微滤的基本资料
- 格式:doc
- 大小:50.00 KB
- 文档页数:6
微滤(Microfiltration)1. 定义微滤又称微孔过滤,是以多孔膜(微孔滤膜)为过滤介质,在0.1~0.3MPa的压力推动下,截留溶液中的沙砾、淤泥、黏土等颗粒和贾第虫、隐孢子虫、藻类和一些细菌等,而大量溶剂、小分子及少量大分子溶质都能透过膜的分离过程。
2. 原理微滤的过滤原理有3种:筛分、滤饼层过滤、深层过滤。
一般认为微滤的分离机理为筛分机理,膜的物理结构起决定作用。
此外,吸附和电性能等因素对截留率也有影响。
其有效分离范围为0.1~10um 的离子,操作静压差为0.01~0.2MPa。
根据微粒在微滤过程中的截留位置,可分为3种截留机制:筛分、吸附及架桥,原理如下:①筛分:微孔滤膜拦截比膜孔径大或膜孔径相当的微粒,又称机械截留;②吸附:微粒通过物理化学吸附而被滤膜吸附。
微粒尺寸小于膜孔的也可被截留。
③架桥:微滤互相堆积推挤,导致许多微粒无法进入膜孔或卡在孔中,以此完成截留。
3. 特点微滤能截留0.1~1um之间的颗粒,微滤膜允许大分子和无机盐等通过,但能阻挡住悬浮物、细菌、部分病毒及大尺度的胶体的透过,微滤膜两侧的运行压差(有效推动力)一般为0.7bar(1bar=100KPa)。
4. 发展历程微滤技术是从19世纪初开始的,是膜分离技术中最早产业化的一种。
中国是20世纪80年代初期才起步,与国外水平比,中国的常规微滤膜的性能和国外同类产品的性能基本一致,折叠式滤芯在许多场合替代了进口产品,但在错流式微滤膜和组器技术及其在工程中的应用等方面,仍落后于国外,抑制了微滤技术在较高浊度水质深度处理中的应用。
5. 应用领域①水处理行业:水中悬浮物,微小粒子和细菌的去除;②电子行业:半导体工业超纯水、集成电路清洗用水终端处理;③制药行业:医用纯水除菌、除热原,药物除菌;④食品行业:饮料、酒类、酱油、醋等食品中的悬浊物、微生物和异味杂质、酵母和霉菌的去除;⑤化学工业:各种化学品的过滤澄清。
6. 分类微滤操作过程分死端过滤和错流过滤两种模式。
微滤的原理及应用1. 引言微滤是一种常见的固液分离和粒子过滤的方法。
它采用微孔过滤膜将固体颗粒和液体分离,具有高效、清洁和可靠的特点。
本文将介绍微滤的原理、应用以及在不同领域的具体应用案例。
2. 微滤的原理微滤的原理基于物理过滤的概念。
微滤膜通常由有机或无机材料制成,具有微米级别的孔径。
当悬浮液通过微滤膜时,液体分子和较小的颗粒可以通过孔径,而较大的颗粒被滤除。
微滤的原理主要有以下几个方面:•孔径大小:微滤膜的孔径一般在0.1~10微米之间,可以选择不同孔径尺寸的膜来适应不同的过滤要求。
•渗透压:微滤过程中,液体分子和溶质受到渗透压的作用,使得溶液能够通过膜孔。
•表面电荷:微滤膜的表面通常带有电荷,可以通过静电排斥作用使颗粒被滤除。
3. 微滤的应用微滤具有广泛的应用领域,下面将分别介绍微滤在食品、制药和环境等领域的应用。
3.1 食品行业•葡萄酒澄清:微滤可以除去葡萄酒中的酵母和微生物,使其澄清透明。
•果汁浓缩:通过微滤可以去除果汁中的杂质和微生物,提高果汁的纯度和品质。
•乳制品生产:微滤可以去除牛奶和乳制品中的细菌和杂质,延长其保鲜期。
3.2 制药行业•注射药物的制备:微滤可以去除药物中的微生物和颗粒,确保注射药物的纯净度和安全性。
•血液分离:微滤可以分离血液中的血细胞和血浆,用于制备血液制品。
3.3 环境行业•污水处理:微滤可以过滤污水中的悬浮物和微生物,提高出水质量。
•饮用水净化:微滤可以去除饮用水中的微生物和颗粒物,提供清洁健康的饮用水。
4. 微滤的优势和局限性微滤作为一种高效的固液分离方法,具有以下优势: - 高效:微滤可以快速而有效地分离固体颗粒和液体,具有较高的处理速度。
- 清洁:微滤过程中无需添加化学药剂,对处理物质无污染,是一种清洁的过滤方法。
- 可靠:微滤设备结构简单,操作稳定可靠,维护成本较低。
然而,微滤也存在一些局限性: - 孔径限制:微滤的孔径通常在微米级别,无法过滤更小的颗粒或溶质。
微滤水处理技术基础知识目录1 微滤可以分离出哪些物质 (1)2 筛分、吸附、架桥 (1)2.1筛分 (1)2.2吸附 (1)2.3架桥 (1)2.4图示 (2)3 微滤两种操作模式 (2)3.1死端过滤 (2)3.1.1 死端过滤的定义 (2)3.1.2 死端过滤的特点 (2)3.2错流过滤 (2)3.2.1 错流过滤的定义 (2)3.2.1 错流过滤的特点 (3)3.2.2 膜表面的浓差极化 (3)4 微滤膜的材料 (3)5 微滤的应用领域 (4)5.1饮用水处理 (4)5.1.1 过滤去除病原微生物 (4)5.1.2 混凝+微滤组合 (4)5.2纯水制备 (4)5.3城市污水回用实例1 (5)5.3.1 工艺流程简图 (5)5.3.2 微滤运行说明 (5)5.4城市污水回用实例2 (6)5.4.1 工艺流程简图 (6)5.4.2 微滤运行说明 (6)6 微滤膜的污染 (6)6.1脉冲反冲洗 (7)6.2化学清洗 (7)7 结语 (7)1微滤可以分离出哪些物质微滤(MF)是以多孔膜为过滤介质,在0.1~0.3MPa压力的推动下,分离出溶液中那些尺寸大于0.1微米的物质,例如微滤可以分离出溶液中的砂砾、淤泥、黏土等颗粒以及贾第虫、隐孢子虫、藻类和一些细菌等。
2筛分、吸附、架桥微滤膜的截留机理主要有三种:筛分、吸附和架桥。
筛分、吸附和架桥既可以发生在膜表面,也可发生在膜内部。
2.1筛分筛分属于机械截留,膜拦截比其孔径大或与孔径相当的微粒。
2.2吸附吸附属于物理化学作用,即使微粒尺寸小于膜孔径也能通过物理化学作用而被膜吸附。
2.3架桥架桥指的是多个微粒相互推挤,导致大家都不能进入膜孔或卡在孔中不能动弹。
2.4图示图2-1微滤膜截留机理示意图3微滤两种操作模式3.1死端过滤3.1.1死端过滤的定义待过滤的溶液流动方向与膜表面垂直的过滤方式称为死端过滤。
3.1.2死端过滤的特点在死端过滤方式下,滤饼层随着过滤时间的增加迅速增厚,溶液透过量也迅速下降。
微滤基本原理(一)微滤基本什么是微滤微滤,简单来说就是利用一定孔径的滤网把水中的各种悬浮物、杂质、微生物等过滤掉,使水变得更加清洁、卫生。
微滤的原理微滤的原理是利用滤网的孔径过滤水中的杂质和微生物。
滤网一般是由尼龙、硬质聚合物、金属网等材料制成,其孔径通常为0.1~10微米。
水流经过滤网后,就能将其中的悬浮物、细菌、病毒等物质过滤掉。
微滤的应用微滤广泛应用于自来水净化、饮用水净化、工业废水净化等方面。
在水处理过程中,微滤一般为前置处理,用于去除水中的大颗粒物质,以保护后续设备的正常运行。
微滤的优点微滤是一种传统的水处理方法,其优点包括:•操作简单:只需将水流过滤网即可实现净化•成本低:相比其他水处理方法,微滤的成本更低•适用范围广:可以处理自来水、工业废水、污染水等不同种类的水源•操作可控:滤网孔径可以根据水源的需要调整,使水的品质得到精确控制微滤的缺点尽管微滤具有多种优点,但是其也存在一些缺点:•滤网容易污染:因为恶劣的水源中含有的杂质多,容易堵塞滤网•不能杀灭细菌和病毒:微滤虽然能够过滤掉水中的微生物,但是不能杀灭它们,因此需要后续的消毒处理•滤网易破损:滤网的建设和维护需要一定的技术力量和费用微滤的未来尽管微滤具有一定的缺点,但其仍然是一种重要的水处理方法,未来还将发挥更加重要的作用。
随着科学技术的发展,微滤技术将会越来越先进、高效和智能化,使得水的净化更加便捷、优质和稳定。
微滤的进展近年来,随着技术的进步,微滤的应用范围逐渐扩大,而且滤芯的孔径也越来越小。
目前,市面上最小的微滤器的孔径已经达到0.02微米,能够有效过滤掉细菌和病毒,同时还能够去除水中的异味。
此外,近年来应用于微滤的新材料也不断出现,如碳纳米管、石墨烯等材料的运用,一定程度上扩展了微滤的应用领域,提高了微滤的过滤效率和质量,也降低了微滤的成本。
小结微滤是一种简单、直接且经济实用的水处理技术。
虽然其存在一些局限性,但是在特定场合和应用范围内仍然具有广泛的应用。
超滤、纳滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。
是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。
是矿泉水、山泉水生产工艺中的核心部件。
超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。
超滤不需要加电加压,仅依靠自来水压力就可进行过滤,流量大,使用成本低廉,较适合家庭饮用水的全面净化。
因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以达到较宽的处理范围,更全面地消除水中的污染物质。
2、纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。
也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。
这是一般家庭不能接受的。
一般用于工业纯水制造。
3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法分离技术。
可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。
也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。
这是一般家庭不能接受的。
一般用于纯净水、工业超纯水、医药超纯水的制造。
反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。
4、微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。
滤芯通常不能清洗,为一次性过滤材料,需要经常更换。
①PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。
②活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。
③陶瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。
基本资料微滤又称微孔过滤,它属于精密过滤,截留溶液中的砂砾、淤泥、黏土等颗粒和贾第虫、隐抱子虫、藻类和一些细菌等,而大量溶剂、小分子及少量大分子溶质都能透过膜的分离过程。
基本原理是筛分过程,操作压力一般在0.7-7kPa,原料液在静压差作用下,透过一种过滤材料。
过滤材料可以分为多种,比如折叠滤芯、熔喷滤芯、布袋式除尘器、微滤膜等。
透过纤维素或高分子材料制成的微孔滤膜,利用其均一孔径,来截留水中的微粒、细菌等,使其不能通过滤膜而被去除。
决定膜的分离效果的是膜的物理结构,孔的形状和大小。
微孔膜的规格目前有十多种,孔径范围为0.1~75 μm,膜厚120~150&μm。
膜的种类有:混合纤维酯微孔滤膜;硝酸纤维素滤膜;聚偏氟乙烯滤膜;醋酸纤维素滤膜;再生纤维素滤膜;聚酰胺滤膜;聚四氟乙烯滤膜以及聚氯乙烯滤膜等。
微滤技术常用于电子工业、半导体、大规模集成电路生产中使用的高纯水等的进一步过滤。
微滤膜若从1907年Bechhold制得系列化多孔火棉胶膜问世算起,至今有近百年历史。
而微孔膜的广泛应用是从二战之后开始的,最初只有CN 膜,随着聚合物材料的开发,成膜机理的研究和制膜技术的进步。
我国MF研究始于70年代初,开始以CA-CN膜片为主,于80年代相继开发成功CA、CA-CTA、PS、PAN、PVDF、尼龙等膜片,并进而开发出褶筒式滤芯;开发了控制拉伸致孔的PP、PE和PTFE 膜;也开发出聚酯和聚碳酸酯的核径迹微孔膜,多通道无机微孔膜也实现产业化。
并在医药、饮料、饮用水、食品、电子、石油化工、分析检测和环保等领域有较广泛的应用。
基本原理是筛分过程,操作压力一般在0.7-7kPa,原料液在静压差作用下,透过一种过滤材料。
过滤材料可以分为微滤多种,比如折叠滤芯、熔喷滤芯、布袋式除尘器、微滤膜等。
透过纤维素或高分子材料制成的微孔滤膜,利用其均一孔径,来截留水中的微粒、细菌等,使其不能通过滤膜而被去除。
决定膜的分离效果的是膜的物理结构,孔的形状和大小。
微孔膜的规格目前有十多种,孔径从14μm至0.025μm,膜厚120~150μm。
微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。
无机膜材料有陶瓷和金属等膜的孔径大约0.1~10μm,其操作压力在0.01-0.2MPa左右。
微滤过程操作分死端过滤和错流过滤两种方式。
在死端过滤时,溶剂和小于膜孔的溶质粒子在压力的推动下透过膜,大于膜孔的溶质粒子被截留,通常堆积在膜面上。
随着时间的增加,膜面上堆积的颗粒越来越多,膜的渗透性将下降,这时必须停下来清洗膜表面或更换膜。
错流过滤是在压力推动下料液平行于膜面流动,把膜面上的滞留物带走,从而使膜污染保持一个较低的水平。
超滤及微滤是依托于材料科学发展起来的先进的膜分离技术,近年来,超滤和微滤的制造技术和应用技术迅速发展并日趋成熟,正越来越广泛地应用到工业及市政建设的各个领域。
超滤和微滤均是利用多孔材料的拦截能力,以物理截留的方式去除水中一定大小的杂质颗粒。
在压力驱动下,溶液中水、有机低分子、无机离子等尺寸小的物质可通过纤维壁上的微孔到达膜的另一侧,溶液中菌体、胶体、颗粒物、有机大分子等大尺寸物质则不能透过纤维壁而被截留,从而达到筛分溶液中不同组分的目的。
该过程为常温操作,无相态变化,不产生二次污染。
制备超滤,微滤的材料有很多种,包括聚偏氟乙烯(PVDF)、聚砜、聚醚砜、聚丙烯、聚乙烯、醋酸纤维素等等。
在水处理行业,目前市场上出现最多的是PVDF和PES两种材料的产品。
从操作形式上,超滤可分为内压和外压。
运行方式分为全流过滤和错流过滤两种。
当进水悬浮物较高时,采用错流过滤可减缓,但相应增加能微滤的应用微滤主要用于除去溶液中大于0.05 左右的超细粒子,其应用十分广泛,在目前膜过程面业销售额中占首位。
在水的精制过程中,微滤技术可以除去细菌和固体杂质,可用于医药、饮料用水的生产。
2006年国家新颁布的生活饮用水卫生标准(GB 5749-2006)首次把砷的浓度限值降低到了10μg/L,但目前与此标准匹配的除砷方法少、费用也较高,亟需研究新的除砷方法。
膜法饮用水除砷技术已经开始在国际上应用,而我国目前关于膜法除砷的研究报道比较少,针对中国高砷饮水区主要分布在经济欠发达的农村地区这一现状,本课题进行了混凝.微滤工艺的饮用水除砷(V)研究。
混凝-微滤除砷试验主要分为烧杯试验、小试试验和含砷污泥处置试验三部分。
烧杯试验采用人工配置的含砷原水,通过FeCl3混凝和微孔膜过滤器抽滤试验,考察混凝.微滤工艺的除砷效果和原水水质等因素对除砷效果的影响;小试试验通过膜混凝反应器(MCR)的实际运行考察混凝.微滤工艺的除砷效果,研究膜污染特性,并进一步验证原水水质等因素对除砷效果的影响;污泥的处置试验主要通过含砷污泥的沉降、干化等试验研究了污泥的特性。
研究结果表明,MCR的除砷效果很好,在FeCl3投量为4 mg/L(以Fe3+计)时,可将As(V)的浓度从100 μg/L左右降至小于10μg/t,,出水平均值为4.40μg/L,能够满足标准的要求,砷的去除率为92.8%~98.2%;同时,MCR出水其他各项指标也符合标准要求,对原水的UV254等水质指标有一定的改善作用。
混凝.微滤除砷的影响试验表明:原水中的不同组分对混凝.微滤除砷效果的影响各不相同:F-、Cl-、NO3-和SO42-对除砷的影响并不显著,在试验条件下几乎对除砷效果没有影响;原水中HCO3-、HPO42-浓度的增加会减弱混凝-微滤工艺的除砷效果;原水中K+、Ca2+和Mg2+的浓度变化对混凝.微滤除砷的效果没有明显的影响;原水中Si的含量越高,砷的去除率越低;pH值对混凝-微滤除砷效果的影响显著,同等试验条件下降低原水的pH值可以明显提高砷的去除率。
膜污染研究表明,膜污染阻力的增加是膜比通量下降的主要原因,通过物理清洗和化学清洗可使膜比通量恢复到新膜的87.8%;膜污染的主要成分为有机污染,占总量的67.2%;浓差极化可以借助曝气搅动得到部分消除。
含砷污泥试验表明:混凝-微滤除砷工艺的浓缩倍率可达3668;污泥的自然沉降性能良好;自然干化后的污泥含水率可降低到95.4%;含砷干污泥的主要结晶成分为CaCO3和FeO(OH)。
在电子工业超纯水制备中,微滤可用于超滤和反渗透过程的预处理和产品的终端保安过滤。
微滤技术亦可用于啤酒、黄酒等各种酒类的过滤,以除去其中的酵母、霉菌和其它微生物,使产品澄清,并延长存放期。
微滤技术在药物除菌、生物检测等领域也有广泛的应用无机陶瓷膜是利用筛分原理,分离大小为0.05-10 u m以上粒子的膜分离技术,主要除去液体中的大分子杂质,从而实现澄清中药水提液的目的。
本课题有针对性地选择了三种中药(槐米、黄芩和小儿健脾平肝颗粒剂)水提液进行研究,实验接近中试规模,旨在为陶瓷膜在中药领域的应用作一些基础性的研究。
实验考察了膜通量随时间的变化趋势,优选了膜面流速及操作压差等工艺参数,考擦了膜的清洗方法;采用高效液相及紫外分光度法作为主要分析手段,分别以芦丁、黄芩苷、芍药苷为指标,考察了中药水提液微滤前后在性状、总固体、有效成分等方面的变化情况。
实验表明,中药水提液的膜通量受到膜孔径、原料液性质(溶液粘度、含颗粒的大小、总固体含量等)、操作条件(过滤压差、错流速度、温度等)等因素的影响。
在实际应用中,应根据不同的实验条件,针对不同的料液体系优选出最佳的工艺参数。
微滤完毕后,膜已被严重污染,必须进行清洗。
对于本课题来说,采用2%的NaOH及0.8%的HCl各清洗30min,可使膜通量恢复率达到90%以上。
中药水提液微滤前均为浑浊液体,微滤后成为颜色较浅的澄清透明液体;总固体去除率低,有效成分损失少。
因此该技术对单味中药及复方水提液具有良好的精制效果,可提高有效成分含量,减少服用量参考文献1.许振良,马炳荣著丛书名:《膜分离技术与应用》2.刘茉娥.膜分离技术[M].北京:化学工业出版社,1998,8.3.田春霞,苑会林.防水透气微孔膜[J].塑料,1998,27,23—264.李东.生物滤层同时去除地下水中铁锰离子研究[J].中国给水排水,2001,17(8):1-55.国家环境保护总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,20026.RJ Stanicwicz, M E Bolster,S Hafner,ct al. Some practicalconsiderations of lithium thinly chloride battery development.Proceeding International Power Sources Symposium(34 th)[C].N J: Fort Monmouth, 19907.K Mai, Z Li, Y Qiu, et al. Thermal properties and flame reentrance ofAL(OH)3polypropylene composites modified by polypropylene Sci.2007,81: 2679—2686.8.K Mai, Z Li, Y QIU et al. Physical and mechanical properties ofAL(OH)3PP composites modified by in-situ functionalized polypropylene[J]. J Appl Polym Sci,2002,83:2850-28579.K Mai, Z Li, H Zeng. Interfacial interaction in AL(OH)3 polypropylenecomposites modified by in-situ functionalized polypropylene[J]. J Appl Polym Sci,2002, 84:110-12010.Pierre Mouchet From conventional to biological removal of ion andmanganese in France[J]. J AWWA, 1992, 84(4): 158-167微滤班级:化艺082姓名:吴周强学号:200807043。