三角恒等变换两角和差二倍角三角函数二轮复习专题练习(四)附答案高中数学
- 格式:doc
- 大小:301.00 KB
- 文档页数:6
4.2三角恒等变换考点三角恒等变换1.(2017课标Ⅲ文,4,5分)已知sinα-cosα=43,则sin2α=()A.-79 B.-29C.29D.79答案A ∵(sinα-cosα)2=169,∴sin2α=-79.解后反思涉及sinα±cosα,sinαcosα的问题,通常利用公式(sinα±cosα)2=1±2sinαcosα进行转换.2.(2017山东文,4,5分)已知cosx=34,则cos2x=()A.-14 B.14C.-18D.18答案D 本题考查二倍角余弦公式.因为cosx=34,所以cos2x=2cos 2-1=18.3.(2016课标Ⅲ文,6,5分)若tanθ=-13,则cos2θ=()A.-45 B.-15C.15D.45答案D 解法一:cos2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=45.故选D.解法二:由tanθ=-13,可得因而cos2θ=1-2sin 2θ=45.评析本题考查化归与转化的能力.属中档题.4.(2015课标Ⅰ理,2,5分)sin20°cos10°-cos160°sin10°=()C.-12D.12答案D 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D.5.(2015重庆理,9,5分)若tanα=2tan π5,)A.1B.2C.3D.4答案C=sinvos π5+cosLin π5sinvos π5-cosLin π5=tanrtan π5tanttan π5,∵tanα=2tanπ5,∴=3tanπ5tanπ5=3.故选C.6.(2015重庆文,6,5分)若tanα=13,tan(α+β)=12,则tanβ=()A.17B.16C.57D.56答案A tanβ=tan[(α+β)-α]=tan(rp-tan1+tan(rp·tan=12-131+12×13=17,故选A.7.(2013课标Ⅱ文,6,5分)已知sin2α=23,则cos2)A.16B.13C.12D.23答案A cos2=1−sin22,把sin2α=23代入,原式=16.选A.评析本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用.8.(2016课标Ⅱ,9,5分)若-α=35,则sin2α=()A.725B.15C.-15D.-725答案D解法一:因为-α=35,所以-2α=cos2-α=2cos-α-1=-725.故选D.解法二-α(cosα+sinα)=35⇒1+sin2α=1825,∴sin2α=-725.故选D. 9.(2021全国乙文,6,5分)cos2π12−cos25π12=()A.12答案D解析解法一:cos2π5π12=π=cos2π12−sin2π12=cosπ6=解法二:cos2π12−cos25π12cos2−cos2=cosπ4π6π4π4π6sinπ4×10.(2021全国甲理,9,5分)若α∈tan2α=cos2−sin,则tanα=()答案A 解题指导:先将切化弦,再将分式化为整式,利用两角差的余弦公式及二倍角公式将异角化为同角,最后利用同角三角函数的基本关系求解.解析∵tan 2α=cos 2−sin ,且α∈0,∴sin2cos2=cos2−sin ,∴2sin 2α=cos αcos 2α+sin αsin 2α,即4sin αcos α=cos (2α-α)=cos α,又cos α≠0,∴4sin α=1,∴sin α=14,∴cos αtan αA .疑难突破将tan 2α转化为sin2cos2是本题的突破口.11.(2021新高考Ⅰ,6,5分)若tan θ=-2,则sino1+sin2psinrcos=()A.-65B.−25C.25D.65答案Csino1+sin2psinrcos=sinosin 2rcos 2r2sinbcospsinrcos=sinosinrcosp 2sinrcos=sin θ(sin θ+cos θ)=sin 2θ+sin θ·cosθ=sin 2rsinbcos sin 2rcos 2=tan 2rtan tan 2r1=(−2)2−2(−2)2+1=25.故选C .12.(2022新高考Ⅱ,6,5分)若sin (α+β)+cos (α+β)=22cos β,则()A.tan (α-β)=1B.tan (α+β)=1C.tan (α-β)=-1D.tan (α+β)=-1答案C 因为sin (α+β)+cos (α+β)=sin αcos β+cos αsin β+cos αcos β-sin αsin β,22cos β=(2cosα-2sin α)sin β=2cos αsin β-2sin αsin β,所以sin αcos β+cos αsin β+cos αcos β-sin αsin β=2cos αsin β-2sin αsin β,即sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,进而得sin (α-β)+cos (α-β)=0,又知cos (α-β)≠0,所以tan (α-β)=-1,故选C .13.(2022浙江,13,6分)若3sin α-sin β=10,α+β=π2,则sin α=,cos 2β=.答案45解析设a =sin α,b =sin β=cos α,则3−=10,21,解得a b∴sin α=a cos 2β=1-2sin 2β=1-2b 2=45.14.(2020课标Ⅱ文,13,5分)若sinx=-23,则cos2x=.答案19解析∵sinx=-23,∴cos2x=1-2sin2x=1-2×=19.15.(2018课标Ⅱ文,15,5分)已知tan t=15,则tanα=.答案32解析本题主要考查两角差的正切公式.tan t=tanttan5π41+tanMan5π4=tant11+tan=15,解得tanα=32.16.(2017课标Ⅰ文,15,5分)已知α∈则cos t=.答案解析因为α∈且tanα=sin cos=2,所以sinα=2cosα,又sin2α+cos2α=1,所以则cos t=cosαcosπ4+sinαsinπ4=易错警示在求三角函数值时,常用到sin2α+cos2α=1和tanα=sin cos,同时要注意角的范围,以确定三角函数值的正负.17.(2017江苏,5,5分)若tan t=16,则tanα=.答案75解析本题考查两角和的正切公式.因为tan=16,所以tanα=tan=16+11−16×1=75.18.(2016浙江,理10,文10,5分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.答案2;1解析∵2cos2x+sin2x=1+cos2x+sin2x=2sin2+1,∴A=2,b=1.评析本题主要考查三角恒等变换,熟练利用两角和的正弦公式及二倍角公式是解题关键. 19.(2016课标Ⅰ文,14,5分)已知θ是第四象限角,且sin=35,则tan t=.答案-43解析解法一:∵sin×(sinθ+cosθ)=35,∴sinθ+cosθ=①,∴2sinθcosθ=-725.∵θ是第四象限角,∴sinθ<0,cosθ>0,∴sinθ-cosθ=-1−2sinvos=-由①②得,∴tanθ=-17,∴tan=tant11+tan=-43.解法二:∵-θ=π2,∴sin=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k∈Z,∴cos=45,∴sin-θ=45,-θ=43,∴tan=-43.评析本题主要考查了三角恒等变换,熟练掌握同角三角函数关系式及诱导公式是解题的关键.20.(2016四川理,11,5分)cos2π8-sin2π8=.答案解析由二倍角公式易得cos2π8-sin2π8=cosπ4=21.(2015江苏,8,5分)已知tanα=-2,tan(α+β)=17,则tanβ的值为.答案3解析tanβ=tan[(α+β)-α]=tan(rp-tan1+tan(rptan=17-(-2)1+17×(−2)=3.22.(2015四川理,12,5分)sin15°+sin75°的值是.答案解析sin15°+sin75°=sin15°+cos15°=2sin(15°+45°)=2sin60°=23.(2014课标Ⅱ理,14,5分)函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为.答案1解析f(x)=sin[(x+φ)+φ]-2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ-2sinφcos(x+φ)=sin(x+φ)cosφ-sinφcos(x+φ)=sin(x+φ-φ)=sinx,∴f(x)的最大值为1.24.(2014课标Ⅱ文,14,5分)函数f(x)=sin(x+φ)-2sinφcosx的最大值为.答案1解析f(x)=sin(x+φ)-2sinφcosx=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,所以f(x)max=1.25.(2015广东文,16,12分)已知tanα=2.(1)求tan;(2)求sin2sin2α+sinvostcos2t1的值.解析(1)因为tanα=2,所以tan=tanrtanπ41−tan·tanπ4=2+11−2×1=-3.(2)因为tanα=2,所以sin2sin2α+sinvostcos2t1=2sinvossin2α+sinvost(cos2α-sin2α)-(sin2α+cos2α)=2sinvostan2α+tant2=2×222+2−2=1.sin2α+sinvost2cos2α=2tan26.(2014江苏,15,14分)已知,π(1)求α的值;(2)求-2α.解析(1)因为2,π所以cosα=-1−sin2α=-故α=sinπ4cosα+cosπ4sinα×(2)由(1)知-=-45,cos2α=1-2sin2=35,所以-2α=cos5π6cos2α+sin5π6sin2α=×35+12×评析本题主要考查三角函数的基本关系式、两角和与差的正、余弦公式及二倍角公式,考查运算求解能力.。
角函数公式两角和公式sin(A+B)=sin(A-B)=cos(A+B)=cos(A-B)=tan(A+B)=tan(A-B)=倍角公式tan2α=cos2α=sin2α=半角公式sin^2( α/2)=cos^2( α/2)=tan^2( α/2)=和差化积2sinAcosB=2cosAsinB=2cosAcosB=-2sinAsinB=积化和差公式sinαsinβ=cosαcos=βsin αco=sβ万能公式sin(α)= (2tαn(α/2))/(1+t αn^2(α/2)) cos(α)= (1-t αn^2(α/2))/(1+t αn^2( α/2)) tαn(α)= (2tαn(α/2))/(1-t αn^2( α/2))角函数公式两角和公式sin(Α+B)=sin ΑcosB+cosΑsinB sin(Α-B)=sinΑcosB-sinBcosΑcos(Α+B)=cosΑcosB-sinΑsinB cos(Α-B)=cosΑcosB+sinΑsinBt αn(Α+B)=(tαnΑ+tαnB)/(1-t αnΑt αnB) tαn(Α-B)=(tαnΑ-t αnB)/(1+tαnΑt αnB) 倍角公式cos2 cos 2sin 2 2 c os 2 1 1 2 sin 2;。
sin 2 tan2 2sin2 tancos ;1 tan2半角公式sin^2( α/2)=(1-cos α)/2cos^2( α/2)=(1+cos α)/2tαn^2( α/2)=(1-cos α)/(1+cos α)和差化积2sinΑcosB=sin(Α+B)+sin( Α-B) 2cosΑsinB=sin(Α+B)-sin(Α-B) ) 2cosΑcosB=cos(Α+B)+cos(Α-B)-2sinΑsinB=cos(Α+B)-cos(Α-B)积化和差公式sin(α)sin(β)=—1/2*[cos( α+β)-cos(α-β)] cos(α)cos(β)=1/2*[cos( α+β)+cos(α-β)] sin(α)cos(β)=1/2*[sin( α+β)+sin(α-β)]1. 三角函数式的化简(1)降幂公式sin cos 1sin 22;sin1 cos22;cos1 cos2。
三角恒等变换专题复习教学目标:1、能利用单位圆中的三角函数线推导出 απαπ±±,2的正弦、余弦、正切的诱导公式;2、理解同角三角函数的基本关系式:;3、可熟练运用三角函数见的基本关系式解决各种问题; 教学重难点:可熟练运用三角函数见的基本关系式解决各种问题 基础知识一、同角的三大关系:① 倒数关系 tan α•cot α=1 ② 商数关系 sin cos αα= tan α ; cos sin αα= cot α ③ 平方关系 22sin cos 1αα+=温馨提示:1求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解;来源:学+科+网2利用上述公式求三角函数值时,注意开方时要结合角的范围正确取舍“±”号;二、诱导公式口诀:奇变偶不变,符号看象限用诱导公式化简,一般先把角化成,2k z α+∈的形式,然后利用诱导公式的口诀化简如果前面的角是90度的奇数倍,就是 “奇”,是90度的偶数倍,就是“偶”;符号看象限是,把α看作是锐角,判断角2k πα+在第几象限,在这个象限的前面三角函数的符号是 “+”还是“--”,就加在前面;用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间0(0,360)的角,再变到区间00(0,180)的角,再变到区间00(0,90)的角计算;三、和角与差角公式 :sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=变 用 tan α±tan β=tan α±β1 tan αtan β四、二倍角公式:sin 2α= 2sin cos αα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-五、注意这些公式的来弄去脉这些公式都可以由公式cos()cos cos sin sin αβαβαβ±=推导出来;六、注意公式的顺用、逆用、变用;如:逆用sin cos cos sin sin()αβαβαβ±=± 1sin cos sin 22ααα=变用22cos 1cos 2αα+=22cos 1sin 2αα-= 21cos 4cos 22αα+= 七、合一变形辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式;()22sin cos αααϕA +B =A +B +,其中tan ϕB=A. 八、万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=九、用αsin ,αcos 表示2tanααααααsin cos 1cos 1sin 2tan-=+=十、积化和差与和差化积积化和差 )]sin()[sin(cos sin βαβαβα-++=; )]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=; )]cos()[cos(sin sin βαβαβα--+=.和差化积 2cos2sin2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=- 2cos 2cos 2cos cos ϕθϕθϕθ-+=+ 2sin 2sin 2cos cos ϕθϕθϕθ-+=-十一、方法总结1、三角恒等变换方法观察角、名、式→三变变角、变名、变式1 “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=α+β-β=α-β+β, 2α=α+β+ α-β, 2α=β+α-β-α,α+β=2·错误! , 错误! = α-错误!-错误!-β等.2“变名”指的是切化弦正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==, 3“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等; 2、恒等式的证明方法灵活多样①从一边开始直接推证,得到另一边,一般地,如果所证等式一边比较繁而另一边比较简时多采用此法,即由繁到简.②左右归一法,即将所证恒等式左、右两边同时推导变形,直接推得左右两边都等于同一个式子. ③比较法, 即设法证明: "左边-右边=0" 或" 错误! =1";④分析法,从被证的等式出发,逐步探求使等式成立的充分条件,一直推到已知条件或显然成立的结论成立为止,则可以判断原等式成立.例题精讲例1 已知α为第四象限角,化简:ααααααcos 1cos 1sin sin 1sin 1cos +-++-解:1因为α为第四象限角所以原式=αααααα2222cos 1)cos 1(sin sin 1)sin 1(cos --+-- ()ααααααααααsin cos cos 1sin 1sin cos 1sin cos sin 1cos -=---=--+-=例2 已知360270<<α,化简α2cos 21212121++ 解:360270<<α,02cos,0cos <>∴αα所以原式2111cos211cos 22222αα++=+21cos cos cos 222ααα+===- 例3 tan20°+4sin20°解:tan20°+4sin20°=0020cos 40sin 220sin +=0sin(6040)2sin 40cos 20-+00003340sin 403cos 20223cos 20+=== 例4 05天津已知727sin()2425παα-==,求sin α及tan()3πα+.解:解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即53sin ±=α 由1027)4sin(=-πα可得57cos sin =-αα由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限于是53sin =α,从而5457sin cos -=-=αα 以下同解法一小结:1、本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系均含α进行转换得到.2、在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例 5 已知,,A B C 为锐角ABC ∆的三个内角,两向量(22sin ,cos sin )p A A A =-+,(sin cos ,q A A =-1sin )A +,若p 与q 是共线向量.1求A 的大小;2求函数232sin cos()2C By B -=+取最大值时,B 的大小. 解:122// 2(1)(1+)- p q sinA sinA sin A cos A ∴-=22220 120cos A cos A cos A ∴+=∴+= 1cos 2A 2∴=-0<2A<π,002A 120 A=60∴=∴200A=60 B+C=120∴ 2013y=2sin B+cos(602B)1cos 2B+cos 2B sin 2B 22-=-+31 =sin 2B cos 2B+1=sin(2B )1226π--+ , 2B B 623πππ-=当时,即=. 小结:三角函数与向量之间的联系很紧密,解题时要时刻注意例6 设关于x 的方程sinx +3cosx +a =0在0, 2π内有相异二解α、β.1求α的取值范围; 2求tan α+β的值. 解: 1∵sinx +3cosx =221sinx +23cosx =2 sinx +3π, ∴方程化为sinx +3π=-2a.∵方程sinx +3cosx +a =0在0, 2π内有相异二解, ∴sinx +3π≠sin 3π=23 .又sinx +3π≠±1 ∵当等于23和±1时仅有一解, ∴|-2a |<1 . 且-2a≠23. 即|a |<2且a ≠-3.∴ a 的取值范围是-2, -3∪-3, 2.2 ∵α、 β是方程的相异解, ∴sin α+3cos α+a =0 ①. sin β+3cos β+a =0 ②. ①-②得sin α- sin β+3 cos α- cos β=0. ∴ 2sin2βα-cos2βα+-23sin2βα+sin2βα-=0, 又sin2βα+≠0, ∴tan2βα+=33.∴tan α+β=2tan22tan22βαβα+-+=3.小结:要注意三角函数实根个数与普通方程的区别,这里不能忘记0, 2π这一条件. 例7 已知函数()x x m x f cos sin 2-=在区间⎪⎭⎫⎝⎛2,0π上单调递减,试求实数m 的取值范围.解:已知条件实际上给出了一个在区间⎪⎭⎫⎝⎛2,0π上恒成立的不等式. 任取∈21,x x ⎪⎭⎫⎝⎛2,0π,且21x x <,则不等式()()21x f x f >恒成立,即>-11cos sin 2x x m 22cos sin 2x x m -恒成立.化简得()()2112sin 2cos cos x x x x m ->- 由2021π<<<x x 可知:0cos cos 12<-x x ,所以()1221cos cos sin 2x x x x m --<上式恒成立的条件为:()上的最小值,在区间⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛--<20cos cos sin 21221πx x x x m . 由于()2sin 2cos 22sin 2sin 22cos 2sin4cos cos sin 22121212121211221x x x x x x x x x x x x x x x x +-=-+--=-- 2sin2cos 2cos 2sin 2sin 2sin 2cos 2cos 221212121x x x x x x x x +⎪⎭⎫ ⎝⎛+=2tan2tan 2tan 2tan 122121x x x x +⎪⎭⎫ ⎝⎛+=且当2021π<<<x x 时,42,2021π<<x x ,所以 12tan ,2tan 021<<x x , 从而 02tan 12tan 12tan 2tan 2tan 2tan1212121>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x x x , 有 22tan2tan 2tan 2tan 122121>+⎪⎭⎫ ⎝⎛+x x x x , 故 m 的取值范围为]2,(-∞.基础精练1.已知α是锐角,且sin 错误!=错误!,则sin 错误!的值等于A.错误! B .-错误! C.错误! D .-错误!2.若-2π<α<-错误!,则 错误!的值是A .sin 错误!B .cos 错误!C .-sin 错误!D .-cos 错误!3.错误!·错误!等于A.-sinαB.-cosαC.sinαD.cosα4.已知角α在第一象限且cosα=错误!,则错误!等于A.错误!B.错误!C.错误!D.-错误!5.定义运算错误!=ad -bc.若cosα=错误!,错误!=错误!,0<β<α<错误!,则β等于A.错误!B.错误!C.错误!D.错误!6.已知tanα和tan 错误!-α是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是A.b =a +cB.2b =a +cC.c =b +aD.c =ab7.设a =错误!sin56°-cos56°,b =cos50°cos128°+cos40°cos38°,c =错误!,d =错误!cos80°-2cos 250°+1,则a,b,c,d 的大小关系为A.a >b >d >cB.b >a >d >cC.d >a >b >cD.c >a >d >b8.函数y =错误!sin2x +sin 2x,x ∈R 的值域是A.错误!B.错误!C.错误!D.错误!9.若锐角α、β满足1+错误!tanα1+错误!tanβ=4,则α+β= .10.设α是第二象限的角,tanα=-错误!,且sin 错误!<cos 错误!,则cos 错误!= .11.已知sin-4πx=135,0<x<4π,求)4cos(2cos x x +π的值;12.若),0(,πβα∈,31tan ,507cos -=-=βα,求α+2β;拓展提高1、设函数fx =sin 错误!-错误!-2cos 2错误!+11求fx 的最小正周期.2若函数y =gx 与y =fx 的图像关于直线x =1对称,求当x ∈0,错误!时y =gx 的最大值2.已知向量a =cosα,sinα,b =cosβ,sinβ,|a -b|=错误!1求cosα-β的值;2若0<α<错误!,-错误!<β<0,且sinβ=-错误!,求sinα.3、求证:αβαsin 2sin )(+-2cos α+β=αβsin sin .基础精练参考答案4.C 解析原式=错误!=错误!=错误!=2×cosα+sinα=2×错误!+错误!=错误!. 5.D 解析依题设得:sinα·cosβ-cosα·sinβ=sin α-β=错误!.∵0<β<α<错误!,∴cosα-β=错误!. 又∵cosα=错误!,∴sinα=错误!.sinβ=sinα-α-β=sinα·cosα-β-cosα·sinα-β =错误!×错误!-错误!×错误!=错误!,∴β=错误!.6.C 解析tan tan()4,tan tan(),4b a c a πααπαα⎧+-=-⎪⎪⎨⎪-=⎪⎩∴tan 错误!=tan 错误!-α+α=错误!=1,∴-错误!=1-错误!,∴-b =a -c,∴c =a +b.7.B 解析a =sin56°-45°=sin11°,b =-sin40°cos52°+cos40°sin52°=sin52°-40°=sin12°,c =错误!=cos81°=sin9°,d =错误!2cos 240°-2sin 240°=cos80°=sin10°∴b >a >d >c.8.C 解析y =错误!sin2x +sin 2x =错误!sin2x -错误!cos2x +错误!=错误!sin 错误!+错误!,故选择C. 9. 错误!解析由1+错误!tanα1+错误!tanβ=4,可得错误!=错误!,即tanα+β=错误!. 又α+β∈0,π,∴α+β=错误!.10. -错误!解析:∵α是第二象限的角,∴错误!可能在第一或第三象限,又sin 错误!<cos 错误!,∴错误!为第三象限的角, ∴cos 错误!<0.∵tanα=-错误!,∴cosα=-错误!,∴cos 错误!=- 错误!=-错误!.12.解析∵),0(,πβα∈,507cos -=α∴),0,33(71tan -∈-=α),0,33(31tan -∈-=β∴),65(,ππβα∈,α+2β)3,25(ππ∈,又tan2β=43tan 1tan 22-=-ββ,12tan tan 12tan tan )2tan(-=-+=+βαβαβα,来源:Zxxk ∴α+2β=411π拓展提高参考答案1、解析 1fx =sin 错误!cos 错误!-cos 错误!sin 错误!-cos 错误!x =错误!sin 错误!x -错误!cos 错误!x=错误!sin 错误!x -错误!,故fx 的最小正周期为T =错误!=82法一:在y =g x 的图象上任取一点 x,gx,它关于x =1的对称点2-x,gx.由题设条件,点2-x ,gx 在y =fx 的图象上,从而gx =f2-x =错误!sin 错误!2-x -错误! =错误!sin 错误!-错误!x -错误!=错误!cos 错误!x +错误!,当0≤x≤错误!时, 错误!≤错误!x +错误!≤错误!,因此y =gx 在区间0,错误!上的最大值为gx max =错误!cos 错误!=错误!.法二:因区间0,错误!关于x =1的对称区间为错误!,2,且y =gx 与y =fx 的图象关于x =1对称,故y =gx 在0,错误!上的最大值为y =fx 在错误!,2上的最大值,由1知fx =错误!sin 错误!x -错误!, 当错误!≤x ≤2时,-错误!≤错误!x -错误!≤错误!,因此y =gx 在0,错误!上的最大值为gx max =错误!sin 错误!=错误!.2、解析1∵a =cos α,sinα,b =cosβ,sinβ, ∴a -b =cosα-cosβ,sinα-sinβ. ∵|a -b|=错误!,∴错误!=错误!, 即2-2cosα-β=错误!,∴cosα-β=错误!.2∵0<α<错误!,-错误!<β<0,∴0<α-β<π,∵cosα-β=错误!,∴sinα-β=错误! ∵sin β=-错误!,∴cosβ=错误!,∴sinα=sinα-β+β=sinα-βcosβ+cosα-βsinβ=错误!·错误!+错误!·-错误!=错误!。
高考数学二轮复习专题四 三角函数【重点知识回顾】三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。
第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。
当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。
总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力 方法技巧:1.八大基本关系依据它们的结构分为倒数关系、商数关系、平方关系,用三角函数的定义反复证明强化记忆,这是最有效的记忆方法。
诱导公式用角度制和弧度制表示都成立,记忆方法可概括为“奇变偶不变,符号看象限”,变与不变是相对于对偶关系的函数而言的2.三角函数值的符号在求角的三角函数值和三角恒等变换中,显得十分重要,根据三角函数的,可简记为“一全正,二正弦,三两切,四余弦”,其含义是:在第一象限各三角函数值皆为正;在第二象限正弦值为正;在第三象限正余切值为正;在第四象限余弦值为正3.在利用同角三角函数的基本关系式化简、求值和证明恒等关系时,要注意用是否“同角”来区分和选用公式,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简、求值时,要注意正负号的选取4.求三角函数值域的常用方法:求三角函数值域除了判别式、重要不等式、单调性等方法之外,结合三角函数的特点,还有如下方法:(1)将所给三角函数转化为二次函数,通过配方法求值域; (2)利用sin ,cos x x 的有界性求值域;(3)换元法,利用换元法求三角函数的值域,要注意前后的等价性,不能只注意换元,不注意等价性5. 三角函数的图象与性质(一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况;⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况.............; ⑶会从图象归纳对称轴和对称中心;sin y x =的对称轴是2x k ππ=+()k Z ∈,对称中心是(,0)k π()k Z ∈;cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2k ππ+()k Z ∈tan y x =的对称中心是(,0)()2k k Z π∈ 注意加了绝对值后的情况变化.⑷写单调区间注意0ω>.(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式.⑴“五点法”作图的列表方式;⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω=-. (三)正弦型函数sin()y A x ωϕ=+的图象变换方法如下: 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 【典型例题】例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ;(2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化例2.已知向量2(2cos sin )(sin cos )(3)a ααb ααx a t b =-=+-,2,=,,,y ka b =-+,且0x y ⋅=,(1)求函数()k f t =的表达式;(2)若[13]t ∈-,,求()f t 的最大值与最小值 解:(1)24a =,21b =,0a b ⋅=,又0x y ⋅=,所以22222[(3)]()(3)[(3)]0x y a t b ka b ka t b t k t a b ⋅=+-⋅-+=-+-+--⋅=,所以31344k t t =-,即313()44k f t t t ==-; (2)由(1)可得,令()f t 导数233044t -=,解得1t =±,列表如下:而(1)(1)(3)222f f f -==-=,,,所以max min ()()22f t f t ==-, 说明:本题将三角函数与平面向量、导数等综合考察,体现了知识之间的融会贯通。
三角恒等变换-知识点+例题+练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角恒等变换-知识点+例题+练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角恒等变换-知识点+例题+练习的全部内容。
两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T(α+β):tan(α+β)=错误!;(6)T(α-β):tan(α-β)=错误!。
2.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;(2)C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)T2α:tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos2α=错误!,sin2α=错误!;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。
4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=a2+b2sin (α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a,b的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=错误!-错误!;错误!=错误!-错误!.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分"、“分解与组合"、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 错误!-1B .1-2sin 275°C 。
第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3。
1.3 二倍角的正弦、余弦、正切公式A级基础巩固一、选择题1.sin 15°sin 75°的值为()A。
错误! B.错误!C。
错误!D。
错误!解析:原式=sin 15°cos 15°=错误!(2sin 15°cos 15°)=错误!sin 30°=错误!。
答案:C2.已知sin α=错误!,则cos (π-2α)=()A.-错误!B.-错误! C.错误!D。
错误!解析:因为sin α=错误!,所以cos (π-2α)=-cos 2α=-(1-2sin2α)=-1+2×错误!错误!=-19。
答案:B3.错误!等于()A。
错误!cos 12°B.2cos 12°C.cos 12°-sin 12°D.sin 12°-cos 12°解析:错误!=错误!=(sin 12°-cos 12°)2=|sin 12°-cos 12°|=cos 12°-sin 12°。
答案:C4.已知cos错误!=错误!,则sin 2α的值为()A.错误!B.-错误!C。
错误!D.-错误!解析:因为cos错误!=错误!,所以sin 2α=-cos错误!=-cos错误!=1-2cos2错误!=1-错误!×2=错误!.答案:A5.若α∈错误!,且sin2α+cos 2α=错误!,则tan α的值等于() A。
错误!B。
错误! C.错误! D.错误!解析:因为sin2α+cos 2α=错误!,所以sin2α+cos2α-sin2α=cos2α=错误!所以cos α=±错误!。
又α∈错误!,所以cos α=错误!,sin α=错误!.所以tan α=错误!.答案:D二、填空题6.已知tan α=-错误!,则错误!=________.解析:错误!=错误!=错误!=tan α-错误!=-错误!。
【科学备考】(新课标)2015高考数学二轮复习第四章三角函数及三角恒等变换三角恒等变换理(含2014试题)理数1.(2014课表全国Ⅰ,8,5分)设α∈,β∈,且tan α=,则()A.3α-β=B.3α+β=C.2α-β=D.2α+β=[答案] 1.C[解析] 1.由tan α=得=,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin,所以sin(α-β)=sin,又因为α∈,β∈,所以-<α-β<,0<-α<,因此α-β=-α,所以2α-β=,故选C. 2.(2014重庆一中高三下学期第一次月考,9)()(A)(B)2 (C)(D)4[答案] 2. C[解析] 2. 因为,而, 所以原式的值为.3. (2014河北唐山高三第一次模拟考试,8) 若则()[答案] 3. A[解析] 3. 由可得:.4. (2014贵州贵阳高三适应性监测考试, 6) 若等于()[答案] 4.C[解析] 4.由已知,所以=,两边平方可得:,所以5. (2014黑龙江哈尔滨第三中学第一次高考模拟考试,4) 若,则的值为()A. B. C. D.[答案] 5. C[解析] 5. 因为,所以,所以.6. (2014重庆铜梁中学高三1月月考试题,2) 若是纯虚数,则()A. B. C. D.[答案] 6.B[解析] 6. 依题意,且,所以,,所以.7.(2014江西重点中学协作体高三第一次联考数学(理)试题,8)已知函数(, )在处取得最大值,则函数是()A.偶函数且它的图象关于点对称B.偶函数且它的图象关于点对称C.奇函数且它的图象关于点对称D.奇函数且它的图象关于点对称[答案] 7. B[解析] 7. ,其中. 由题意可得,解得,所以,所以,是偶函数,且其图像关于对称.根据题意可得的图像关于对称,且其最小正周期为. 根据图像平移可得8.(2014吉林实验中学高三年级第一次模拟,12)把曲线C:的图像向右平移个单位,得到曲线的图像,且曲线的图像关于直线对称,当(为正整数)时,过曲线上任意两点的斜率恒大于零,则的值为()A.1B.2C.3D.4[答案] 8. A[解析] 8.,其图像向右平移个单位,得到的图像,又因为其图像关于直线对称,可得,得,解得,所以曲线的解析式为,,由题意可得对恒成立,由此可得k=1+2n,n∈Z,b=1.9.(2014吉林实验中学高三年级第一次模拟,5)若三角形ABC中,sin(A+B) sin(A-B) =sin2C,则此三角形的形状是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形[答案] 9. B[解析] 9. 因为C=π-(A+B) ,结合条件可得sin(A+B) sin(A-B) =sin2(A+B) ,又因为sin(A+B) ≠0,所以可得sin(A-B) =sin(A+B) ,整理得sinAcosB=0,又因为sinA≠0,可得cosB=0,又因为B∈(0,π),所以B=.10.(2014河南豫东豫北十所名校高中毕业班阶段性测试(四)数学(理)试题, 5) 已知为锐角,,则=( )(A) (B) (C) (D)[答案] 10. D[解析] 10. 因为为锐角,可得,所以,而.11. (2014重庆七校联盟, 3) (创新)的值为()[答案] 11. C[解析] 11. .12. (2014河南郑州高中毕业班第一次质量预测, 9) 设函数,且其图象关于直线对称,则()A. 的最小正周期为,且在上为增函数B. 的最小正周期为,且在上为减函数C. 的最小正周期为,且在上为增函数D. 的最小正周期为,且在上为减函数[答案] 12. B[解析] 12. ,,,又函数图象关于直线对称,,即,又,,,令,解得,函数的递减区间为,又,函数在上为减函数,故函数的最小正周期为,在上为减函数,选C .13. (2014河北衡水中学高三上学期第五次调研考试, 7) 已知则等于()A. B. C. D.[答案] 13.C[解析] 13.,得,所以.14. (2014成都高中毕业班第一次诊断性检测,6) 如图,在平面直角坐标系中,角的顶点与坐标原点重合,始边与轴的非负半轴重合,它们的终边分别与单位圆相交于, 两点, 若点, 的坐标为和,则的值为( )(A) (B) (C) (D)[答案] 14. A[解析] 14. 依题意,,,,,.15. (2014江西七校高三上学期第一次联考, 8) 在中,若,则的形状一定是()A. 等边三角形B. 不含60°的等腰三角形C. 钝角三角形D. 直角三角形[答案] 15. D[解析] 15. ,,,即,故是直角三角形.16.(2014课标全国卷Ⅱ,14,5分)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为________. [答案] 16.1[解析] 16.f(x)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cos φ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cos φ-sin φcos(x+φ)=sin(x+φ-φ)=sin x,∴f(x)的最大值为1.17. (2014山西太原高三模拟考试(一),15) 已知O是锐角ABC的外接圆的圆心,且∠A=,若,则实数m= . (用表示)[答案] 17.[解析] 17. 设外接圆半径为R,则:可化为:(*).易知与的夹角为2∠C,与的夹角为2∠B,与的夹角为0,||=||=||=R. 则对(*)式左右分别与作数量积,可得:.即R2 (cos2C-1)+•R2(cos2B-1)=-2mR2.∴-2sinCcosB+(-2sinBcosC)=-2m,∴sinCcosB+sinBcosC=m,即sin(B+C)=m. 因为sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ,所以,m=sinA=sinθ.18. (2014山西太原高三模拟考试(一),13) 若的展开式中的系数为2, 则= .[答案] 18.[解析] 18. 的展开式的通项为,当x=3时,可得的系数为, 得,所以=.19. (2014广东汕头普通高考模拟考试试题,9)已知, ,则___________.[答案] 19.[解析] 19. 由已知可得,所以.20.(2014山东潍坊高三3月模拟考试数学(理)试题,13)若,则的最大值为.[答案] 20.[解析] 20.(当且仅当时等号成立).21.(2014江西红色六校高三第二次联考理数试题,14)设等差数列满足:,公差. 若当且仅当时,数列的前项和取得最大值,则首项的取值范围是.[答案] 21.[解析]21.,所以可得,又因为,所以可得. 因为当且仅当时,数列的前项和取得最大值,所以可得,解得.22.(2014湖北武汉高三2月调研测试,14) 已知函数f(x) =sin2x+2cos2x+m在区间[0,]上的最大值为3,则(Ⅰ)m=;(Ⅱ)对任意a∈R,f(x) 在[a,a+20π]上的零点个数为.[答案] 22. (1)0;(2)40或41[解析] 22. (1)=因为:,所以,,所以,,.(2)由(1),周期,在长为的闭区间内有两个或三个零点,区间的长度为十个周期,故零点个数为40个或41个.23. (2014江西七校高三上学期第一次联考, 12) 若点在直线上,则的值等于 .[答案] 23.[解析] 23. 依题意,,即,又.24.(2014安徽,16,12分)设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B. (Ⅰ)求a的值;(Ⅱ)求sin的值.[答案] 24.查看解析[解析] 24.(Ⅰ)因为A=2B,所以sin A=sin 2B=2sin Bcos B.由正、余弦定理得a=2b·.因为b=3,c=1,所以a2=12,a=2.(Ⅱ)由余弦定理得cos A===-.由于0<A<π,所以sin A===.故sin=sin Acos+cos Asin=×+×=.25.(2014浙江,18,14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sin Acos A-sin Bcos B.(Ⅰ)求角C的大小;(Ⅱ)若sin A=,求△ABC的面积.[答案] 25.查看解析[解析] 25.(Ⅰ)由题意得-=sin 2A-sin 2B,即sin 2A-cos 2A=sin 2B-cos 2B,sin=sin.由a≠b,得A≠B,又A+B∈(0,π),得2A-+2B-=π,即A+B=,所以C=.(Ⅱ)由c=,sin A=,=,得a=,由a<c,得A<C.从而cos A=,故sin B=sin(A+C)=sin Acos C+cos Asin C=,所以,△ABC的面积为S=acsin B=.26.(2014江苏,15,14分)已知α∈,sin α=.(1)求sin的值;(2)求cos的值.[答案] 26.查看解析[解析] 26.(1)因为α∈,sin α=,所以cos α=-=-.故sin=sin cos α+cos sin α=×+×=-.(2)由(1)知sin 2α=2sin αcos α=2××=-,cos 2α=1-2sin2α=1-2×=,所以cos=cos cos 2α+sin sin 2α=×+×=-.27.(2014辽宁,17,12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知·=2,cos B=,b=3.求:(Ⅰ)a和c的值;(Ⅱ)cos(B-C)的值.[答案] 27.查看解析[解析] 27.(Ⅰ)由·=2得c·acos B=2,又cos B=,所以ac=6.由余弦定理,得a2+c2=b2+2accos B.又b=3,所以a2+c2=9+2×2=13.解得a=2,c=3或a=3,c=2.因a>c,所以a=3,c=2.(Ⅱ)在△ABC中,sin B===,由正弦定理,得sin C=sin B=×=.因a=b>c,所以C为锐角,因此cos C===.于是cos(B-C)=cos Bcos C+sin Bsin C=×+×=.28.(2014天津,15,13分)已知函数f(x)=cos x·sin-cos2x+,x∈R. (Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间上的最大值和最小值.[答案] 28.查看解析[解析] 28.(Ⅰ)由已知,有f(x)=cos x·-cos2x+=sin x·cos x-cos2x+=sin 2x-(1+cos 2x)+=sin 2x-cos 2x=sin.所以f(x)的最小正周期T==π.(Ⅱ)因为f(x)在区间上是减函数,在区间上是增函数.f=-, f=-, f=.所以函数f(x)在闭区间上的最大值为,最小值为-.29. (2014天津蓟县第二中学高三第一次模拟考试,17) 已知函数.(1)求的最小正周期;(2)求的单调递增区间;(3)求图象的对称轴方程和对称中心的坐标.[答案] 29.查看解析[解析] 29.==(1)T=π;4分(2)由可得单调增区间(.8分(3)由得对称轴方程为,由得对称中心坐标为.12分30. (2014山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,17) 已知ABC中,角A,B,C的对边分别为a,b,c.cosA=,sinB=cosC.(1) 求tanC的值;(2) 若a=,求ABC的面积.[答案] 30.查看解析[解析] 30. (1) ∵cosA=∴sinA=,……………2分又cosC=sinB=sin(A+C) =sinAcosC+sinCcosA=cosC+sinC.……………5分整理得:tanC=.……………6分(2) 由(1)知sinC=,cosC=由正弦定理知:,故.……………9分又∵sinB=cosC=……………10分∴ABC的面积为:S==.……………12分31. (2014山西太原高三模拟考试(一),17) 已知△ABC三个内角A,B,C的对边分别为, 面积为S,(I)求角A的值;(Ⅱ)若= , 求S+cosBcosC取最大值时S的值.[答案] 31.查看解析[解析] 31.32. (2014山东青岛高三第一次模拟考试, 16) 已知向量,,.(Ⅰ)求函数的单调递减区间;(Ⅱ)在中, 分别是角的对边, , ,若,求的大小.[答案] 32.查看解析[解析] 32.(Ⅰ),所以递减区间是. (5分)(Ⅱ)由和得: ,若,而又, 所以因为,所以若,同理可得:,显然不符合题意,舍去. (9分)所以,由正弦定理得: . (12分)33. (2014福州高中毕业班质量检测, 17) 已知函数.(Ⅰ)当时,求函数的单调递增区间;(Ⅱ)设的内角的对应边分别为,且若向量与向量共线,求的值.[答案] 33.查看解析[解析] 33.(Ⅰ)==,令,解得即,, 的递增区间为. (6分)(Ⅱ)由, 得而, 所以,所以得,因为向量与向量共线,所以,由正弦定理得: ①(10分)由余弦定理得: ,即②由①②解得. (13分)34. (2014安徽合肥高三第二次质量检测,16) 如图,角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线OA按逆时针方向旋转后与单位圆交于点),.(Ⅰ)若角为锐角,求的取值范围;(Ⅱ)比较与的大小.[答案] 34.查看解析[解析] 34. (I)如图,在中,,由三角函数的定义可知,,由于角为锐角,所以,所以,所以,即. (6分)(Ⅱ)因为,,,函数在上单调递减,所以. (12分)35. (2014重庆杨家坪中学高三下学期第一次月考,20) 已知函数在某一个周期内的图象的最高点和最低点的坐标分别为,.(Ⅰ)求和的值;(Ⅱ)已知, 且, 求的值.[答案] 35.查看解析[解析] 35.(Ⅰ)因为函数的图象的最高点的坐标为,所以,又函数的周期,所以. (5分)(Ⅱ)由(Ⅰ)得,因为,,所以,,,(8分)所以.(12分)36.(2014湖北黄冈高三4月模拟考试,17) 在中,角所对的边分别为,且,(Ⅰ)求角;(Ⅱ)若,的面积,求及边的值.[答案] 36.查看解析[解析] 36.(Ⅰ),即,,舍,又,(6分)(2),即,,(9分)又,,由正弦定理得:,,即. (12分)37. (2014贵州贵阳高三适应性监测考试, 17) 已知向量,, 函数.(Ⅰ)求函数的最小正周期;(Ⅱ)已知分别为内角、、的对边,其中为锐角,,,且求的面积.[答案] 37.查看解析[解析] 37.解:(Ⅰ),因为,所以. (6分)(Ⅱ),因为,所以,,则,所以,即,则,从而. (12分)38. (2014山东实验中学高三第一次模拟考试,16) 已知函数,且函数的最小正周期为.(Ⅰ) 求函数的解析式;(Ⅱ) 在中,角所对的边分别为, ,若,,且,试求的值.[答案] 38.查看解析[解析] 38.解:(Ⅰ) 因为,由,所以,所以. (5分)(Ⅱ) 由(Ⅰ) ,所以,所以,解得,由于为的内角,所以,又,所以,即,又,由余弦定理得:. (12分)39. (2014广东汕头普通高考模拟考试试题,16)设,,函数,且函数图像的一个对称中心与它相邻的一条对称轴之间的距离为.(Ⅰ) 为求函数的解析式;(Ⅱ) 在锐角三角形中,角的对边分别为, 且满足,.. 求边的长.[答案] 39.查看解析[解析] 39.(Ⅰ),又因为,所以,所以. (6分)(Ⅱ) 由(Ⅰ) 得,所以,因为,所以,所以,(8分)所以,由正弦定理得. (12分)40. (2014广东广州高三调研测试,16) 在△中,角,,所对的边分别为,,,且.(Ⅰ) 求的值;(Ⅱ) 若,,求的值.[答案] 40.查看解析[解析] 40.解:(Ⅰ) 在△中,.所以.所以. (7分)(Ⅱ) 因为,,,由余弦定理,得.解得. (12分)41. (2014北京东城高三第二学期教学检测,15) 设的内角所对的边长分别为,且.(Ⅰ)求的值;(Ⅱ)求的最大值.[答案] 41.查看解析[解析] 41.(Ⅰ)在中,由正弦定理及可得即,则. (6分)(Ⅱ)由(Ⅰ) 得,当且仅当,即时,等号成立,故当时,的最大值为. (13分)42.(2014重庆铜梁中学高三1月月考试题,17)已知函数. (Ⅰ) 求函数f(x) 的单调递减区间;(Ⅱ) 若△ABC的三边满足,且边所对角为,试求的取值范围,并确定此时的取值范围.[答案] 42.查看解析[解析] 42. (Ⅰ),所以,所以函数的单调递减区间为. (6分)(Ⅱ) 由余弦定理,所以,而,,所以,所以. (13分)43.(2014江西重点中学协作体高三第一次联考数学(理)试题,16)已知函数.(1)求函数的值域;(2)已知锐角⊿ABC的两边长分别为函数的最大值与最小值,且⊿ABC的外接圆半径为,求⊿ABC的面积.[答案] 43.查看解析[解析]43.…………………………10分∴.………………………………12分44.(2014江西红色六校高三第二次联考理数试题,16)在平面直角坐标系中,以轴为始边做两个锐角, ,它们的终边分别与单位圆相交于A, B 两点,已知A, B 的横坐标分别为.(Ⅰ)求tan() 的值;(Ⅱ)求的值.[答案] 44.查看解析[解析] 44.由条件的,因为, 为锐角,所以=,因此(Ⅰ)tan() = -------------------------------6分(Ⅱ),所以∵为锐角,∴,∴=-------------------12分45.(2014广西桂林中学高三2月月考,17) 在中,角,,的对边分别为,,.已知.(Ⅰ)求;(Ⅱ)若,的面为2,求.[答案] 45.查看解析[解析] 45. 因为,所以,,,所以.由,得,即,由余弦定理,则,即,所以,所以. (10分)46.(2014湖北八校高三第二次联考数学(理)试题,17)已知向量,,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)在中,分别是角的对边,且,,且,求的值.[答案] 46.查看解析[解析] 46.47. (2014重庆五区高三第一次学生调研抽测,19) 设,函数满足.(Ⅰ)求的单调递减区间;(Ⅱ)设锐角△的内角、、所对的边分别为、、,且,求的取值范围.[答案] 47.查看解析[解析] 47.解:(I) (2)分由得:,∴…………………………4分∴………………………………………………5分由得:,∴的单调递减区间为:…………………………7分(II)∵,由余弦定理得:,…8分即,由正弦定理得:,,,∴……………………11分∵△锐角三角形,∴,…………………12分∴的取值范围为. ………………………………13分48.(2014河南豫东豫北十所名校高中毕业班阶段性测试(四)数学(理)试题, 17) 在△ABC中,a, b, c分别为角A,B,C所对的边,且(I) 求角A的大小;(Ⅱ) 若△ABC的面积为3,求a的值.[答案] 48.查看解析[解析] 48.49.(2014吉林省长春市高中毕业班第二次调研测试,17)已知为锐角,且,函数,数列的首项,.(1)求函数的表达式;(2)求数列的前项和.[答案] 49.查看解析[解析] 49. (1)由,是锐角,(2),, (常数)是首项为, 公比的等比数列, ,∴50.(2014湖北武汉高三2月调研测试,17) 在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知sin(A-B) =cosC.(Ⅰ)若a=3,b=,求c;(Ⅱ)求的取值范围.[答案] 50.查看解析[解析] 50.解:(Ⅰ)由sin(A-B) =cosC,得sin(A-B) =sin(-C) .∵△ABC是锐角三角形,∴A-B=-C,即A-B+C =①又A+B+C=π,②由②-①,得B=由余弦定理b2=c2+a2-2cacosB,得(2=c2+(3) 2-2c×3cos即c2-6c+8=0,解得c=2,或c=4.当c=2时,b2+c2-a2=(2+22-(3) 2=-4<0,∴b2+c2<a2,此时A为钝角,与已知矛盾,∴c≠2.故c=4.……………………………………………………………………………6分故的取值范围为(-1,1) .………………………………………12分51.(2014湖北八市高三下学期3月联考,17) 己知函数在处取最小值.(I)求的值。
高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。