高等数学精彩试题及问题详解(广东工业大学)
- 格式:doc
- 大小:1.62 MB
- 文档页数:32
广东工业大学试卷用纸,共 5 页,第 1 页一、填空题(每题3分分).已知{4,3,4}a =-在向量{2,2,1}b =t e e x,sin cos ==广东工业大学试卷用纸,共 5 页,第 2 页广东工业大学试卷用纸,共 5 页,第 3 页解:两边微分得 )()(21yz d f x z d f dx '+'= 2分2221yz d yy d z f x z d x x d z f dx -'+-'= 5分 整理得 dx f y x f xy f z x dx f y x f xy f zy y x dz 22122222121222)('+''+'+''+= 6分四、计算下列各题(每题7分,共28分)1.计算Dx ⎰⎰,其中D是由曲线.10y x y x ===及所围成的区域:2031441200:1112(1)31212311)18yD xx dxy y ====+=-⎰⎰⎰⎰⎰⎰解2.计算⎰⎰Ddxdy xy }1,max{,其中}20,20),{(≤≤≤≤=y x y x D.解:曲线1=xy 把区域D 分成三个区域1D 、2D 和3D21,221:1≤≤≤≤y x x D ;x y x D 10,221:2≤≤≤≤;20,210:3≤≤≤≤y x D 2分⎰⎰Ddxdy xy }1,max{=dxdy xy D ⎰⎰1+⎰⎰2D dxdy +⎰⎰3D dxdy=212122121221⨯++⎰⎰⎰⎰x xdy dx xydy dx 6分 =2ln 419+ 7分 3.设Ω是曲线⎩⎨⎧==022x zy 绕z 轴旋转一周而成的曲面与平面8=z 围成的空间区域,求广东工业大学试卷用纸,共 5 页,第 4 页⎰⎰⎰+=Ωdv y x I )(22。
解:Ω由z y x 222=+与 8=z 所围成,在柱坐标系下 Ω:82,40,202≤≤≤≤≤≤z ρρπθ 3分⎰⎰⎰=8224202ρπρρρθdz d d I 5分=π31024五、设),(y x f 连续,且⎰⎰+=Ddudv v u f xy y x f ),(),(,其中D 是由0=y ,2xy =,1=x 所围成区域,求),(y x f (6分)五、解:设A dxdy y x f D=⎰⎰),(,则⎰⎰⎰⎰+=DDdxdy A dxdy xy A2分 A xydy dx A x 31210+=⎰⎰⇒81=A 5分 从而 81),(+=xy y x f 6分六、设曲线:C ⎩⎨⎧=++=-+5302222z y x z y x ,求C 上距离xoy 面最远的点和最近的点。
2. 解:函数的定义域为: ),(∞+0,ln x x x y 224-=' (1分)121102224-==''+=''ex y x y 得令,ln (3分)列表讨论如下:x(0, 1211-e)1211-e(1211-e, +) y ''+y凸61118--e凹(5分)区间 (0, 1211-e] 为曲线的凸区间, 区间 [1211-e , +) 为曲线的凹区间,曲线有拐点: (1211-e ,61118--e) (7分)3. 解:因为][cos 223ππ,x x -为 上连续的奇函数,所以0223=⎰-ππdx x x cos (2分)⎰-+22223ππx d x x x cos )sin ( =⎰-2222ππx d x x cos sin=⎰202221πx d x sin =⎰-204141πx d x )cos ( (5分)六、(7分)证明: 设,sin )()(x x f x F = (3分)由题目所给条件知: F (x )在[0,]上连续,在(0,)可导,且00==)()(F F π,所以由罗尔定理,至少存在一点),(πξ0∈,使得:0=')(ξF (5分)又 ξξ=+'='x x x f x x f F ]cos )(sin )([)( 所以 0=+'ξξξξcos )(sin )(f f因为 ),(πξ0∈,所以0≠ξsin ,从而有 ξξξξξξcot )(sin cos )()(f f f -=-=' 证毕 (7分)七、(9分)解: (1) 所求旋转体的体积为⎰∞+-=0dx xaa V a xπ)( (2分)⎰∞+--=0ax xdaaa πln⎰∞+-+∞-+⎥⎥⎦⎤⎢⎢⎣⎡-=0dx aa axa a a a xa x ππln ln =2⎪⎭⎫⎝⎛a a ln π (5分)(2)aa a a V 312ln )(ln )(-='π,令,)(0='a V 得e a a ==,ln 1 (7分) 当e a <<1时,)(,)(a V a V 0<' 单调减少, 当e a >时,)(,)(a V a V 0>' 单调增加, 所以当e a =时,V 最小,最小体积为22e e e e V ππ=⎪⎭⎫ ⎝⎛=ln )( .(9分)。
08高等数学(一)期末复习题参考答案一、1、22b a 2、1 3、b A cos 4、)()('a f a f e 5、c x +--232)1( 6、12+x7、)1(2-=x y 8、328 9、c x +1 10、e42- 11、0 12、dx x x )]cos(ln )[sin(ln+ 13、34cos sin t t t t - 14、c e x +-2 15、C x x x x x ++--sin 2cos 2sin 2 16、0=x1717、、)(xe C x y --= 二、1、D 2、B 3、A 4、A 5、B 6、A 7、B 8、C 9、B 10、A 11、C 12、D 13、B 14、D 15、C 16、C 17、C 18、A 19、D 20、D 21、C 22、D 23、A 24、D三、1.61 2.61 3.21 4.e 5.31e 6.e 四、1.)2ln cos 1(cos 2cos 2sin 2sin 2sin x x x x x e dx dy x +-= 2.2. )cos ln 2cos 22sin 2(1"222x x x x x x xy +×+-= 3.322)sec 1(tan sec 2"y y y y +-= 4.y x y + 5.x y y y y -p p =)cos(2'2 6.p +2 7.t t 412+ 8.2)cos 1(1"t y --=五、1.c x x x x +-+221cos l n tan 2.c x +2)(arctan 3.c e x +-1 4.c x x x x x +--+2arcsin 12)(arcsin 225.c x x x +-)l n cos l n (sin 21 6.c x x x x e x++-]cos sin )1[(27.c x x +-+21arcsin 8.C x x x x +++÷÷øöççèæ+-23211319.C x +-1arcsin 10.C x x ++-)4l n (241l n 416 六、1.)12ln 2(4- 2.)11(2e - 3.(e x =为瑕点)2p 4.)(22e e - 5.2 6.1 7.21tan 214---e ,8.21 七、1.极小值点1=x ,1)1(-=y 2.极小值点为2=x ;极大值点为0=x 3.单增区间为),1[]0,(+¥-¥ ;单减区间为]1,0[4.求出)(x f 的表达式,1±=x 为第一类跳跃间断点。
《高等数学-广东工业大学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dtx f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
《高等数学-广东工业大学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2ln 2x x x dx C =+⎰B )、sin cos tdt tC =-+⎰C )、2arctan 1dx dx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11cos 2y -B )、11cos 2x - C )、22cos y - D )、22cos x- 14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
《高等数学-工业大学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2ln 2x x x dx C =+⎰B )、sin cos tdt tC =-+⎰C )、2arctan 1dx dx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11cos 2y -B )、11cos 2x - C )、22cos y - D )、22cos x- 14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
A )、高阶无穷小B )、低阶无穷小C )、等价无穷小D )、同阶但不等价无穷3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(x x g x x x f =+= 4. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰5. 10=⎰( )A )、1B )、2C )、0D )、46. 设x xe dt tf 20)(=⎰,则=)(x f ( )A )、x e 2B )、x xe 22C )、x e 22D )、122-x xe7. 10()()bx x a e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,18. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π9. =-⎰-dx xx 2121221)(arcsin ( )A )、0B )、3243π C )、1 D )、22π10. 若1)1(+=x x x f ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln11. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xab x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分12. 若()f x 在0x x =处可导,则()f x 在0x x =处( )A )、可导B )、不可导C )、连续但未必可导D )、不连续13. =+x x arccos arcsin ( ).A πB 2π C4π D 2π14. 20sin 1lim x e x xx -+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 2. 如果21)74)(1(132lim 23=+-+-∞→n x x x x x ,则=n ______. 3. 设⎰+=C x dx x f 2cos )(,则=)(x f4. 若⎰++=C x dx x xf )1ln()(2,则⎰=dx x f )(15. ⎰=++dx xx2cos 1cos 12 三.判断题1. 函数1f(x)=(0,1)1x x a a a a +>≠- 是非奇非偶函数. ( )2. 若)(lim 0x f x x →不存在,则02lim ()x x f x →也一定不存在. ( )3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( )4. 方程2cos (0,)x x π=在至少有一实根. ( )5. 0)(=''x f 对应的点不一定是曲线的拐点( )四.解答题1. 求bxax e e bxax x sin sin lim 0--→ (b a ≠)2. .已知函数⎩⎨⎧≥+<+=0201)(2x bx x x x f 在0=x 处连续,求b 的值.3. 设⎪⎩⎪⎨⎧+=-kx x f x 2)1()( 00=≠x x ,试确定k 的值使)(x f 在0=x 处连续4. 计算tan(32)x dx +⎰.5. 比较大小22211,.xdx x dx ⎰⎰.6. 在抛物线2y x =上取横坐标为121,3x x ==的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线?7. 设函数=)(x f ⎪⎩⎪⎨⎧<<-+≥-01,cos 110,2x x x xe x ,计算⎰-41)2(dx x f .8. 若=)(x f 的一个原函数为x x ln ,求⎰dx x xf )(.9. 求由直线0=y 和曲线12-=x y 所围成的平面图形绕y 轴一周旋转而成的旋转体体积《高等数学》答案2一.选择题 1. D 2. D 3. D 4. A 5. B 6. C 7. D 8. A 9. B 10. D 11. B 12. C 13. D 14. A 15. B 二.填空题 1. 0 2. 23. x 2sin 2-4. C x x ++3261215. C x x ++21tan 21 三.判断题 1. F 2. F 3. F 4. F 5. T 四.解答题 1. 1 2. 1b = 3. 2-=e k4. 1tan(32)ln cos(323x dx x C +=-++⎰ 5. dx x dx x ⎰⎰<21221 6. (2,4)7. 解:设则,2t x =-⎰-41)2(dx x f =⎰-21)(dt t f =+⎰-01)(dt t f ⎰2)(dt t f =++⎰-01cos 11dt t ⎰-22dt te t =212121tan4+--e8. 解:由已知知1ln )ln ()(+='=x x x x f则C x x x dx x x dx x xf ++=+=⎰⎰2241ln 21)1(ln )(9. ()22101012012ππππ=⎥⎦⎤⎢⎣⎡+=+==---⎰⎰y y dy y dy x V《高等数学》试题3一.选择题1. 设函数)1(log )(2++=x x x f a ,)1,0(≠>a a ,则该函数是( ).A)、奇函数 B)、偶函数C)、非奇非偶函数 D )、既是奇函数又是偶函数2. 下列极限等于1的是( ).A )、x x x sin lim∞→ B )、x x x 2sin lim 0→ C )、x x x sin lim 2π→ D )、xxx -→ππsin lim3. 若⎰+=-C e dx x f x 6)(,则=)(x f ( )A )、()2xx e + B )、()1xx e -C )、66x e --D )、()1xx e +4. 220cos x xdx π=⎰( )A )、1B )、224π- C )、0 D )、45. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin6. 设x xe dt tf 20)(=⎰,则=)(x f ( )A )、x e 2B )、x xe 22C )、x e 22D )、122-x xe7. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π8. =-⎰-dx xx 2121221)(arcsin ( )A )、0B )、3243π C )、1 D )、22π9. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分10. 设dt du u x f x t⎰⎰⎥⎦⎤⎢⎣⎡+=02)1ln()(,则(1)f ''=( )A )、0B )、 1C )、2ln 1-D )、 2ln11. 设ln y x x =,则(10)y =( )A )、91x -B )、91xC )、98!xD )、98!x - 12. 曲线ln y x =在点( )处的切线平行于直线23y x =-A )、1,ln 22⎛⎫-⎪⎝⎭ B )、11,ln 22⎛⎫- ⎪⎝⎭C )、()2,ln 2D )、()2,ln 2- 13. 1-=x y 在区间[1, 4]上应用拉格朗日定理, 结论中的点ξ=( ).A 0B 2 C49D 3 14. =-⋅-→21tan limxx b a x x x ( )A 0B b a ln ln -C a lnD b ln15. 函数)1ln(2x y +=在区间]2,1[-上的最大值为( )A 4;B 0 ;C 1;D 5ln二.填空题1. 设函数f x x x x k x (),,=>+≤⎧⎨⎪⎩⎪e 2122,若f x ()在2x =处连续,则k=2. 设x x f +='1)(ln ,则=)(x f3. 若⎰++=C x dx x xf )1ln()(2,则⎰=dx x f )(14. ⎰=++dx xx2cos 1cos 125. 曲线15xy e =+ 的水平渐近线为___________.三.判断题 1. 2arctan lim π=∞→x x .( )2. 若)(lim 0x f x x →与)(lim 0x g x x →均不存在,则)]()([lim 0x g x f x x ±→的极限也不存在. ( )3. 若函数()f x 在0x 的左、右极限都存在但不相等,则0x为()f x 的第一类间断点. ( )4. 0==x x y 在处不可导( )5. 对于函数()f x ,若0)(0='x f ,则0x 是极值点.()四.解答题1. 设2)(,sin tan )(x x x x x =-=φϕ,判断当0→x 时)(x ϕ与 )(x φ的阶数的高低.2. 证明方程x e x 3=至少有一个小于1的正根.3. 计算⎰+2x x dx.4. 比较大小22211,.xdx x dx ⎰⎰.5. 设函数()y f x =由方程23ln()sin x y x y x +=+确定,求0x dydx=6. 求函数32ln 1x y +=的导数7. 计算dx e xx x x⎰++]1)ln 21(1[38. 设连续函数)(x f 满足⎰-=10)(2)(dx x f x x f ,求)(x f9. 求由曲线2x y =和x y =所围成的平面图形绕y 轴一周旋转而成的旋转体体积。