等的十五边形的每个内角的度数是______度.17.如图,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=______.18.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为______.三、计算题(本大题共2小题,共14.0分)19.解分式方程:1x−2+2=1+x2−x.20.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?四、解答题(本大题共6小题,共52.0分)21.因式分解:(1)a3b-ab3(2)(x+1)(x+3)+122.已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.23. 现有三个村庄A ,B ,C ,位置如图所示,线段AB ,BC ,AC 分别是连通两个村庄之间的公路.现要修一个水站P ,使水站不仅到村庄A ,C 的距离相等,并且到公路AB ,AC 的距离也相等,请在图中作出水站P 的位置.(要求:尺规作图,不写作法,保留作图痕迹.)24. 先化简,再求值:(m +2-5m−2)×2m−4m−3,其中m =4.25. 把一个长为2m ,宽为2n 的长方形沿图1中的虚线平均分成四块小长方形,然后拼成一个正方形(如图2)(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示) 方法1:______方法2:______(2)根据(1)中的结论,请你写出代数式(m +n )2,(m -n )2,mn 之间的等量关系;(3)根据(2)中的等量关系,解决如下问题:已知实数a ,b 满足:a +b =3,ab =2,求a -b 的值.26.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.答案和解析1.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10-2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】B【解析】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选:B.根据轴对称图形概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】B【解析】解:(A)原式=3(2x+3y+1),故A错误;(C)x2-2xy-y2不是完全平方式,不能因式分解,故C错误;(D)x2+4不能因式分解,故D错误;故选:B.根据因式分解的方法即可求出答案.本题考查因式分解的方法,涉及提取公因式,完全平方公式,平方差公式,解题的关键会判断多项式是否满足完全平方式以及平方差公式.4.【答案】B【解析】解:∵分式的值为0,∴x-2=0且x+3≠0,∴x=2.故选:B.分式值为零的条件是分子等于零且分母不等于零.本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.5.【答案】D【解析】解:当等腰三角形的腰长为5cm,底边长为9cm时,∵5+5>9,9-5<5,∴能够成三角形,∴三角形的周长=5+5+9=19cm;当等腰三角形的腰长为9cm,底边长为5cm时,∵9+5>9,9-5<5,∴能够成三角形,∴三角形的周长=9+9+5=23cm;∴该三角形的周长是19cm或23cm.故选:D.由于等腰三角形的腰和底边的长不能确定,故应分两种情况进行讨论.本题考查的是等腰三角形的性质及三角形的三边关系,解答此题时要注意分类讨论,不要漏解.6.【答案】B【解析】解:∵两点关于y轴对称,∴横坐标为-3,纵坐标为4,∴点P关于y轴对称的点的坐标是(-3,4).故选:B.根据关于y轴对称的点的特点解答即可.考查关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.7.【答案】D【解析】解:由题意知OM=ON,∠OMP=∠ONP=90°,OP=OP,在Rt△OMP和Rt△ONP中,∵,∴Rt△OMP≌Rt△ONP(HL),∴∠AOP=∠BOP,故选:D.据直角三角形全等的判定HL定理,可证△OPM≌△OPN.本题考查学生的观察能力和判定直角三角形全等的HL定理,本题是一操作题,要会转化为数学问题来解决.8.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9.【答案】D【解析】解:∵(x+2)2=x2+4x+4,∴“□”中的数为4.故选:D.由(x+2)2=x2+4x+4与计算(x+2)2的结果为x2+□x+4,根据多项式相等的知识,即可求得答案.此题考查了完全平方公式的应用.解题的关键是熟记公式,注意解题要细心.10.【答案】C【解析】解:∵∠B=60°,DE⊥BC,∴BD=2BE=2,∵D为AB边的中点,∴AB=2BD=4,∵∠B=∠C=60°,∴△ABC为等边三角形,∴AC=AB=4,故选:C.在Rt△BDE中可先求得BD的长,则可求得AB的长,由条件又可证得△ABC 为等边三角形,则可求得AC=AB,可求得答案.本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB的长是解题的关键.11.【答案】D【解析】解:∵=3,∴=3,∴x-y=-3xy,则原式====,故选:D.由=3得出=3,即x-y=-3xy,整体代入原式=,计算可得.本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.12.【答案】B【解析】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.本题考查了轴对称-最短路线问题,正确正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=100°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.13.【答案】≠12【解析】解:由题意得:2x-1≠0,解得:x≠,故答案为:.根据分式有意义的条件是分母不等于零可得2x-1≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.14.【答案】3ab【解析】解:原式=3ab.故答案是:3ab.根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.本题考查了单项式的除法法则,正确理解法则是关键.15.【答案】∠A=∠D【解析】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.根据全等三角形的判定定理填空.本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.16.【答案】156【解析】解:∵十五边形的内角和=(15-2)•180°=2340°,又∵十五边形的每个内角都相等,∴每个内角的度数=2340°÷15=156°.故答案为:156.根据多边形的内角和公式即可得出结果.本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n-2)•180°.17.【答案】50【解析】解:∵DE为AB的垂直平分线,∴AD=BD,∵△ACD的周长为50,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故答案为50.由垂直平分线的性质可求得AD=BD,则△ACD的周长可化为AC+CD+BD,即AC+BC,可求得答案.本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.18.【答案】4cm【解析】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.先由BC=10cm,BD:DC=3:2计算出DC=4cm,由于∠ACB=90°,则点D到AC 的距离为4cm,然后根据角平分线的性质即可得到点D到AB的距离等于4cm.本题考查了角平分线的判定与性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在这个角的角平分线上.19.【答案】解:方程两边同乘(x-2),得1+2(x-2)=-1-x,解得:x=23经检验x=23是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x 万人,由题意得240x −30=2404x,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.【解析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.本题考查了分式方程的应用;解这类问题时要注意分析题中的等量关系,由时间关系列出方程是解决问题的关键.21.【答案】解:(1)原式=ab(a2-b2)=ab(a-b)(a+b);(2)原式=x2+3x+x+3+1=x2+4x+4=(x+2)2.【解析】(1)直接提取公因式ab,再利用平方差公式分解因式即可;(2)直接去括号,再利用完全平方公式分解因式即可.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.22.【答案】证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,{CD=BD∠ADC=∠EDB AD=ED,∴△ACD≌△EBD(SAS).【解析】依据中线的定义,即可得到BD=CD,再根据SAS即可判定△ACD≌△EBD.本题主要考查了全等三角形的判定,解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.23.【答案】解:作AC的垂直平分线MN,作∠BAC有角平分线AD交直线MN于点P,点P即为所求.【解析】作AC的垂直平分线MN,作∠BAC有角平分线AD交直线MN于点P,点P 即为所求.本题考查作图-应用与设计,角平分线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.24.【答案】解:原式=(m+2)(m−2)−5m−2⋅2m−4 m−3=m2−9 m−2⋅2(m−2)m−3=(m+3)(m−3)m−2⋅2(m−2)m−3=2(m+3).当m=4时,原式=2×(4+3)=14.【解析】先将代数式(m+2-)×进行化简,然后将m=4代入求解即可.本题考查了分式的化简求值,解答本题的关键在于先将代数式(m+2-)×进行化简,然后将m=4代入求解.25.【答案】(m+n)2-4mn(m-n)2【解析】解:(1)方法一:阴影部分的面积=(m+n)2-4mn,方法二:阴影部分的面积=(m-n)2,故答案为:(m+n)2-4mn,(m-n)2;(2)三个代数式之间的等量关系是:(m+n)2-4mn=(m-n)2;(3)∵(a-b)2=(a+b)2-4ab,∴(a-b)2=32-4×2=1,a-b=±1.(1)本题可以直接求阴影部分正方形的边长,计算面积;也可以用正方形的面积减去四个小长方形的面积,得阴影部分的面积;(2)由阴影部分的面积相等即可得出三个代数式之间的等量关系;(3)将a+b=3,ab=2,代入三个代数式之间的等量关系,求出(a-b)2的值,即可求出a-b的值.本题主要考查完全平分公式,如何准确地确定三个代数式之间的等量关系是解题的关键.26.【答案】解:(1)图象如图所示;(2)在等边△ABC中,AC=AB,∠BAC=60°,由对称可知:AC=AD,∠PAC=∠PAD,∴AB=AD,∴∠ABD=∠D,∵∠PAC=20°,∴∠PAD=20°,∴∠BAD=∠BAC+∠PAC+∠PAD=100°,(180°−∠BAD)=40°,∴∠D=12∴∠AEB=∠D+∠PAD=60°.(3)结论:CE+AE=BE.理由:在BE上取点M使ME=AE,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,(180°−∠BAC−2x)=60°−x,∴∠D=12∴∠AEB=60-x+x=60°.∴△AME为等边三角形,易证:△AEC≌△AMB,∴CE=BM,∴CE+AE=BE.【解析】(1)根据要求画出图象即可;(2)根据∠AEB=∠D+∠PAD,只要求出∠D,∠DAE即可;(3)结论:CE+AE=BE.在BE上取点M使ME=AE,只要证明△AEC≌△AMB 即可解决问题;本题考查作图-轴对称变换,等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°160°45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,CB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .ABCD D CBAACBEABCD16. 下面是一个按某种规律排列的数表:第1行 1第2行232第3行567223第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B ,E ,C ,F 在同一条直线上, AB ∥DE ,AB =DE ,BE=CF . 求证:AC =DF .四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?E A C DB F五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl25. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1丰台区2019-2019学年度第一学期期末练习初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB .∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 4数学试卷∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分 4F 321 图3A D M N C B E。
2021-2021学年八年级〔上〕期末数学试卷•选择题〔共12小题〕 1.如果分式 有意义,那么x+3x 的取值范围是〔 )x >— 3C.A. x v — 3B. x 工―3D. x =— 32.以下计算正确的选项是〔)_ 9 3 3B. c 3 2 6A. a * a = a3a ?2a = 6a6 6D. 325C. m * m = mm ?m = m3.有一种球状细菌,直径约为0.0000000018 m 那么0.0000000018用科学记数法表示为( )—10 —9 — 8 —8A. 18X 10B. 1.8 X 10C. 1.8 X 10D. 0.18 X 10 4•如图,小明书上的三角形被墨迹遮挡了一局部,但他很快想到方法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是〔A. 3B. 4C. 5D. 6 7.把多项式x 2+ax +b 分解因式,得〔 x +1) (x — 3),那么a +b 的值是() A. 5 B.- 5 C. 1D. —1&点P (a, 3)和点Q(4, b )关于x 轴对称, 那么(a +b ) 2021 的值〔)20212021A. 1B.- 1C. 7D. —79.假设(2a +3b )( 2 2)=9b - 4a ,那么括号内应填的代数式是〔)A. — 2a — 3bB. 2a +3bC. 2a — 3bD. 3b — 2aO) 6. 一个正多边形的内角和为 900。
,那么从一点引对角线的条数是〔10.假设分式 一一-2与三二的值互为相反数,那么 x =〔 〕x-5 x5. B. ASAC. SSSD. SASF 列长度的三条线段能组成三角形的是〔 A. 3, 4, 8B. 2, 5, 3C. L, 5D. 5, 5, 10A.B.C.—56211.如图,MN 是等边三角形 ABC 的一条对称轴,D 为AC 的中点,点 P 是直线MNk 的一个动点,当PGPD 最小时,/ PCD 勺度数是〔〕12•李老师开车去 20km 远的县城开会,假设按原方案速度行驶,那么会迟到10分钟,在保证17.如图,在 Rt △ ABC 中,/ C _ 90°,以顶点 A 为圆心,适当长为半径画弧,分别交AC , AB 于点M N,再分别以点 M N 为圆心,大于 £M N 勺长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,假设CD= 4, AB= 15,那么厶ABD 勺面积是 ______ .A. 30°B. 15C. 20°D. 35°平安驾驶的前提下,如果将速度每小时加快 10km 那么正好到达,如果设原来的行驶速度为xkm / h,那么可列分式方程为〔 〕A.———一=10X x+10 C 20 ^0_ 1':.2-L. U二.填空题〔共6小题〕 2_013.当x _时,分式——的值为零.---------x+33214. _______________________________ 分解因式:-m +6m- 9m= _________________ .B.—— —_ 10x+10 x20 — 2Q _ 1 x+10 x 616.如图,在△ ABC 中, AB= AC 点E 在CA 延长线上,EP 丄BC 于点P ,交AB 于点F ,假设AFc18•如图,把长方形纸片ABCD&对角线折叠,设重叠局部EBD那么以下说法:①厶EBD是等腰三角形,EB= ED②折叠后/ ABE和/ CB[一定相等;③折叠后得到的图形是轴对称图形;④厶EBAFH A EDC-定是全等三角形.其中正确的序号是C19.计算题.2 1 2 2(1)5xy -( xy)?( 2xy ).3(2)9 (a- 1) 2-( 3a+2) ( 3a-2).. _ 4 2 220. (1)因式分解:x - 81x y .4_Y7(2)先化简,再求值:「,其中x=- 5.2x-6 x-321. 解分式方程:22.如下图,在厶ABC中, ADL BC于D, CEL AB于E, AD与CE交.于点F,且AD= CD 求证:AB= CF.23.如图,在△ ABC中, AB= AC AB的垂直平分线MN交AC于点D,交AB于点E.(1)假设/ A= 40°,求/ DBC的度数;(2)假设AE= 6,A CBM周长为20,求厶ABC的周长.2 2x - 4x+2) (x - 4x+6) +4进行因式分解的过程解:设x2- 4x =y,原式=(y+2) (y+6) +4 (第一步)2=y +8y+16 (第二步)=(y+4) 2 3(第三步)2 该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果. 这个结果是否分解到最后?________ •(填“是〞或“否〞)如果否,直接写出最后的结果_______ .2 23 请你模仿以上方法尝试对多项式( x - 2x) (x - 2x+2) +1进行因式分解.=(x2-4x+4) 2(第四步)(1)该同学第二步到第三步运用了因式分解的 ___________ (填序号)A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式25 .某地下管道,假设由甲队单独铺设,恰好在规定时间内完成;假设由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1) 这项工程的规定时间是多少天?(2) 甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么 该工程施工费用是多少?BDLAB AO BD= 7cm 点P 在线段 AB 上以2cn /s 的速图〔2〕〔1〕假设点Q 的运动速度与点 P 的运动速度相等,当t = 1时,△ BPC 是否全等,请说明理由;〔2〕 在〔1〕的前提条件下,判断此时线段 PC 和线段PQ 的位置关系,并证明; 〔3〕如图〔2〕,将图〔1〕中的“ ACL AB BDL AB'为改 “/ CAB=Z DBA= 50。
2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。
2018-2019 学年八年级(上)期末数学试卷一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)在每小题给出的四个选项中,只有 一项是正确的,每小题选对得 3 分,选错、不选或多选均得零分. 1.下列运算正确的是( A .a 3+a 3=a 3 ) B .a •a 3=a 3C .(a 3)2=a 6C .x =﹣2D .(ab )3=ab 32.分式 A .x =2的值为 0,则 x 的值是(B .x =0)D .x ≠﹣13.在平面直角坐标系中,点 A (﹣1,2)关于 y 轴对称的点 B 的坐标为( )A .(﹣1,2)B .(1,2)C .(1,﹣2)D .(﹣1,﹣2) 4.如图,已知∠1=∠2,则不一定能使△AB D ≌△A C D 的条件是()A .∠B =∠C 5.把多项式 a 2﹣4a 分解因式,结果正确的是( A .a (a ﹣4)B .(a+2)(a ﹣2)B .∠B D A =∠CD AC .AB =ACD .B D =C D)C .(a ﹣2)2D .a (a+2(a ﹣2)6.已知∠M O N =40°,P 为∠M O N 内一定点,O M 上有一点 A ,O N 上有一点 B ,当△PA B 的周长取最小值时,∠APB 的度数是()A .40° 7.化简 A .﹣a ﹣1B .100°C .140°D .50°的结果是( )B .﹣a+1C .﹣ab+1D .﹣ab+b8.如图,△ABC 中∠ACB =90°,C D 是 AB 边上的高,∠BA C 的平分线 AF 交 C D 于 E ,则△CEF 必为( )A .等边三角形 C .直角三角形B .等腰三角形 D .等腰直角三角形二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 9.若式子有意义,则 x 的取值范围是10.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2 的度数是..11.若 a =2,a ﹣b =3,则 a 2﹣ab =12.若(x 2﹣a )x+2x 的展开式中只含有 x 3 这一项,则 a 的值是13.如图,在△AB C 中,AC =A D =B D ,当∠B =25°时,则∠BAC 的度数是...14.在平面直角坐标系中,点 A (﹣1,0)、B (3,0)、C (0,2),当△AB C 与△ABD 全等 时,则点 D 的坐标可以是 三.解答题(共 78 分).15.(1)计算:(﹣2a 2b )2+(﹣2ab ) (﹣3a 3b ). (2)分解因式:(a+b )2﹣4ab . 16.(1)求值:(1﹣ (2)解方程:)÷ ,其中 a =100. =+3.17.已知 x =3,x =6,x =12,x =18. a b c d (1)求证:①a+c =2b ;②a+b =d ;(2)求 x 2 ﹣+ a b c的值. 18.将图 1 中的矩形 AB C D 沿对角线 AC 剪开,再把△AB C 沿着 A D 方向平移,得到图 2 中 的△A ′BC ′.(1)在图 2 中,除△A D C 与△C ′BA ′全等外,请写出其他 2 组全等三角形;① ;②;(2)请选择(1)中的一组全等三角形加以证明.19.在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的 式子就叫做对称式.例如:a+b ,abc 等都是对称式. (1)在下列式子中,属于对称式的序号是 ①a 2+b 2②a ﹣b ③④a 2+bc .(2)若(x+a )(x+b )=x 2+mx+n ,当 m =﹣4,n =3,求对称式;的值.20.某商场第 1 次用 600 元购进 2B 铅笔若干支,第 2 次用 800 元又购进该款铅笔,但这次 每支的进价是第 1 次进价的八折,且购进数量比第 1 次多了 100 支. (1)求第 1 次每支 2B 铅笔的进价;(2)若要求这两次购进的 2B 铅笔按同一价格全部销售完毕后获利不低于 600 元,问每 支 2B 铅笔的售价至少是多少元?21.如图,A D 是△AB C 的角平分线,点 F 、E 分别在边 AC 、AB 上,连接 DE 、D F ,且∠ AF D+∠B =180°. (1)求证:B D =F D ;(2)当 AF+F D =AE 时,求证:∠AF D =2∠AE D .22.如图,在等边△AB C中,线段A M为BC边上的中线.动点D在直线A M上时,以C D 为一边在C D的下方作等边△C D E,连结BE.(1)填空:∠CAM=度;(2)若点D在线段A M上时,求证:△A D C≌△BE C;(3)当动点D在直线A M上时,设直线BE与直线A M的交点为O,试判断∠A OB是否为定值?并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列运算正确的是(A.a3+a3=a3)B.a•a3=a3C.(a3)2=a6D.(ab)3=ab3【分析】根据幂的乘方和积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答】解:A、∵a3+a3=2a3,∴选项A不符合题意;B、∵a•a3=a4,∴选项B不符合题意;C、∵(a3)2=6,a∴选项C符合题意;D、∵(ab)3=a3b3,∴选项D不符合题意.故选:C.2.分式A.x=2的值为0,则x的值是(B.x=0)C.x=﹣2D.x≠﹣1【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由式的值为0,得x﹣2=0,且x+1≠0.解得x=2.故选:A.3.在平面直角坐标系中,点A(﹣1,2)关于y轴对称的点B的坐标为()A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点A(﹣1,2)关于y轴对称的点B的坐标为(1,2),故选:B.4.如图,已知∠1=∠2,则不一定能使△AB D≌△A C D的条件是()A.∠B=∠C B.∠B D A=∠CD A C.AB=AC D.B D=C D【分析】根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL分别进行分析即可.【解答】解:A、添加∠B=∠C可利用AAS定理判定△AB D≌△AC D,故此选项不合题意;B、添加∠B DA=∠C D A可利用ASA定理判定△AB D≌△AC D,故此选项不合题意;C、添加AB=AC可利用SAS定理判定△AB D≌△AC D,故此选项不合题意;D、添加B D=C D不能判定△AB D≌△AC D,故此选项符合题意;故选:D.5.把多项式a2﹣4a分解因式,结果正确的是(A.a(a﹣4)B.(a+2)(a﹣2))C.(a﹣2)2D.a(a+2(a﹣2)【分析】原式提取公因式即可.【解答】解:原式=a(a﹣4),故选:A.6.已知∠M O N=40°,P为∠M O N内一定点,O M上有一点A,O N上有一点B,当△PA B 的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°【分析】设点P关于O M、O N对称点分别为P′、P″,当点A、B在P′P″上时,△PA B周长为PA+AB+BP=P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数.【解答】解:分别作点P关于OM、O N的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交O M、O N于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=O P,∠P′OA=∠P O A,∠P″OB=∠P OB,∴∠P′OP″=2∠M O N=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BP O=∠O P″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠AP O+∠BP O=100°.故选:B.7.化简A.﹣a﹣1的结果是()B.﹣a+1C.﹣ab+1D.﹣ab+b 【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:=(﹣)×=﹣a+1.故选:B.8.如图,△ABC中∠ACB=90°,C D是AB边上的高,∠BA C的平分线AF交C D于E,则△CEF必为()A.等边三角形C.直角三角形B.等腰三角形D.等腰直角三角形【分析】根据角平分线的定义求出∠1=∠2,再根据等角的余角相等求出∠3=∠4,根据对顶角相等可得∠5=∠4,然后求出∠3=∠5,再利用等角对等边可得CE=CF,从而得解.【解答】解:如图,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠ACB=90°,C D是AB边上的高,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∵∠5=∠4(对顶角相等),∴∠3=∠5,∴CE=CF,∴△CEF是等腰三角形.故选:B.二.填空题(共6小题)9.若式子【分析】直接利用分式有意义即分母不为零,进而得出答案.【解答】解:∵式子有意义,有意义,则x的取值范围是x≠3 .∴x的取值范围是:x﹣3≠0,解得:x≠3.故答案为:x≠3.10.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2的度数是134°.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=44°,∴∠3=90°﹣∠1=90°﹣44°=46°,∴∠4=180°﹣46°=134°,∵直尺的两边互相平行,∴∠2=∠4=134°.故答案为134°.11.若a=2,a﹣b=3,则a2﹣ab=6.【分析】首先提取公因式a,进而将已知代入求出即可.【解答】解:∵a=2,a﹣b=3,∴a2﹣ab=a(a﹣b)=2×3=6.故答案为:6.12.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是2.【分析】首先利用单项式乘以多项式整理得出x3+(2﹣a)x进而根据展开式中只含有x3这一项得出2﹣a=0,求出即可.【解答】解:∵(x2﹣a)x+2x的展开式中只含有x3这一项,∴x3﹣ax+2x=x3+(2﹣a)x中2﹣a=0,∴a=2,故答案为:2.13.如图,在△AB C中,AC=A D=B D,当∠B=25°时,则∠BAC的度数是105°.【分析】由在△AB C中,AC=A D=B D,∠B=25°,根据等腰三角形的性质,即可求得∠A D C的度数,接着求得∠C的度数,然后根据三角形内角和定理可得∠BA C的度数.【解答】解:∵AD=B D,∴∠BA D=∠B=25°,∴∠A D C=∠B+∠BA D=25°+25°=50°,∵A D=A C,∴∠C=∠A D C=50°,∴∠BA C=180°﹣∠B﹣∠C=180°﹣25°﹣50°=105°,故答案为105°.14.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△AB C与△ABD全等时,则点D的坐标可以是(0,﹣2)或(2,﹣2)或(2,2).【分析】根据三角形全等的判定分三种情况解答即可.【解答】解:∵△AB C与△AB D全等,如图所示:点D坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).三.解答题(共8小题)15.(1)计算:(﹣2a2b)2+(﹣2ab)(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.【分析】(1)先根据幂的乘方和积的乘方、单项式乘以单项式的运算法则计算,再合并同类项即可;(2)先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.【解答】解:(1)原式=4a4b2+6a4b2=10a4b2;(2)原式=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2.16.(1)求值:(1﹣)÷,其中a=100.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)原式=•=a﹣1,当a=100时,原式=100﹣1=99.(2)方程两边同乘x﹣1,得2x=1+3(x﹣1),解得x=2,检验:当x=2时,x﹣1≠0,∴x=2是原方程的解.a b c d17.已知x=3,x=6,x=12,x=18.(1)求证:①a+c=2b;②a+b=d;(2)求x2﹣+的值.a b ca cb a x b d【分析】(1)根据同底数幂的乘法法则x+=x2.x • =x.据此即可证得①a+c=2b;②a+b=d;(2)由(1)的结论解答即可.【解答】解:(1)证:∵3×12=62,a x c b∴x • =(x)2a c b即x+=x2.∴a+c=2b.∵3×6=18,a xb d∴x • =x.a b d即x+=x.∴a+b=d.(2)由(1)知a+c=2b,a+b=d.则有:2a+b+c=2b+d,∴2a﹣b+c=d∴x2﹣+a b c=x=18.d18.将图1中的矩形AB C D沿对角线AC剪开,再把△AB C沿着A D方向平移,得到图2中的△A′BC′.(1)在图2中,除△A D C与△C′BA′全等外,请写出其他2组全等三角形;①△AA′E≌△C′CF;②△A′DF≌△CBE;(2)请选择(1)中的一组全等三角形加以证明.【分析】(1)依据图形即可得到2组全等三角形:①△AA′E≌△C′CF;②△A′DF≌△C BE;(2)依据平移的性质以及矩形的性质,即可得到判定全等三角形的条件.【解答】解:(1)由图可得,①△AA′E≌△C′CF;②△A′D F≌△CBE;故答案为:△AA′E≌△C′CF;△A′D F≌△CBE;(2)选△AA′E≌△C′CF,证明如下:由平移性质,得AA′=C′C,由矩形性质,得∠A=∠C′,∠AA′E=∠C′CF=90°,∴△AA′E≌△C′CF(ASA).19.在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子就叫做对称式.例如:a+b,abc等都是对称式.(1)在下列式子中,属于对称式的序号是①③;①a2+b2②a﹣b③④a2+bc.(2)若(x+a)(x+b)=x2+mx+n,当m=﹣4,n=3,求对称式的值.【分析】(1)根据对称式的概念求解可得;(2)先根据等式得出a+b=m=﹣4,ab=n=3,再由+=【解答】解:(1)属于对称式的是①③,计算可得.故答案为:①③;(2)由等式a+b=m=﹣4,ab=n=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10,20.某商场第1次用600元购进2B铅笔若干支,第2次用800元又购进该款铅笔,但这次每支的进价是第1次进价的八折,且购进数量比第1次多了100支.(1)求第1次每支2B铅笔的进价;(2)若要求这两次购进的2B铅笔按同一价格全部销售完毕后获利不低于600元,问每支2B铅笔的售价至少是多少元?【分析】(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,根据数量=总价÷单价结合第二次比第一次多购进100支,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一次购进2B铅笔的数量,用其加100可求出第二次购进数量,设每支2B铅笔的售价为y元,根据利润=单价×数量﹣进价结合总利润不低于600元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,依题意,得﹣=100,解得:x=4.经检验,x=4是原方程的解,且适合题意.答:第1次每支2B铅笔的进价为4元.(2)600÷4=150(支),150+100=250(支)设每支2B铅笔的售价为y元,依题意,得:(150+250)y﹣(600+800)≥600,解得:y≥5.答:每支2B铅笔的售价至少是5元.21.如图,A D是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、D F,且∠AF D+∠B=180°.(1)求证:B D=F D;(2)当AF+F D=AE时,求证:∠AF D=2∠AE D.【分析】(1)由角平分线的性质得D M=D N,角角边证明△D M B≌△D NF,由全等三角形的性质求得B D=F D;(2)由边角边证△A DF≌△A D G,其性质得F D=G D,∠AF D=∠A G D,因AF+F D=AE,AE=A G+G E得FD=G D=G E,由等腰三角形等边对等角和三角形的外角定理得∠AG D =2∠GE D,等量代换得∠AF D=2∠AE D.【解答】证明:(1)过点D作D M⊥AB于M,D N⊥AC于N,如图1所示:∵D M⊥AB,D N⊥AC,∴∠D M B=∠D N F=90°,又∵A D平分∠BA C,∴D M=D N,又∵∠AF D+∠B=180°,∠AF D+∠DF N=180°,∴∠B=∠DF N,在△D M B和△D N F中,∴△D M B≌△D N F(AAS)∴B D=F D;(2)在AB上截取A G=AF,连接D G.如图2所示,∵A D平分∠BAC,∴∠DAF=∠DAG,在△A DF和△A D G中.,∴△A DF≌△A D G(SAS).∴∠AF D=∠A G D,F D=G D又∵AF+F D=AE,∴A G+G D=AE,又∵AE=A G+G E,∴F D=G D=G E,∴∠G D E=∠GED又∵∠A G D=∠G E D+∠G D E=2∠G E D.∴∠AF D=2∠AED22.如图,在等边△AB C中,线段A M为BC边上的中线.动点D在直线A M上时,以C D 为一边在C D的下方作等边△C D E,连结BE.(1)填空:∠CAM=30度;(2)若点D在线段A M上时,求证:△A D C≌△BE C;(3)当动点D在直线A M上时,设直线BE与直线A M的交点为O,试判断∠A OB是否为定值?并说明理【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=AC,D C=E C,∠ACB=∠D CE=60°,由等式的性质就可以∠BCE=∠AC D,根据SAS就可以得出△A D C≌△BE C;(3)分情况讨论:当点D在线段A M上时,如图1,由(2)可知△A C D≌△BCE,就可以求出结论;当点D在线段A M的延长线上时,如图2,可以得出△AC D≌△BCE而有∠CBE=∠CA D=30°而得出结论;当点D在线段M A的延长线上时,如图3,通过得出△AC D≌△BCE同样可以得出结论.【解答】解:(1)∵△AB C是等边三角形,∴∠BA C=60°.∵线段A M为BC边上的中线∴∠CA M=∠BA C,∴∠CA M=30°.故答案为:30;(2)∵△ABC与△DE C都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠AC D+∠D C B=∠D CB+∠BCE∴∠AC D=∠BC E.在△A D C和△BE C中,∴△AC D≌△BC E(SAS);(3)∠A OB是定值,∠A OB=60°,理由如下:①当点D在线段A M上时,如图1,由(2)可知△A C D≌△BCE,则∠CBE=∠CAD=30°,又∠AB C=60°∴∠CBE+∠AB C=60°+30°=90°,∵△AB C是等边三角形,线段A M为BC边上的中线∴∠B OA=90°﹣30°=60°.②当点D在线段A M的延长线上时,如图2,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠ACB+∠D C B=∠D CB+∠D C E∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠B OA=90°﹣30°=60°.③当点D在线段M A的延长线上时,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠AC D+∠A CE=∠BCE+∠ACE=60°∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CB O=30°,∠BA M=30°,∴∠B OA=90°﹣30°=60°.综上,当动点D在直线A M上时,∠A O B是定值,∠A OB=60°.理由如下:①当点D在线段A M上时,如图1,由(2)可知△A C D≌△BCE,则∠CBE=∠CAD=30°,又∠AB C=60°∴∠CBE+∠AB C=60°+30°=90°,∵△AB C是等边三角形,线段A M为BC边上的中线∴A M平分∠BAC,即∴∠B OA=90°﹣30°=60°.②当点D在线段A M的延长线上时,如图2,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠ACB+∠D C B=∠D CB+∠D C E∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠B OA=90°﹣30°=60°.③当点D在线段M A的延长线上时,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠AC D+∠A CE=∠BCE+∠ACE=60°∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CB O=30°,∠BA M=30°,∴∠B OA=90°﹣30°=60°.综上,当动点D在直线A M上时,∠A O B是定值,∠A OB=60°.。
山东省潍坊市2018-2019学年八年级(上)期末数学试卷一、选择题1、如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB ,垂足为E .若PE=3,则两平行线AD 与BC 间的距离为 ( ) A .3 B .5 C .6 D .不能确定(第1题图) (第2题图) (第3题图) 2、如图所示,有以下三个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这三个条件中任选两个作为条件,另一个作为结论,则组成真命题的个数为( ) A .0 B .1 C .2 D .33、如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC =EC ,∠B =∠E B .BC =EC ,AC =DC C .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D 4、下列六个图形中是轴对称图形的有( )A .0个B .6个C .3个D .4个5、化简的结果是( )A .B .C .D .6、命题:①对顶角相等;②两直线平行,内错角相等;③全等三角形的对应边相等.其中逆命题为真命题的有几个( ) A .0 B .1 C .2 D .37、如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠C=∠ABCD .∠A=∠ABE8、若3x ﹣2y =0,则等于( )。
A .B .C .D .9、某同学使用计算器求30个数据的平均数时,错将其中一个数据108输入为18,那么由此求出的平均数与实际平均数的差是( )A .3.5B .3C .0.5D .﹣310、对于非零的两个实数a ,b ,规定a ⊕b =,若2⊕(2x ﹣1)=1,则x 的值为( )A .B .C .D .11、一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )。
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
青海省西宁市2018-2019学年八年级上期末数学试卷含答案解析 (1)2018-2019学年青海省西宁市八年级(上)期末数学试卷一、精心选一选,慧眼识金!每小题3分,共24分,在四个选项中只有一项符合题目要求。
1.要使分式有意义,则x的取值范围是()。
A。
x≠1B。
x>1C。
x<1D。
x≠﹣12.下列运算正确的是()。
A。
a3+a4=a7B。
2a3×a4=2a7C。
(2a4)3=8a7D。
a8÷a2=a43.下面有4个汽车标致图案,其中不是轴对称图形的是()。
A。
B。
C。
D。
4.在如图中,正确画出AC边上高的是()。
A。
B。
C。
D。
5.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()。
A。
14B。
16C。
10D。
14或166.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()。
A。
CB=CDB。
∠BAC=∠DACC。
∠XXX∠DCAD。
∠B=∠D=90°7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()。
A。
abB。
(a+b)²C。
(a-b)²D。
a²-b²8.如图,把△XXX纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变。
请试着找一找这个规律,你发现的规律是()。
A。
∠A=∠1+∠2B。
2∠A=∠1+∠2C。
3∠A=2∠1+∠2D。
3∠A=2(∠1+∠2)二、耐心填一填,一锤定音!每小题2分,共16分。
9.(-12) ÷ 3 = -4.10.在平面直角坐标系中,点P(-2.3)关于x轴对称的点P1的坐标是(-2.-3)。
11.一个多边形的每个内角都等于135°,则这个多边形是八边形。
2018-2019学年北京市东城区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣82.若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数3.下列运算中,正确的是()A.3x2+2x3=5x5B.a•a2=a3C.3a6÷a3=3a2D.(ab)3=a3b4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.5.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=66.下列二次根式中,是最简二次根式的是()A.B.C.D.7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.728.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC =ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.810.定义运算“※”:a※b=.若5※x=2,则x的值为()A.B.或10C.10D.或二、填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11.分解因式:2ax2﹣8a=.12.多项式(mx+8)(2﹣3x)展开后不含x项,则m=.13.当x=时,分式的值为0.14.课本上有这样一道例题:作法:(1)作线段AB=a(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.请你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为.16.已知在△ABC中,AB=AC.(1)若∠A=36°,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是;(2)若∠A≠36°,当∠A=时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)三、解答题(本题共12小题,共56分)17.计算:+(2﹣π)0﹣()﹣2.18.计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.解分式方程:+1=.21.先化简,然后a在﹣2,0,1,2,3中选择一个合适的数代入并求值.22.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.23.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB ∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.25.如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.26.阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:===﹣1.===﹣.(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.参照(一)式得=;参照(二)式得=;(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:1.求的值;2.化简:+++…+.27.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC 于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)28.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)2018-2019学年北京市东城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数【分析】分式有意义的条件是分母不等于零,据此可得.【解答】解:若分式有意义,则a﹣1≠0,即a≠1,故选:A.【点评】本题主要考查分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.3.下列运算中,正确的是()A.3x2+2x3=5x5B.a•a2=a3C.3a6÷a3=3a2D.(ab)3=a3b【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、3x2+2x3,无法计算,故此选项错误;B、a•a2=a3,正确;C、3a6÷a3=3a3,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.【分析】直接根据轴对称图形的概念分别解答得出答案.【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=6【分析】根据实数的运算方法,求出每个选项中左边算式的结果是多少,判断出哪个算式错误即可.【解答】解:∵4+4﹣=6,∴选项A不符合题意;∵4+40+40=6,∴选项B不符合题意;∵4+=6,∴选项C不符合题意;∵4﹣1÷+4=4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.72【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【解答】解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.8.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC =ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④【分析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:C.【点评】此题主要考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.8【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度.【解答】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点评】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.10.定义运算“※”:a※b=.若5※x=2,则x的值为()A.B.或10C.10D.或【分析】分别讨论5>x和5<x时,得到的分式方程,解之,找出符合题意的即可.【解答】解:若5>x,即x<5时,原方程可整理得:=2,方程两边同时乘以(5﹣a)得:5=2(5﹣x),解得:x=,经检验:x=是原方程的解,且<5,即x=符合题意,若5<x,即x>5时,原方程可整理得:=2,方程两边同时乘以(x﹣5)得:x=2(x﹣5),解得:x=10,经检验:x=10是原方程的解,且10>5,即x=10符合题意,故选:B.【点评】本题考查了解分式方程,有理数的混合运算,正确掌握解分式方程的方法是解题的关键.二、填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11.分解因式:2ax2﹣8a=2a(x+2)(x﹣2).【分析】首先提公因式2a,再利用平方差进行二次分解即可.【解答】解:原式=2a(x2﹣4)=2a(x+2)(x﹣2).故答案为:2a(x+2)(x﹣2).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.多项式(mx+8)(2﹣3x)展开后不含x项,则m=12.【分析】乘积含x项包括两部分,①mx×2,②8×(﹣3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵多项式(mx+8)(2﹣3x)展开后不含x项,∴2m﹣24=0,解得:m=12,故答案为:12.【点评】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.13.当x=﹣2时,分式的值为0.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:∵=0,∴x=﹣2.故答案为:﹣2.【点评】此题考查的是对分式的值为0的条件,分子等于0,分母不能等于0,题目比较简单.14.课本上有这样一道例题:作法:(1)作线段AB=a(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.请你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【分析】利用线段垂直平分线的性质和等腰三角形的定义,由CD垂直平分AB可得到△ABC就是等腰三角形.【解答】解:若CD垂直平分AB,则根据线段垂直平分线上的点与这条线段两端点距离相等得到CA=CB,然后根据等腰三角形的定义可判断△ABC就是等腰三角形.故答案为线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为13.【分析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【解答】解:如图,连接BE,∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE,∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=13,故答案为:13.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16.已知在△ABC中,AB=AC.(1)若∠A=36°,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是108°,36°;(2)若∠A≠36°,当∠A=90°或108°时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论;(2)当∠A=90°或108°时,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108°,36°;(2)当∠A=90°或108°时,在等腰△ABC中画一条线段,能得到2个等腰三角形,故答案为:90°或108°.【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形是解题关键.三、解答题(本题共12小题,共56分)17.计算:+(2﹣π)0﹣()﹣2.【分析】直接利用零指数幂的性质、负指数幂的性质、算术平方根分别化简得出答案.【解答】解:原式=3+1﹣4=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用乘法公式化简求出答案.【解答】解:(1)原式==;(2)原式=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分析】本题考查整式的加法运算,要先去括号,然后合并同类项,最后进行因式分解.本题答案不唯一.【解答】解:方法一:(x2+2xy)+x2=2x2+2xy=2x(x+y);方法二:(y2+2xy)+x2=(x+y)2;方法三:(x2+2xy)﹣(y2+2xy)=x2﹣y2=(x+y)(x﹣y);方法四:(y2+2xy)﹣(x2+2xy)=y2﹣x2=(y+x)(y﹣x).【点评】本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,因式分解时先考虑提取公因式,没有公因式的再考虑运用完全平方公式或平方差公式进行因式分解.20.解分式方程:+1=.【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:方程两边同乘以2(x+3),得4x+2(x+3)=7,解得x=,检验:当x=时,2(x+3)≠0,∴x=是分式方程的解.【点评】本题考查了解分式方程,利用等式的性质得出整式方程是解题关键,要检验方程的根.21.先化简,然后a在﹣2,0,1,2,3中选择一个合适的数代入并求值.【分析】先去括号,然后化除法为乘法进行化简计算,最后代入求值即可.【解答】解:原式===.当a=0时,=.【点评】考查了分式的化简求值,注意:如a取﹣2,2,3时,分式无意义.22.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.【分析】(1)利用轴对称变换,即可作出△ABC关于y轴对称的△A1B1C1;(2)依据以B、C、D为顶点的三角形与△ABC全等,可知两个三角形有公共边BC,运用对称性即可得出所有符合条件的点D坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)当△BCD与△BCA关于BC对称时,点D坐标为(0,3),当△BCA与△CBD关于BC的中点对称时,点D坐标为(0,﹣1),△BCA与△CBD关于BC的中垂线对称时,点D坐标为当(2,﹣1).【点评】本题主要考查了利用轴对称变换作图以及全等三角形的判定的运用,解题时注意,成轴对称的两个三角形或成中心对称的两个三角形全等.23.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB ∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.【分析】设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.根据“行驶完全程时间仅为原来路程行驶完全程时间的”列出方程并解答.【解答】解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.【分析】结论:AE与AF的位置关系是垂直.想办法证明∠CAF+∠CAE=90°即可.【解答】解:结论:AE与AF的位置关系是垂直.证明:∵AE是△ACD的角平分线,∴,∵AE∥BC,∴∠DAE=∠B,∠EAC=∠ACB,∴∠B=∠ACB,∴AB=AC,又∵F为BC中点,∴,∵∠CAB+∠CAD=180°,∴∠CAF+∠CAE=90°,∴AE⊥AF.【点评】本题考查平行线的性质,等腰三角形的判定和性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:===﹣1.===﹣.(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.参照(一)式得=﹣;参照(二)式得=﹣;(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:1.求的值;2.化简:+++…+.【分析】(一)(1)方法一:利用分母有理化化简;方法二:利用平方差公式把2写成两个数的平方差的形式,然后利用约分化简;(二)1.先把前面括号内的各二次根式分母有理化,然后合并后利用平方差公式计算;2.利用分母有理化得到原式=(﹣1+﹣+…+﹣),然后合并即可.【解答】解:(1)==﹣;==﹣;故答案为﹣;﹣;(2)1.=(﹣1+++﹣+…+﹣)(+1)=(﹣1)(+1)=2019﹣1=2018;2.+++…+=(﹣1+﹣+…+﹣)=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.27.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC 于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为②(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)【分析】(1)过点P作PF∥BC交AC于点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AC﹣AF),即可求DE的长;(2)过点P作PF∥BC交CE的延长线于点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AC+AF),即可求DE的长;(3)过点P作PF∥BC交BC的延长线与点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AF﹣AC),即可求DE的长.【解答】解:(1)如图,过点P作PF∥BC交AC于点F,∴∠Q=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠Q=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC﹣AF),∴DE=DF+EF=(AC﹣AF)+AF=AC=1;(2)1、补全的图形如下,过点P作PF∥BC交CE的延长线于点F,∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠FAP=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC+AF),∴DE=DF﹣EF=(AC+AF)﹣AF=AC=1;2、过点P作PF∥BC交BC的延长线与点F.∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AF﹣AC),∴DE=EF﹣DF=(AC+CF)﹣CF=AC=1;答案为②.【点评】本题为三角形综合题,关键是通过作辅助线构建新的等边三角形,再通过证明三角形全等,确定边之间的关系,本题难度不大.28.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)【分析】(1)点A关于y轴的对称点为D,求出∠DOE=∠EOA=90°﹣∠AOB=30°,即可求解;(2)∠AOE=∠DOE=α,∠AOB=60°,求出∠BOD即可求解;(3)证明△AOP≌△ABQ(AAS),而EP为△DAQ的中位线,即可求解.【解答】解:(1)∵点A关于y轴的对称点为D,∴∠DOE=∠EOA=90°﹣∠AOB=30°,∴△OAD为等边三角形,∴∠BOD=120°,∴∠BDO==30°;(2)如下图:∵∠AOE=∠DOE=α,∠AOB=60°,∴∠BOD=360°﹣2α﹣60°=300°﹣2α,∵BO=BD,∴∠OBD=∠ODB.∴(3)如上图,连接AP,过点A作AQ∥y轴,交DB的延长线于点Q,∠OBD=∠BDO=α﹣60°,∠ABQ=180°﹣∠ABO﹣∠BDO=180°﹣α,而∠AOP=180°﹣∠AOE=180°﹣α,∴∠ABQ=∠AOP,∵AQ∥y轴,∴∠Q=∠DPE=∠APE,又AB=AO,∴△AOP≌△ABQ(AAS),∴AP=AQ,BQ=PO,∠BAQ=∠OAP,∴∠PAQ=∠QAB+∠BAP=∠BAP+∠PAO=60°,∴△APQ为等边三角形,∴AQ=PQ=PB+BQ=PB+PO,∵AQ∥y轴,E为AD的中点,∴EP为△DAQ的中位线,∴AQ=2EP,∴2PE=BP+PO.【点评】本题是几何变换的综合题,涉及到三角形全等、中位线、等边三角形等知识,关键是通过正确画图,找出全等的三角形,确定线段间的关系.。
贵州省遵义市2018-2019学年八年级上学期数学期末考试试卷一、选择题1.下列长度的线段中,可以组成三角形的是( )A.1,2,3B.2,5,8C.3,4,5D.3,6,92.下列图案中,不是轴对称图形的是( )A. B. C. D.3.下列运算正确的是( )A.3a + 2b = 5aB.(a + b) = a + bC.(-a b ) = a bD.1 - 4m + 4m = (2m -1)4.分式有意义,则x的取值范围是( )A.x≠-3B.x≠3C.x≠±3D.x≠95.已知等腰三角形的一个外角是80°,则它的顶角是( )A.20°B.100°C.20°或100°D.20°或80°6.如图,已知AD∥BC,AB=CD,AC,BD 交于点O,另加一个条件不能使△ABD≌△CDB 的是( )A.AO=COB.AD=BCC.AC=BDD.OB=OD7.下列正多边形不能镶嵌为平面图形的是( )A.正三角形B.正方形C.正五边形D.正六边形8.小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形9.如果mx2 + 4x + m2 + 3 = 0 是一个完全平方式,则m 的值是( )A.m=±1B.m=-1C.m=0D.m=110.港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55 公里.通车前需走水陆两路共约340 公里,通车后,约减少时间2.5 小时,平均速度是原来的6 倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为( )A. B. C. D.11.如图,从边长为a 厘米的正方形纸片中减去边长为b 厘米的小正方形,将剪下的图形从虚线处剪开,再拼成一个矩形(长方形).试求这个“新矩形”的面积,下列说法表述正确的是( )A.因式分解a - b = (a + b)(a - b)B.整式乘法a - b = (a + b)(a - b)C.因式分解(a + b)(a - b) = a - bD.整式乘法a ± 2ab + b = (a ± b)12.如图,点B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用m 的代数式表示△ABE 的面积( )A. B.m C.m D.3m二、填空题13.计算________14.分解因式:2m -32m5=________;15.已知a+b=3,ab=2,则a2+b2=________;16.若分式有增根,则m=________;17.如图,在∠AOB 的边OA、OB 上取点M、N,连接MN,P 是△MON 外角平分线的交点,若MN=2,S △PMN=2,S△OMN=7.则△MON 的周长是________;18.如图,以AB 为底分别作等边三角形QAB 和正方形ABCD.如果在正方形的对角线AC上存在一点P 使PD+PQ 存在最小值为2,则该正方形的面积是________ .三、解答题19.(1)计算:(2a6b)-1 ÷(a-2b)3 (2)因式分解:2xy+1-x2- y220.解方程:21.化简,然后从-1,0,1,2 中选取一个你喜欢的数作为x 的值代入求值.22.如图,点A(-1,2),B(-3,1),C(-1,1)在平面坐标系中.(1)在图中找出第四个点P,使以A、B、C、P 为顶点的四边形是轴对称图形,画出该四边形,并写出P 点的坐标________;(找出一个即可)(2)求出(1)中你画出的四边形的面积.23.如图,△ABC 和△BDE 均为等边三角形,求证:DE+EC=AE.24.已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.25.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为300 元,而续航里程之比则为1∶4.经计算新能源汽车相比燃油车节约0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受0.48 元/度的优惠专用电费.以新能源EV500 为例,充电55 度可续航400 公里,试计算每公里所需电费,并求出与燃油车相同里程下的所需费用(油电)百分比.26.已知,有一组不为零的数a,b,c,d,e,f,m,满足,求解:∵a=bm,c=md,e=fm∴= = m利用数学的恒等变形及转化思想,试完成:(1)244,333,422 的大小关系是________;(2)已知a,b,c 不相等且不为零,若,求的值.27.数学思维是数学地思考问题和解决问题,运用数学概念,思维和方法,辨明数学关系,形成良好的思维品质,试用你的数学能力解决下列问题:图1 图2(1)如图1 是角平分线的一种作法,其运用的数学知识是全等三角形判定方法中的________(判定方法);(2)如图2,在△ABC 中,∠B=60°,∠BAC 的平分线AD 与∠BCA 的平分线CE 交于点F,则:①∠AFC=________度.②写出EF与FD的数量关系,并说明理由;________。
2018-2019学年八年级数学上学期期末复习检测试卷
一、选择题(共12小题,总分36分)
1.(3分)下面有四个图案,其中不是轴对称图形的是( )
A. B.
C. D.
2.(3分)若代数式23
x -有意义,则实数x 的取值范围是( )
A .x =0
B .x =3
C .x ≠0
D .x ≠3 3.(3分)下列计算正确的是( )
A .a 2
+a 3
=a 5
B .a 2
·a 3
=a 6
C .(a 2)3
=a 6
D .(ab )2
=ab 2
4.(3分)下列长度的三根小木棒能构成三角形的是( )
A .2cm ,3cm ,5cm
B .7cm ,4cm ,2cm
C .3cm ,4cm ,8cm
D .3cm ,3cm ,4cm
5.(3分)在平面直角坐标系中,点M(7,-1)关于x 轴对称的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 6.(3分)下列因式分解正确的是( )
A .x 2
-4=(x +4)(x -4) B .x 2
+x +1=(x +1)2
C .x 2
-2x -3=(x -1)2
-4 D .2x +4=2(x +2)
7.(3分)从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2 013个三角形,则这个多边
形的边数为( )
A .2 011
B .2 015
C .2 014
D .2016
8.(3分)化简:
2
11x
x x
x
-
--=( ) A .1 B .-x C .x D. 1
x x -
9.(3分)不能用尺规作出唯一三角形的是( )
A .已知两角和夹边
B .已知两边和夹角
C .已知两角和其中一角的对边
D .已知两边和其中一边的对角 10.(3分)如果x 2
-(m -1)x +1是一个完全平方式,则m 的值为( )
A .-1
B .1
C .-1或3
D .1或3
11.(3分)如图,在△ABC 中,边BC 的垂直平分线l 与AC 相交于点D ,垂足为E ,如果△ABD 的周长
为10cm ,BE =3cm ,则△ABC 的周长为(
)
(第11题)
A .9 cm
B .15 cm
C .16 cm
D .18 cm
12.(3分)若分式方程
24
4
x
a x x =+
--无解,则a 的值为( )
A .4
B .2
C .1
D .0 二、填空题(共6小题,总分18分)
13.(3分)当x _______时,分式
1
1
x x --有意义.
14.(3分)用科学记数法表示0.000 010 2=___________. 15.(3分)计算:(
)()
43
5
2
a
a -⋅-=________.
16.(3分)已知x +y =-5,xy =3,则x 2
+y 2
的值为_______.
17.(3分)在△ABC 中,AC =5 cm ,AD 是△ABC 的中线,把△ABC 的周长分为两部分,若其差为3 cm ,
则BA =______________________.
(第18题)
18.(3分)如图,已知△ABC 中,∠BAC =140°,现将△ABC 进行折叠,使顶点B 、C 均与顶点A 重合,
则∠DAE 的度数为___________. 三、解答题(共8小题,总分66分)
19.(8分)计算:
(1)⎝ ⎛⎭
⎪⎫-12-2+(π-2018)0-|1-2|+(-2)3
;
(2) 3
2
3x y y y x x ⎛⎫⎛
⎫⋅÷- ⎪ ⎪⎝⎭⎝⎭
.
20.(8分)分解因式:
(1)3x 3
-27x ; (2)(p -4)(p +1)+3p .
21.(6分)先化简,再求值:2
1
122
244a a a a a ⎛⎫+÷ ⎪-+-+⎝⎭,其中a =-4.
22.(6分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).
(第22题)
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
23.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.
(第23题)
24.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.
(1)若∠BAE=40°,求∠C的度数;
(2)若△ABC的周长为14cm,AC=6cm,求DC的长.
(第24题)
25.(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?
26.(10分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边三角形ADE.
(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;
(2)如图②③,点D在线段BC的延长线或反向延长线上移动时,猜想
∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明
理由.
(第26题)
答案
一、1.A 2.D 3.C 4.D 5.A 6.D 7.C 8.B 9.D 10.C 11.C 12.A 二、13. ≠1 14. 1.02×10-5
15. -a 26
16. 19 17. 8cm 或2cm 18. 100° 三、19. (1) 解:原式=4+1-1-8
=-4.
(2)解:原式=
323
3
x y x y
x
y ⎛⎫⋅
⋅- ⎪⎝⎭
=2
x y
-
.
20. (1)解:原式=3x (x 2
-9)
=3x (x +3)(x -3). (2) 解:原式=p 2
-3p -4+3p =p 2
-4
=(p +2)(p -2).
21.解:原式=()()
()()()2
22
2
22222a a a a a a a a ⎡⎤-+-+⋅
⎢
⎥-+-+⎣⎦
=
()()
()
2
22222a a
a a a
-⋅
+-
=22
a a -+.
当a =-4时,原式=-4-2
-4+2=3.
22. 解:(1)S △ABC =12×5×3=15
2;
(2)略;
(3)A 1(1,5),B 1(1,0),C 1(4,3). 23.证明:∵AF =DC , ∴AF -CF =DC -CF ,即AC =DF . 在△ABC 和△DEF 中,
⎩⎪⎨⎪
⎧AC =DF ,AB =DE ,BC =EF ,
∴△ABC ≌△DEF (SSS ).
24.解:(1)∵AD 垂直平分BE ,EF 垂直平分AC , ∴AB =AE =EC ,
∴∠C =∠CAE ,∠B =∠AED . ∵∠BAE =40°,
∴∠AED =180°-40°2=70°,
∴∠C = 1
2
∠AED =35°.
(2)∵△ABC 的周长为14cm ,AC =6cm , ∴AB +BE +EC =8cm , 即2DE +2EC =8cm , ∴DE +EC =DC =4cm.
25.解:设这项工程的规定时间为x 天,
根据题意得
45
4523
3x
x
++
=1
解得x =83,
检验:当x =83时,3x ≠0. ∴x =83是原分式方程的解. 答:这项工程的规定时间是83天. 26.解:(1)∠BAD =∠CAE . (2)不发生变化.
当点D 在线段BC 的延长线上时: ∵△ABC 和△ADE 都是等边三角形,
∴AC =AB ,AE =AD ,∠ACB =∠ABD =∠BAC =∠DAE =60°. ∴∠CAE =∠BAD .∴△ACE ≌△ABD .∴∠ACE =∠ABD =60°. ∴∠DCE =180°-∠ACB -∠ACE =60°. 当点D 在线段BC 的反向延长线上时:
∵△ABC 是等边三角形,△ADE 是等边三角形,
∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE . ∴∠ABD =120°,∠BAC -∠BAE =∠DAE -∠BAE , ∴∠CAE =∠DAB .
在△ACE 和△ABD 中,⎩⎪⎨⎪
⎧AE =AD ,∠CAE =∠BAD ,AC =AB ,
∴△ACE ≌△ABD (SAS ),∴∠ACE =∠ABD =120°. ∴∠DCE =∠ACE -∠ACB =120°-60°=60°.。