三角函数的几种解题技巧
- 格式:doc
- 大小:439.12 KB
- 文档页数:10
202 年高考数学解题技巧及规范答题三角函数大题【规律方法】1、正弦定理、余弦定理:正弦定理、余弦定理的作用是在已知三角形部分基本量的情况下求解其余基本量,基本思想是方程思想.正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.正弦定理、余弦定理解三角形问题是高考高频考点,其解题方法主要有: (1)化边为角:通过正弦定理和余弦定理,化边为角,如:,等,利用三角变换得出三角形内角之间的关系进行判断.此时要注意一些常见的三角等式所体现的内角关系,如:,或等.(2)化角为边:利用正弦定理、余弦定理化角为边,如,等,通过代数恒等变换,求出三条边之间的关系进行判断.注意:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2、三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(2)构造;(3)和角公式逆用,得(其中φ为辅助角);(4)利用研究三角函数的性质;2sin a R A =2222cos a b c ab C +-=sin sin A B A B =⇔=sin 2sin 2A B A B =⇔=2A B π+=sin 2a A R =222cos 2b c a A bc+-=())f x x x =+())f x x ϕ=+())f x x ϕ=+3(5)反思回顾,查看关键点、易错点和答题规范.【核心素养】以三角形为载体,以正弦定理、余弦定理为工具,以三角恒等变换为手段考查解三角形问题是高考一类热点题型,考查的核心素养主要有“逻辑推理”、“数学运算”、“数据分析”.【典例】【2020年全国II 卷】中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求周长的最大值.【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,. (2)由余弦定理得:,即.ABC ABC cos A A ()29AC AB AC AB +-⋅=AC AB +222BC AC AB AC AB --=⋅2221cos 22AC AB BC A AC AB +-∴==-⋅()0,A π∈ 23A π∴=222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=()29AC AB AC AB +-⋅=第二步,用定理、公式、性质:利用正弦定理、余弦定理、二倍角公式、辅助角公式等进行三角形中边角(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为【解题方法与步骤】1、解三角形问题的技巧:(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. ①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍;②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.2、三角恒等变换要遵循的“三看”原则:一看“角”:通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式; 二看“函数名称”:看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;三看“结构特征”:分析结构特征,找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.3、解三角形与三角函数综合问题一般步骤:第一步,转化:正确分析题意,提炼相关等式,利用等式的边角关系合理将问题转化为三角函数的问题; 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭AC AB =()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭AC AB +≤AC AB =ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+的的关系的互化;第三步,得结论:利用三角函数诱导公式、三角形内角和定理等知识求函数解析式、角、三角函数值,或讨论三角函数的基本性质等.【好题演练】1.(2021·河南中原高三模拟)在中,,,所对的角分别为,,,已知. (1)求;(2)若,为的中点;且,求的面积.【分析】(1)根据题意,由正弦定理得出,再由两角和的正弦公式化简得,由于,从而可求得,最后根据同角三角函数的平方关系,即可求出;(2)法1:在中由余弦定理得出,再分别在和中,由余弦定理得出和,再由,整理ABC a b c A B C 3cos 3a b A c +=sin B 3a =D AC BD =ABC sin 3sin cos3sin A B A C +=sin 3sin cos A A B =sin 0A >1cos 3B =sin B ABC 221936c b c+-=ABD △BCD △2cos ADB ∠=2cos CDB ∠=cos ADB cos DB 0∠+∠=C化简的出边,最后根据三角形的面积公式,即可求出结果. 法2:由平面向量的加法运算法则得出,两边平方并利用平面向量的数量积运算化简得,从而可求出边,最后根据三角形的面积公式,即可求出结果.【详解】(1)因为,由正弦定理得, 因为, 所以,因为,所以,所以,因为,所以(2)法1:在中,由余弦定理得,即, 在中,由余弦定理得, 在中,由余弦定理得因为,c 1sin2ABC S ac B =△12BD BA BC →→→⎛⎫=+ ⎪⎝⎭()213294c c =++c 1sin 2ABC S ac B =△3cos 3a b A c +=sin 3sin cos 3sin A B A C +=()sin sin sin cos cos sin C A B A B A B =+=+sin 3sin cos A A B =()0,A π∈sin 0A >1cos 3B =()0,B π∈sin B ===ABC 222cos 2a c b B ac +-=221936c b c+-=ABD △2cos ADB ∠=BCD △2cos CDB ∠=πADB CDB ∠+∠=220=即,所以, 整理得,解得:或(舍去), 所以. 法2:因为为的中点,所以,两边平方得,即,即,解得或(舍), 所以. 2.记中内角,,的对边分别为,,.已知. (1)求;(2)点,位于直线异侧,,.求的最大值.【分析】(1,利用正弦定理化边为角结合利用两角和的正弦公式展开整理可求得的值,即可得角; (2)结合(1化角为边可得,即,在中由余弦定理求,利用三角恒等式变换以及三角函数的性质可得最大值.2262b c =+()222296219366c c c b c c+-++-==2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△D AC 12BD BA BC →→→⎛⎫=+ ⎪⎝⎭222124B BD B BA C BC A →→→→→⎛⎫=+⋅+ ⎪⎝⎭()213294c c =++2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△ABC A B C a b c a =3cos sin B b A =+A A D BC BD BC ⊥1BD =AD cos sin B b A =+sin sin()C A B =+tan A A cos sin sin C A B B A =+cos sin B a B =+sin c B B =ABD △2AD(1)求 A ;【详解】(1,.. 因为,,所以,,,又因为, 可得:,所以; (2)由(1,, 即,由余弦定理得,所以当且仅当时,取得最大值,所以.3.在中,内角的对边分别为,且满足. 3cos sin B b A =+a =cos sin B b A =+cos sin sin C A B B A =+πA B C ++=,,(0,π)A B C ∈sin sin()sin cos cos sin C A B A B A B =+=+cos s cos sin s i in n A B A B A B B A +=+sin sin sin A B B A =sin 0B ≠sin A A =tan A =0πA <<π3A =cos sin sin C AB B A =+cos sin B a B =+cos sin c a B B B =+=+2222cos AD c BD c BD ABD =+-⋅∠()()()2sin 12sin sin B B B B B =+--222sin 3cos 212sin 2B B B B B =+++++42B =+π4B =2AD )241+=+AD 1+ABC 、、A B C ,,a b c 2sin cos b A B ()2sin c b B =-(2)若l 的取值范围.【分析】(1)由正弦定理得,化简得, 利用的范围可得答案;(2)由正弦定理得,利用的范围和三角函数的性质可得答案.【详解】(1)由正弦定理得, 因为,所以, 所以,即,解得,因为,所以.(2)由正弦定理得, 所以,所以,因为,所以, a =()2sin sin cos 2sin sin sin B A B CB B =-1cos2A =A 4sin ,4sin bB cC ==()4sin sin l B C =++B ()2sin sin cos 2sin sin sin BA B C B B=-0B π<<sin 0B ≠2sincos 2sin sin A BC B =-2sin cos 2sin cos 2sin cos sin A B A B B A B =+-1cos 2A =0A π<<3A π=4sin sin sin a b cAB C===4sin ,4sin b B c C ==()24sin sin sin sin 3l B C B B π⎡⎤⎛⎫=+++-+ ⎪⎢⎥⎝⎭⎣⎦314sin cos 22B B B B ⎛⎫⎫=+++ ⎪⎪ ⎪⎪⎝⎭⎭6B π⎛⎫=++ ⎪⎝⎭20,3B π⎛⎫∈ ⎪⎝⎭5,666B πππ⎛⎫+∈ ⎪⎝⎭所以, 所以.4.(2021·天津高考)在,角所对的边分别为,已知. (I )求a 的值;(II )求的值;(III )求的值.【分析】(I )由正弦定理可得(II )由余弦定理即可计算;(III )利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为,由正弦定理可得,;(II )由余弦定理可得; (III ),, ,, 所以. 1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦(l ∈ABC ,,A B C ,,a bc sin:sin :sin 2A B C =b =cos C sin 26C π⎛⎫- ⎪⎝⎭::2a b c =2C sin :sin :sin 2A B C =::2:1:ab c=b =2a c ∴==2223cos 24a b c C ab +-===3cos 4C =sin C ∴==3sin 22sin cos 24C C C ∴===291cos 22cos 121168C C =-=⨯-=sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=5.(2021·南京市中华中学)在中,分别为内角的对边,且满足. (1)求的大小;(2)从①,②,③这三个条件中任选两个,补充在下面的问题中,并解决问题.问题:已知___________,___________,若存在,求的面积,若不存在,请说明理由.注:如果选择多个条件解答,按第一个解答计分.【分析】(1)由正弦定理进行边角互化,再结合辅助角公式化简运算,可求出角的范围.(2)若选择条件①②,由余弦定理可计算的值,面积公式计算面积;若选择条件②③,正弦定理计算边,两角和的正弦计算,可求面积;若选择条件①③,由大边对大角可知三角形不存在. 【详解】(1)因为,由正弦定理可得因为即因为所以因为即ABC ,,a b c ,,A B C b a =B 2a c =2b =4A π=ABC ABC ABC a c 、a sin C b a =sin sin B A =sin 0A ≠cos 1B B -=1sin()62B π-=0B π<<5666B πππ-<-<66B ππ-==3B π第 11 页 共 11 页(2)若选择条件①②,由余弦定理可得,解得, 故所以若选择条件②③由正弦定理可得,可得所以若选择条件①③这样的三角形不存在,理由如下: 在三角形中,, 所以, 所以,所以又因为所以与矛盾,所以这样的三角形不存在.2222cos b a c ac B=+-222442c c c +-=c =a =11sin sin 223ABC S ac B π=== sin sin a b A B =sin sin b A a B ==11sin 2sin 2234ABC S ab C ππ⎛⎫==⨯+= ⎪⎝⎭ ABC 43A B ππ==,53412C ππππ=--=A C <a c <2a c=a c >a c <。
数学三角函数题的解题技巧与方法数学是一门需要不断探索和思考的学科,而解题是数学学习中的重要环节。
其中,三角函数题是数学中的一类常见题型,对于学生来说,掌握解题技巧和方法是非常关键的。
本文将从几个方面介绍数学三角函数题的解题技巧与方法。
一、了解基本概念在解题之前,我们首先需要了解三角函数的基本概念。
三角函数包括正弦函数、余弦函数、正切函数等。
对于每个函数,我们需要知道其定义域、值域、周期、对称性等基本性质。
只有了解了这些基本概念,才能更好地理解和解题。
二、运用基本恒等式在解三角函数题时,运用基本恒等式是非常重要的。
常见的基本恒等式有正弦函数的和差化积公式、余弦函数的和差化积公式、正切函数的和差化积公式等。
通过运用这些恒等式,我们可以将复杂的三角函数式子转化为简单的形式,从而更方便地进行计算和求解。
三、利用特殊角的性质特殊角是指能够通过计算得到精确值的角度,如30°、45°、60°等。
在解题时,我们可以利用特殊角的性质来简化计算过程。
例如,对于正弦函数和余弦函数,我们可以利用30°、45°、60°角的值来计算其他角度上的函数值。
而对于正切函数,我们可以利用45°角的值来计算其他角度上的函数值。
通过利用特殊角的性质,我们可以减少计算的复杂性,提高解题效率。
四、运用三角函数的图像特点三角函数的图像特点对于解题也是非常有帮助的。
正弦函数的图像是一条连续的曲线,它的最大值为1,最小值为-1,周期为2π。
余弦函数的图像也是一条连续的曲线,它的最大值为1,最小值为-1,周期为2π。
而正切函数的图像则是一条有无数个渐近线的曲线,它的周期为π。
通过了解这些图像特点,我们可以更好地理解三角函数的性质,从而更好地解题。
五、结合实际问题进行建模在解三角函数题时,有时候会涉及到实际问题,我们需要将问题进行建模,然后利用三角函数来解决。
例如,在解决航空导航问题时,我们可以利用三角函数来计算飞机的航向和航速。
一、基本技巧:直接运用正、余弦定理解三角形1)运用余弦定理:已知三边; 已知两边+一角2)运用正弦定理:已知两角+一边;已知两边+一角3)涉及多个三角形,可以从公共边、公共角、互补角、互余角、角平分线找思路二、秒杀技巧1:利用a=2RsinA将边换成角思路:通过正弦定理、三角形内角性质、诱导公式等进行边角互化,即消元化成目标角三、秒杀技巧2:b+c、bc、b2+c2的关系四、与三角形面积有关的问题有边有角就统一三角关系消孤角三边平方用余弦正切变比或诱导若条件中有边也有角,那么常见的处理方式就是统一形式,就用“正弦定理”进行“边化角”或者“角化边”,即统一成角或者边的形式。
注意:不到万不得已不建议用余弦定理进行边角互化!【分析】:已知条件中有边有角,所以利用正弦定理进行边角互化。
所以是“边化角”。
统一条件形式后,再进行化简即可。
三角关系消孤角若条件是三角关系,那么优先利用诱导公式对孤角进行消元!那么,什么是孤角呢?就是条件中,单独作为一项的角。
【分析】:已知条件是三角关系,且∠B是孤角,所以利用诱导公式消去∠B,进行化简,可求∠A,再利用正弦定理求∠C。
三边平方用余弦若已知条件中是三边平方或乘积形式,那么往余弦定理形式靠拢。
注意:若果是三角正弦的平方或乘积,可以优先进行“角化边”,再用余弦定理。
【分析】:已知条件有三边平方,所以变形后利用余弦定理进行求解。
根据条件形式,明显是利用有∠C的面积公式和余弦定理。
正切变比或诱导若条件中出现了正切,那么优先考虑利用切化弦,或者利用三角形内正切的诱导公式进行化简。
【分析】:已知条件有正切,优先考虑化为正弦比余弦,再进行化简。
高中数学三角函数的解题技巧高中数学中,三角函数是一个重要的知识点,也是考试中常见的题型。
掌握好三角函数的解题技巧,不仅可以帮助学生提高解题效率,还可以帮助他们在考试中取得好成绩。
本文将通过具体的题目举例,介绍一些高中数学三角函数解题的技巧,并给出一些解题的思路和方法。
一、角度的换算在三角函数的运算中,经常需要将角度转换为弧度或将弧度转换为角度。
对于角度的换算,我们需要掌握以下两个基本公式:1. 弧度 = 角度× π / 1802. 角度 = 弧度× 180 / π例如,如果要将角度60°转换为弧度,可以使用公式1:弧度= 60 × π / 180 = π / 3。
反之,如果要将弧度π/4转换为角度,可以使用公式2:角度= π / 4 × 180 / π = 45°。
在解题过程中,如果涉及到角度与弧度的转换,可以根据具体情况选择适当的公式进行换算。
二、三角函数的基本关系三角函数中的正弦函数、余弦函数和正切函数是最常用的三个函数。
它们之间有一些基本的关系,掌握好这些关系可以帮助我们解题。
1. 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)例如,如果要求sin30°的值,可以利用这个关系式:sin30° = cos(90° - 30°) =cos60° = 1/2。
2. 正切函数和余切函数的关系:tanθ = 1/cotθ例如,如果要求tan60°的值,可以利用这个关系式:tan60° = 1/cot60° = 1/tan30°= 1/(1/√3) = √3。
在解题过程中,如果遇到需要求解某个三角函数的值,可以利用这些基本关系进行转化,简化计算过程。
三、三角函数的周期性三角函数在一定范围内具有周期性,这也是解题过程中需要注意的一个重要点。
数学三角函数解题技巧
数学中的三角函数是指正弦、余弦、正切等函数,这些函数在解决三角形相关问题时非常常见。
然而,对于一些学生来说,解决三角函数问题可能会感到困难。
以下是一些解决三角函数问题的技巧:
1. 理解三角函数的定义:在开始解决三角函数问题之前,应该先理解三角函数的定义。
例如,sinθ代表角度θ的正弦值,cosθ代表角度θ的余弦值,tanθ代表角度θ的正切值。
2. 记住基本三角函数值:在解决三角函数问题时,有时需要知道一些基本的三角函数值,例如sin30°、cos60°、tan45°等。
因此,记住这些基本的三角函数值是很重要的。
3. 使用三角函数的周期性:三角函数具有周期性,因此角度值可以加上或减去360°,不会改变其三角函数值。
因此,如果问题涉及到不同的角度值,可以考虑使用该角度值的周期性。
4. 使用三角函数的反函数:三角函数的反函数可以用于求解一些问题,例如求一个角度的值,使得其正弦值等于0.5。
在这种情况下,可以使用反正弦函数(arcsin)。
5. 应用三角函数的性质:三角函数具有许多性质,例如sinθ+cos
θ=1,tanθ=sinθ/cosθ等。
在解决三角函数问题时,可以使用这些性质简化问题。
总之,掌握这些技巧可以帮助学生更加轻松地解决三角函数问题。
当然,要熟练掌握这些技巧还需要多做练习,加深对三角函数的理解。
数学解决三角函数问题的六种方法在数学学习中,三角函数是一项基础而重要的内容。
解决三角函数问题,需要掌握不同的解题方法和技巧。
本文将介绍六种常用的数学解决三角函数问题的方法,以帮助读者更好地理解和应用三角函数。
方法一:利用定义和基本公式三角函数的定义和基本公式对于解决问题非常重要。
例如,正弦函数的定义是一个直角三角形的斜边与对边之比,可以表示为sinθ = a/c。
利用这个定义和基本公式,我们可以求解一些基本的三角函数值,如sin(30°) = 1/2。
方法二:利用三角函数图像特征三角函数的图像特征可以帮助我们更好地理解和应用它们。
例如,正弦函数的图像是一条连续的波形,取值范围在[-1, 1]之间。
利用这个特征,我们可以根据给定的角度,通过观察三角函数图像来确定函数值。
方法三:利用三角函数的周期性质三角函数具有周期性的特点,即sin(θ + 2π) = sinθ,cos(θ + 2π) =cosθ。
利用这个周期性质,我们可以将任意角度转换成特定区间范围内的角度,从而简化计算。
方法四:利用三角函数的恒等变换三角函数的恒等变换是一种将一个三角函数表示为其他三角函数的等价形式。
例如,sin(θ) = cos(π/2 - θ)。
利用这种恒等变换,我们可以将复杂的三角函数问题转化为简单的形式,从而更便于求解。
方法五:利用特殊角的三角函数值特殊角(如0°、30°、45°、60°、90°等)具有特殊的三角函数值,这些值是我们在计算过程中常常用到的。
例如,sin(0°) = 0,cos(90°) = 0,tan(45°) = 1等。
熟记这些特殊角的三角函数值,可以大大简化计算过程。
方法六:利用三角函数的性质和定理三角函数具有一系列的性质和定理,如和差化积公式、倍角公式、半角公式等。
利用这些性质和定理,我们可以根据已知条件,推导出新的关系式,从而求解三角函数问题。
数学三角函数解题技巧
数学中的三角函数是一类非常重要的函数,常用于解决与角度有关的问题。
在学习三角函数时,很多学生会遇到各种各样的困难和难题。
以下就是一些关于解决三角函数解题的技巧。
1. 熟悉三角函数的定义
三角函数的定义有很多种,例如正弦函数,余弦函数,正切函数等等。
在解题过程中,首先需要对每种函数的定义进行熟悉和理解,才能更好地应用它们来解决问题。
2. 熟悉三角函数的基本性质
三角函数有很多基本性质,例如周期性,对称性,奇偶性等等。
熟悉这些基本性质,可以帮助我们更快地解决问题。
3. 转化为代数式解决问题
有些三角函数问题可以通过将三角函数转化为代数式来解决。
例如,可以使用和差化积公式或倍角公式将三角函数转化为代数式,然后再用代数式解决问题。
4. 利用三角函数的图像解决问题
三角函数的图像是一种很好的解题工具。
通过观察图像,可以了解函数的周期、振幅、极值等信息,从而更好地解决问题。
5. 利用三角函数的特殊值解决问题
三角函数有很多特殊值,例如正弦函数的最大值和最小值是1和-1,余弦函数的最大值和最小值是1和-1。
利用这些特殊值,可以更快地解决问题。
总之,解决三角函数问题需要多加练习和思考,掌握好以上技巧,相信可以更好地应对各种各样的三角函数问题。
9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
求三角函数最值的四种常用解题方法
求三角函数最值的常用解题方法
一. 使用配方法求解三角函数的最值
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转变为二次函数也是求最值的通法之一,应该注意,整理成时,要考虑的取值及的条件,才能正确求出最值。
二. 使用化一法求解三角函数的最值
例2.求函数的值域。
剖析:降幂后发现式中出现了和,这时再化成一个角的三角函数即可求得。
—2—
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分构成,此中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,所以需要大家娴熟掌握有关公式并灵巧运用。
三. 使用基本不等式法求解三角函数的最值
例3. 求函数的值域
—3—
解:
解:
四. 使用换元法求解三角函数的最值
例4.求函数的最值。
剖析:解本题的门路是用逆求将函数式变形,用 y 表示与 x 有关的三角函数,利用三角函数的有界性求最值。
—4—
解:
—5—。
关于三角函数的几种解题技巧一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如:例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。
A .m 2=n B .m 2=12+n C .n m 22= D .22mn = 分析:观察sin θ+cos θ与sin θcos θ的关系:sin θcos θ=2121)cos (sin 22-=-+m θθ而:n ctg tg ==+θθθθcos sin 1故:1212122+=⇒=-nm n m ,选B 。
例3 已知:tg α+ctg α=4,则sin2α的值为( )。
A .21B .21-C .41D .41-分析:tg α+ctg α=41cos sin 4cos sin 1=⇒=αααα故:212sin cos sin 22sin =⇒=αααα。
答案选A 。
例4 已知:tg α+ctg α=2,求αα44cos sin +分析:由上面例子已知,只要αα44cos sin +能化出含sin α±cos α或sin αcos α的式子,则即可根据已知tg α+ctg α进行计算。
由于tg α+ctg α=⇒=2cos sin 1αα21cos sin =αα,此题只要将αα44cos sin +化成含sin αcos α的式子即可: 解:αα44cos sin +=αα44cos sin ++2 sin 2αcos 2α-2 sin 2αcos 2α=(sin 2α+cos 2α)- 2 sin 2αcos 2α =1-2 (sin αcos α)2=1-2)21(2⨯=211-=21通过以上例子,可以得出以下结论:由于ααcos sin ±,sin αcos α及tg α+ctg α三者之间可以互化,知其一则必可知其余二。
这种性质适合于隐含此三项式子的三角式的计算。
但有一点要注意的;如果通过已知sin αcos α,求含ααcos sin ±的式子,必须讨论其象限才能得出其结果的正、负号。
这是由于(ααcos sin ±)2=1±2sin αcos α,要进行开方运算才能求出ααcos sin ±二、关于“托底”方法的应用:在三角函数的化简计算或证明题中,往往需要把式子添加分母,这常用在需把含tg α(或ctg α)与含sin α(或cos α)的式子的互化中,本文把这种添配分母的方法叫做“托底”法。
方法如下:例5 已知:tg α=3,求ααααcos sin 2cos 3sin +-的值。
分析:由于αααcos sin =tg ,带有分母cos α,因此,可把原式分子、分母各项除以cos α,“造出”tg α,即托出底:cos α;解:由于tg α=30cos 2≠⇒+≠⇒αππαk故,原式=013233123cos cos cos sin 2cos cos 3cos sin =+⨯-=+-=+⋅⋅-ααααααααααtg tg例6 已知:ctg α= -3,求sin αcos α-cos 2α=?分析:由于αααsin cos =ctg ,故必将式子化成含有ααsin cos 的形式,而此题与例4有所不同,式子本身没有分母,为了使原式先出现分母,利用公式:1cos sin 22=+αα及托底法托出其分母,然后再分子、分母分别除以sin α,造出ctg α:解:αααααααααα222222cos sin cos cos sin cos cos sin 1cos sin +-=-⇒=+α2sin ,分母同除以分子 ααααααααα22221)sin cos (1)sin cos (sin cos ctg ctg ctg +-=+- 56)3(1)3(322-=-+-+-=例7 (95年全国成人高考理、工科数学试卷) 设20,20ππ<<<<y x ,)6sin()3sin(sin sin y x y x --=ππ且 求:)3)(33(--ctgy ctgx 的值 分析:此题是典型已知含正弦函数的等式求含正切、余切的式子,故要用“托底法”,由于20,20ππ<<<<y x ,故0sin ,0sin ≠≠y x ,在等式两边同除以y x sin sin ,托出分母yx sin sin 为底,得:解:由已知等式两边同除以y x sin sin 得:1sin sin 6cos cos 6sin sin sin 3cos cos 3sin 1sin sin )6sin()3sin(=-⋅-⇒=--yyy x x y x y x ππππππ334)3)(33(1)3)(33(431)3)(13(411sin sin 3cos sin sin cos 341=--⇒=--⇒=--⇒=-⋅-⋅⇒ctgy ctgx ctgy ctgx ctgy ctgx y y y x x x“托底”适用于通过同角的含正弦及余弦的式子与含正切、余切的式子的互化的计算。
由于αααcos sin =tg ,αααsin cos =ctg ,即正切、余切与正弦、余弦间是比值关系,故它们间的互化需“托底”,通过保持式子数值不变的情况下添加分母的方法,使它们之间可以互相转化,达到根据已知求值的目的。
而添加分母的方法主要有两种:一种利用1cos sin 22=+αα,把αα22cos sin +作为分母,并不改变原式的值,另一种是通过等式两边同时除以正弦或余弦又或者它们的积,产生分母。
三、关于形如:x b x a sin cos ±的式子,在解决三角函数的极值问题时的应用:可以从公式)sin(sin cos cos sin x A x A x A ±=±中得到启示:式子x b x a sin cos ±与上述公式有点相似,如果把a ,b 部分变成含sinA ,cosA 的式子,则形如x b x a sin cos ±的式子都可以变成含)sin(x A ±的式子,由于-1≤)sin(x A ±≤1,所以,可考虑用其进行求极值问题的处理,但要注意一点:不能直接把a 当成sinA ,b 当成cosA ,如式子:x x sin 4cos 3+中,不能设sinA=3,cosA=4,考虑:-1≤sinA ≤1,-1≤cosA ≤1,可以如下处理式子:⎪⎪⎭⎫ ⎝⎛+±++=±x b a bx b a a b a x b x a sin cos sin cos 222222 由于1)()(222222=+++b a b b a a 。
故可设:22sin ba a A +=,则A A sin 1cos -±=,即:22cos ba b A +±=∴)sin()sin cos cos (sin sin cos 2222x A b a x A x A b a x b x a ±+=±+=± 无论x A ±取何值,-1≤sin(A ±x)≤1,22b a +-≤)sin(22x A b a ±+≤22b a + 即:22b a +-≤x b x a sin cos ±≤22b a + 下面观察此式在解决实际极值问题时的应用:例1(98年全国成人高考数学考试卷)求:函数x x x y cos sin cos 32-=的最大值为(AAAA ) A .231+B .13-C .231- D .13+ 分析:x x x x 2sin 21cos sin 221cos sin =⋅=,再想办法把x 2cos 变成含x cso 2的式子:212cos cos 1cos 22cos 22+=⇒-=x x x x 于是:x x y 2sin 21212cos 3-+⋅=x x 2sin 21232cos 23-+=23)2sin 212cos 23(+-=x x 由于这里:1)21()23(,21,232222=+=+==b a b a 则 ∴23)2sin 212cos 23(1+-⨯=x x y 设:21cos ,23123sin 22===+=A b a a A 则 ∴232sin cos 2cos sin +-=x A x A y 23)2sin(+-=x A 无论A-2x 取何值,都有-1≤sin(A-2x)≤1,故231+-≤y ≤231+ ∴y 的最大值为231+,即答案选A 。
例2 (96年全国成人高考理工科数学试卷)在△ABC 中,已知:AB=2,BC=1,CA=3,分别在边AB 、BC 、CA 上任取点D 、E 、F ,使△DEF 为正三角形,记∠FEC=∠α,问:sin α取何值时,△EFD 的边长最短?并求此最短边长。
分析:首先,由于222224)3(1AB CA BC ==+=+,可知△ABC 为Rt △,其中AB 为斜边,所对角∠C 为直角,又由于︒===30,21sin A AB BC A 故,则∠B= 90°—∠A=60°,由于本题要计算△DEF 的最短边长,故必要设正△DEF 的边长为l ,且要列出有关l 为未知数的方程,对l 进行求解。