二阶常系数非齐次线性微分方程的解法及例题详解
- 格式:pptx
- 大小:1.88 MB
- 文档页数:14
二阶常系数非齐次线性方程的解(2)* y 特解二阶常系数线性微分方程=+'+''y q y p y 二阶常系数齐线性方程)(x f y q y p y =+'+''二阶常系数非齐线性方程特征方程2=++q p λλ特征根, 21λλ2211y C y C Y +=通解*y Y y +=通解)2()( x f y q y p y =+'+'')1(.0 =+'+''y q y p y的情形x x P e x f x x P e x f n xn xββααsin )()(,cos )()(==欧拉公式:.sin i cos i θθθ+=e性质4是方程若 )(i )(* 21x y x y y ±=)(i )()()(21x f x f y x q y x p y ±=+'+'')()()(1x f y x q y x p y =+'+''的一个特解.)( 1是方程的一个特解,则x y)( 2是方程的一个特解;x y )()()(2x f y x q y x p y =+'+''*Re 1y y =实部*m I 2y y =虚部cos )( x x P e y q y p y n xβα=+'+'' sin )( x x P e y q y p y n xβα=+'+'')( )i (x P ey q y p y n xβα±=+'+'')(*)i (x Q ex y n xk βα±=*Re *1y y =*Im *2y y ±=i 不是特征根,βα±0 ;取=ki 是特征根,βα±1 ;取=k解.cos 的一个特解求方程x y y =+'' 01 2,特征方程=+λ i 2,1,=特征根±λi 的特解:首先求方程xe y y =+'' 1 0 i ,且有,故取是特征根,由于===k n α *i 0,xe x b y =代入上述方程,得2i]i 2[0i i 000,,即有-==+-b e e x b x b b xx从而,原方程有一特解为.sin 21)cos i sin (21Re x x x x x x =-=)2i ( Re *Re *i 1x e x y y -==例1.sin 的一个特解求方程x x y y =+'' , 012=+λ特征方程 ,i 2,1±=特征根λ的特解:首先求方程xe x y y i =+''且有故取是特征根由于,1,1,i ===k n α,)(*i 10xe b x b x y +=代入上述方程,得,i 22i 4100x b b x b =++比较系数,得,1i 40=b,0i 10=+b b,41,4i 10=-=b b 解例2从而,原方程有一特解为)]cos sin ()cos sin [(41Im 22x x x x x x x x -++=xex y y i 2)414i (Im *Im *+-== 故,xxe x x e b x b x y i i 10)414i ()(*+-=+= .)cos sin (412x x x x -=.sin cos 的一个特解求方程x x x y y +=+''由上面两个例题立即可得)cos sin (41sin 21***221x x x x x x y y y -+=+= .cos 41sin 432x x x x -=解例3内容小结]sin )(~cos )([x x P x x P e y q y p y n l xωωλ+=+'+''为特征方程的k (=0, 1 )重根, ωλi ±xk ex y λ=*则设特解为]sin )(~cos )([x x R x x R m m ωω+。
二阶常系数非齐次线性微分方程解法及例题哎呀,这可是个难题啊!不过别着急,我们一起来解决这个问题吧。
今天,我们要学习的是如何解二阶常系数非齐次线性微分方程。
听起来好像很高深莫测的样子,其实呢,只要用点心,就能轻松搞定哦!我们来看一下这个题目的意思。
所谓二阶常系数非齐次线性微分方程,就是说这个方程有两个未知数,而且它们的系数都是常数,但是方程中包含的项并不是齐次的。
那么,我们应该怎么解这个方程呢?其实,解决这个问题的关键在于找到一个合适的方法。
我们知道,解微分方程的方法有很多种,比如分离变量法、变量替换法、特征线法等等。
而对于二阶常系数非齐次线性微分方程来说,我们可以采用一种叫做“因式分解”的方法来求解。
具体来说,我们首先要将这个方程进行因式分解。
然后,根据不同的情况,选择合适的方法进行求解。
这里呢,我给大家举两个例子,看看到底是怎么做的吧。
第一个例子:假设我们要解的方程是这样的:y'' 2y' + y = 0我们可以先将这个方程进行因式分解:(y'' 2y')(1 y) = 0这样一来,我们就得到了两个独立的一阶线性微分方程:y'' 2y' = 0y' y = 0接下来,我们就可以分别用这两个方程来求解了。
具体来说,我们可以先求出y'和y''的关系式,然后再代入第二个方程求解。
当然啦,这只是其中一种方法,还有很多其他的方法可以用来解决这个问题。
第二个例子:假设我们要解的方程是这样的:xy'' + x^2y' + xy = 0我们可以先将这个方程进行因式分解:(xy'' + x^2y')(x + 1) = 0这样一来,我们就得到了两个独立的一阶线性微分方程:xy'' + x^2y' = 0xy' + x = 0同样地,我们可以分别用这两个方程来求解了。
二阶常系数非齐次线性微分方程解法及例题在数学的领域中,二阶常系数非齐次线性微分方程是一个重要的研究对象。
它在物理学、工程学、经济学等众多学科中都有着广泛的应用。
接下来,让我们深入探讨一下二阶常系数非齐次线性微分方程的解法以及相关例题。
首先,我们来明确一下二阶常系数非齐次线性微分方程的一般形式:$y''+ py' + qy = f(x)$,其中$p$、$q$ 是常数,$f(x)$是一个已知的函数。
为了求解这个方程,我们通常分为两个步骤:第一步,先求解对应的齐次方程:$y''+ py' + qy = 0$ 。
对于这个齐次方程,我们假设它的解为$y = e^{rx}$,代入方程中得到特征方程:$r^2 + pr + q = 0$ 。
通过求解这个特征方程,可以得到两个根$r_1$ 和$r_2$ 。
当$r_1$ 和$r_2$ 是两个不相等的实根时,齐次方程的通解为$y_c = C_1e^{r_1x} + C_2e^{r_2x}$;当$r_1 = r_2$ 是相等的实根时,齐次方程的通解为$y_c =(C_1 + C_2x)e^{r_1x}$;当$r_1$ 和$r_2$ 是一对共轭复根$r_{1,2} =\alpha \pm \beta i$ 时,齐次方程的通解为$y_c = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))$。
第二步,求出非齐次方程的一个特解$y_p$ 。
求特解的方法通常根据$f(x)$的形式来决定。
常见的形式有以下几种:1、当$f(x) = P_n(x)e^{\alpha x}$,其中$P_n(x)$是$n$ 次多项式。
如果$\alpha$ 不是特征根,设特解为$y_p = Q_n(x)e^{\alpha x}$,其中$Q_n(x)$是与$P_n(x)$同次的待定多项式;如果$\alpha$ 是特征方程的单根,设特解为$y_p = xQ_n(x)e^{\alpha x}$;如果$\alpha$ 是特征方程的重根,设特解为$y_p =x^2Q_n(x)e^{\alpha x}$。