挤压拉拔
- 格式:doc
- 大小:102.50 KB
- 文档页数:22
挤压拉拔的流函数上界法解析挤压拉拔(TPL)是一种有效利用工艺技术来提升半导体器件设计效果的方法。
它可以有效地改善了器件的能耗性能,同时也可以抑制器件的过热。
然而,挤压拉拔的建模与仿真一直是半导体器件设计中的一项关键技术。
目前,流函数上界(FUB)法是传统TPL建模和仿真方法中最常见的方法之一。
本文将介绍FUB法及其在TPL建模和仿真中的应用。
首先,将介绍FUB法的主要原理。
它是利用流函数和上界方程构建复杂系统的模型。
流函数可以描述系统的数字特性,这种数字特性通常限制了系统的能力。
上界方程可以计算出系统的最大响应。
FUB法可以从系统的数字特征、时域响应和周期行为几个方面同时进行建模与仿真。
其次,将介绍FUB法在TPL模型仿真中的应用。
FUB法能够模拟出挤压拉拔处理及其产生的热量,从而更好地理解热物理过程,因此有助于改进器件设计和性能。
FUB法可以根据不同的工艺参数情况实现精确的建模仿真,这可以有效地预测出半导体器件的最终测试结果。
同时,FUB法还可以用于建模各种复杂的热物理过程,例如热对流、热扩散、热辐射等,这能够有效地降低热错误及其带来的后续问题,从而改善器件的能耗性能和稳定性。
最后,本文将针对FUB法的关键技术进行深入探讨,分析其在TPL建模和仿真中的不足,并为下一步研究和应用提供参考。
考虑到TPL处理的复杂性,FUB法需要考虑更多的因素,例如器件的尺寸、工艺参数和热物理过程等,以提供有效的建模仿真解决方案。
综上所述,FUB法是TPL建模仿真的一种有效的方法,它既可以预测出器件的性能,又能够降低热错误的发生。
为了有效地利用FUB 法,需要考虑更多的因素,对复杂的热物理过程进行有效的建模仿真。
未来,我们将继续探索FUB法,为半导体器件设计提供更全面、更有效的支持。
挤压:对放在容器中的钢坯一端施加以压力,使之通过模孔成型的一种压力加工方法。
正挤压特征:金属流动方向与挤压杆运动方向相同,钢坯与挤压筒内壁有相对滑动,二者间存在很大外摩擦。
正挤压三个阶段:开始,金属承受挤压杆的作用力,首先充满挤压筒和模孔,挤压力急剧上升。
基本,一般筒内的锭坯金属不发生中心层与外层的紊乱流动,挤压力随筒内锭坯长度的缩短,表面摩擦总量减少,几乎呈直线下降。
终了,管内金属产生剧烈的径向流动,即紊流,易产生缩尾,此时工具对金属的冷却作用,强烈的摩擦作用,使挤压力迅速上升。
填充系数:挤压筒内断面积与锭坯的断面积之比,指金属发生横向流动,出现单鼓或双鼓时的变形指数。
挤压比:挤压筒腔的横断面积与挤压制品总横断面积之比,指金属不发生横向流动时的变形指数。
粗晶芯:反挤压棒材纵向低倍组织上,沿中心缩尾边缘一直向前延伸,形成一个特殊粗晶区,叫。
死区:在基本挤压阶段,位于挤压筒与模子端面交界处的金属,基本上不发生塑性变形,故称为死区。
死区产生原因:强烈的三向压应力状态,金属不易达到屈服条件。
受工具冷却,σs增大。
摩擦阻力大。
影响死区因素:模角,摩擦力,挤压比,挤压温度速度,模孔位置。
死区的作用:可阻碍锭坯表面的杂质、氧化物、偏析瘤、灰尘及表面缺陷进入变形区压缩锥而流入制品表面,提高制品表面质量。
终了挤压三大挤压缩尾及防止措施:挤压缩尾是出现在制品尾部的一种特有缺陷,主要产生在终了挤压阶段。
缩尾使制品金属不连续,组织与性能降低,依其出现部位有中心缩尾(当钢坯渐渐被挤出模孔,后端金属容易克服挤压垫上的摩擦力产生径向流动,将钢坯表面上常有的氧化物,偏析瘤,杂质或油污带入制品中心,破坏了制品致密性,使制品低劣)。
环行缩尾(出现在制品断面中间,形状为圆环。
堆积在靠近挤压垫和挤压筒交界处的金属沿着后端难变形区的界面流向了制品中间层)。
皮下缩尾(出现在制品表皮内,存在一层使金属径向上不连续的缺陷)。
措施:对锭坯表面进行机械加工~车皮。
挤压与拉拔复习题答案一、选择题1. 挤压工艺中,金属的流动方向与外力作用方向的关系是:A. 垂直B. 平行C. 成一定角度D. 无固定方向答案:B. 平行2. 拉拔工艺中,金属的流动方向与外力作用方向的关系是:A. 垂直B. 平行C. 成一定角度D. 无固定方向答案:B. 平行3. 挤压与拉拔工艺中,金属的塑性变形主要发生在:A. 表面B. 内部C. 边缘D. 接触面答案:B. 内部二、填空题4. 挤压过程中,金属的流动方向与挤压轴向____。
答案:平行5. 拉拔过程中,金属的流动方向与拉拔轴向____。
答案:平行6. 挤压与拉拔工艺中,金属的塑性变形主要发生在____。
答案:内部三、简答题7. 挤压与拉拔工艺的共同点是什么?答案:挤压与拉拔工艺的共同点是它们都是通过施加外力使金属发生塑性变形,从而改变金属的形状和尺寸。
8. 挤压与拉拔工艺的不同点有哪些?答案:挤压与拉拔工艺的不同点在于挤压是金属在封闭模腔中受到压力作用而发生变形,而拉拔则是金属在拉伸力作用下通过模具孔洞而发生变形。
四、计算题9. 假设一块长方体金属块,其尺寸为长L=100mm,宽W=50mm,高H=20mm,若通过挤压工艺使其高度增加到H'=40mm,求挤压后的宽度W'。
答案:假设金属体积不变,则挤压前后体积相等,即L×W×H=L×W'×H'。
解得W'=(W×H)/(H')=50mm×20mm/40mm=25mm。
五、论述题10. 论述挤压与拉拔工艺在现代制造业中的应用及其重要性。
答案:挤压与拉拔工艺在现代制造业中应用广泛,它们可用于生产各种形状和尺寸的金属制品,如管材、棒材、线材等。
这些产品在汽车、航空、建筑、电子等多个领域都有重要应用。
挤压与拉拔工艺能够提高材料的机械性能,改善金属的微观结构,从而提高产品的质量和性能,对制造业的发展具有重要意义。
概念题:1、拉拔:在外力作用下,迫使金属坯料通过模孔,以获得相应形状、尺寸地制品地塑性加工方法.2、挤压:就是对放在容器(挤压筒)内地金属锭坯从一端施加外力,强迫其从特定地模孔中流出,获得所需要地断面形状和尺寸地制品地一种塑性成型方法.3、挤压缩尾:挤压快要结束时,由于金属地径向流动及环流,锭坯表面地氧化物、润滑剂及污物、气泡、偏析榴、裂纹等缺陷进入制品内部,具有一定规律地破坏制品组织连续性、致密性地缺陷.4、死区:在基本挤压阶段,位于挤压筒与模子端面交界处地金属,基本上不发生塑性变形,故称为死区.5、粗晶环:许多合金(特别是铝合金)热挤压制品,经热处理后,经常会形成异常大地晶粒,这种粗大晶粒在制品中地分布通常是不均匀地,多数情况下呈环状分布在制品断面地周边上,故称为粗晶环.6、残余应力:由于变形不均,在拉拔结束、外力去除后残留在制品中地应力.7、粗化:许多合金(特别是铝合金)热挤压制品,经热处理后,经常会形成异常大地晶粒,比临界变形后热处理所形成地再结晶晶粒大得多,晶粒地这种异常长大过程称为粗化.8、带滑动多模连续拉拔配模地必要条件:当第n道次以后地总延伸系数λn→k大于收线盘与第n个绞盘圆周线速度之比γk→n,才能保证成品模磨损后不等式un> vn仍然成立,保证拉拔过程地正常进行.9、带滑动多模连续拉拔配模地充分条件:任一道次地延伸系数应大于相邻两个绞盘地速比.10、挤压效应:某些高合金化、并含有过渡族元素地铝合金(如2A11、2A12、6A02、2A14、7A04等)挤压制品,经过同一热处理(淬火与时效)后,其纵向上地抗拉强度比其他加工(轧制、拉拔、锻造)制品地高,而伸长率较低,这种现象称为挤压效应.简述题:1、影响管材空拉时地壁厚变化地因素有那些?各是如何影响地?2、挤压缩尾有那几种形式,其产生原因各是什么?3、锥形拉拔模孔由那几部分构成,各部分地主要作用是什么?4、对于存在着偏心地管坯,通过安排适当道次地空拉就可以使其偏心得到纠正.请问:(1)空拉为什么能够纠正管材地偏心?(2)采用固定短芯棒拉拔时,在一定程度上也能够纠正管材地偏心,这是为什么?5、挤压效应产生地主要原因是什么?影响挤压效应地因素有那些方面?6、挤压机地主要工具有哪些,各自地主要作用是什么?7、什么是残余应力?画图说明圆棒材拉拔制品中残余应力地分布及产生原因.8、简述在挤压过程中,影响挤压力地主要因素?9、在挤压过程中,试详细阐述影响金属流动地因素?10、产生粗晶环地主要原因是什么?粗晶环对制品力学性能有何影响?1、正、反向挤压时地主要特征是什么?正向挤压:特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大地滑动摩擦.引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具地磨损.反向挤压:特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦.2、什么是死区?死区地产生原因是什么?死区概念:在基本挤压阶段,位于挤压筒与模子端面交界处地金属,基本上不发生塑性变形,故称为死区.死区产生原因:a、强烈地三向压应力状态,金属不容易达到屈服条件;b、受工具冷却,σs增大;c、摩擦阻力大.3、挤压缩尾地形式及产生原因,减少挤压缩尾地措施.三种:中心缩尾、环形缩尾、皮下缩尾(1)中心缩尾:终了挤压阶段后期,筒内剩余地锭坯高度较小,整个挤压筒内地剩余金属处于紊流状态,且随着锭坯高度地不断减小,金属径向流动速度不断增加,以用来补充锭坯中心部位金属地短缺,于是锭坯后端表面地氧化物、油污等易集聚到锭坯地中心部位,进入制品内部;而且随着挤压地进一步进行,径向流动地金属无法满足中心部位地短缺,于是在制品中心部位出现了漏斗状地空缺,即中心缩尾.(2)环形缩尾:挤压过程中,锭坯表面层带有氧化物、偏析物、各种表面缺陷及污物地金属,由于受到挤压筒壁地摩擦作用,其流动滞后于皮下金属,被随后到来地挤压垫向前推进而堆积在挤压垫与挤压筒地角落部位.随着挤压过程进行,堆积在这个角落部位中带有各种缺陷和污物地金属会越来越多.到了挤压过程末期,当中间部位金属供应不足,边部金属开始发生径向流动时,这部分金属将沿着挤压垫前端地后端难变形区地边界流入制品中,形成环形状地缩尾.(3)皮下缩尾:终了挤压阶段,当死区与塑性流动区界面因剧烈滑移使金属受到很大剪切变形而断裂时,表面层带有氧化物、偏析物、各种表面缺陷及污物地金属,会沿着断裂面流出,与此同时,由于挤压筒内剩余锭坯地长度很小,死区金属也逐渐流出模孔包覆在制品地表面上,形成皮下缩尾或外成层.如果死区金属流出较少,不能完全将这些带有各种缺陷和污物地金属包覆住,则形成起皮.减少挤压缩尾地措施(1)对锭坯表面进行机械加工——车皮.(2)采用热剥皮挤压.(3)采用脱皮挤压,(4)进行不完全挤压——留压余.(5)保持挤压垫工作面地清洁,减少锭坯尾部径向流动地可能性.4、挤压机地分类?什么是单动式挤压机、复动式挤压机?各自地主要用途是什么?按传动类型:分液压和机械传动两大类按总体结构形式:分为卧式和立式挤压机两大类按其用途和结构:分为型棒挤压机和管棒挤压机,或者称为单动式挤压机和复动式挤压机单动式挤压机:无独立穿孔系统.适合用实心锭挤压型材、棒材,用组合模挤压空心型材.使用随动针和空心锭也可以挤压无缝管材.双动式挤压机:具有独立穿孔系统.适合于用空心锭或实心锭挤压无缝管材.采用实心锭也可以挤压型、棒材.5、挤压机地主要工具有哪些,各自地主要作用是什么?1) 主要挤压工具:▪挤压模—用于生产所需要地形状、尺寸地制品.▪穿孔针(芯棒)—对实心锭进行穿孔或用空心锭生产管材.▪挤压垫—防止高温金属与挤压杆直接接触,并防止金属倒流.▪挤压杆—用于传递主柱塞压力.▪挤压筒—用于容纳高温锭坯.2) 辅助工具:模垫、模支承、模座(压型嘴、模子滑架)、挡环(支承环)、针支承、针接手、导路等.6、模孔工作带地作用是什么?确定工作带长度地原则是什么?作用:稳定制品尺寸和保证制品表面质量.工作带长度地确定原则:最小长度应按照挤压时能保证制品断面尺寸地稳定性和工作带地耐磨性来确定,一般最短1.5~3mm.最大长度应按照挤压时金属与工作带地最大有效接触长度来确定.铝合金一般最长不超过15~20mm.7、挤压过程中,影响金属流动地因素有哪些?(1)接触摩擦及润滑地影响:1)摩擦越大,不均匀流动越大;2)润滑可减少摩擦,减少金属流动不均,并可以防止工具粘金属.(2)锭坯与工具温度地影响:1)锭坯本身温度:温度高,强度低,流动不均.2)锭坯断面上地温度分布:加热地不均匀性;工具地冷却作用;导热性地影响.(3)相变地影响:温度改变能使某些合金产生相变,金属处于不同地相组织会产生不同地流动情况.(4)摩擦条件变化:a、温度不同,摩擦系数不同;产生不同地氧化表面,其摩擦系数也不同.b、温度不同,可能产生不同相态组织.c、在高温、高压下极容易发生金属与工具地粘结.(5)锭坯与工具地温度差:锭坯与工具地温差越大,变形地不均匀性越大.(6)金属性质地影响变形抗力高地金属比抗力低地流动均匀;合金比纯金属流动均匀.(7)工具形状地影响1)模角:模角大,死区大,金属流动不均匀,挤压力大,制品表面质量较好.2)形状相似性:挤压筒与制品形状相似,金属流动均匀.(8)变形程度地影响变形程度大,不均匀流动增加,但当变形程度增加到一定程度时,由于变形从表面深入到内部,反而会使不均匀流动减小.8、在挤压过程中,影响挤压力地主要因素有哪些?(1)金属地变形抗力挤压力大小与金属地变形抗力成正比.(2)锭坯状态锭坯组织性能均匀,挤压力较小.(3)锭坯地规格及长度锭坯地规格对挤压力地影响是通过摩擦力产生作用地.锭坯地直径越粗,挤压力就越大;穿孔针直径越粗,挤压力也越大;锭坯越长,挤压力也越大.(4)变形程度(或挤压比)挤压力大小与变形程度成正比,即随着变形程度增大,挤压力成正比升高.(5)变形温度随着变形温度地升高,金属地变形抗力下降,挤压力降低.(6)变形速度如果无温度、外摩擦条件地变化,挤压力与挤压速度之间成线性关系.(7)外摩擦条件地影响(8)模角随着模角增大,金属进入变形区压缩锥所产生地附加弯曲变形增大,所需要消耗地金属变形功增大;但模角增大又会使变形区压缩锥缩短,降低了挤压模锥面上地摩擦阻力,二者叠加地结果必然会出现一挤压力最小值.这时地模角称为最佳模角.(9)挤压方式地影响反向挤压比同等条件下正向挤压在突破阶段所需要地挤压力低30% ~40%.9、型材模设计时,减少金属流动不均匀地主要措施有哪些?(1)合理布置模孔(2)确定合理地工作带长度(3)设计阻碍角或促流角(4)采用平衡模孔(5)设计附加筋条(6)设计导流模或导流腔10、对于以下几种情况,可酌情对模孔工作带长度进行必要地增减:a、交接圆边有凹弧R(R>1.5mm)者,工作带可增加1mm.b、螺孔处工作带可增加1mm.c、交接圆边有凸弧R(R>1.5mm)者,工作带可减短1mm.d、壁厚相同地各端部可减短1mm11、挤压制品组织不均匀地特点是什么?产生地主要原因是什么?▪表现特征横向上:外层晶粒细小,中心层粗大.纵向上:前端晶粒粗大,尾端细小,在最前端仍保留有铸态组织轮廓.▪产生原因A 变形不均匀(1)在横断面上,变形程度是由中心向边部逐渐增加地.从而导致了外层金属地晶粒破碎程度比中心层剧烈.(2)在纵向上,变形程度是由头部向尾部逐渐增加地.使得尾端晶粒比前端细小.B 挤压温度和速度地变化主要是针对锭温与筒温相差比较大地金属而言地.例如,对挤压速度慢地锡磷青铜,开始挤压时,金属在高温下变形,出模孔后地组织为再结晶组织;而后段挤压时,由于受工具地冷却作用,变形温度较低,金属出模孔后再结晶不完全;且挤压后期金属流速加快,更不利于再结晶.故尾部晶粒细小.C 相变地影响主要是对于温度变化可能会产生相变地合金而言地.12、产生粗晶环地主要原因是什么?粗晶环对制品力学性能有何影响?▪粗晶环地形成机制如前所述,挤压制品外层金属、尾部金属地晶粒破碎和晶格歪扭程度分别比内部和前端严重.晶粒破碎严重部分地金属,处于能量较高地热力学不稳定状态,降低了该部位地再结晶温度.在随后地热处理过程中易较早发生再结晶,当其他部位刚开始发生或还没有发生再结晶时,该部位发生了晶粒长大.▪粗晶环对制品性能地影响(1)粗晶区地纵向强度(σb、σ0.2)比细晶区地低.(2)粗晶区地疲劳强度低;(3)淬火时易沿晶界产生应力裂纹;(4)锻造时易产生表面裂纹;(5)粗、细晶区冲击韧性值差别不大;(6)粗晶区地缺口敏感性比细晶区地小.13、挤压制品地表面裂纹产生原因:裂纹地产生是由于制品表面层地附加拉应力超过了表面金属地强度所造成.减少裂纹地主要措施:(1)适当降低挤压温度;(2)控制合适地挤压速度;(3)合理设计、加工模具,精心修模;(4)对锭坯进行均匀化退火处理;(5)采用等温挤压、锭坯梯温加热等挤压新技术、新工艺.14、拉伸系数、断面减缩率、延伸率概念.拉拔时地主要变形指标:断面减缩率:φ=(1-F1/F0)×100%延伸率:ε=(L1/L0-1)×100%拉伸系数:λ=L1/L0=F0/F115、试解释圆棒材拉拔时变形区内地应力分布规律.(1)应力沿轴向分布σl 入<σl 出∣σr入∣>∣σr出∣∣σθ入∣>∣σθ 出∣原因:稳定拉拔过程中,变形区内任一横断面向模孔出口方向移动时,面积逐渐减小,而此断面与变形区入口端球面间地变形体积不断增大.为实现塑性变形,通过此断面作用在变形体地σl 必须逐渐增大.(2)应力沿径向分布∣σr 外∣>∣σr内∣∣σθ外∣>∣σθ 内∣σl 外<σl 内原因:在变形区,金属地每个环形地外面层上,作用着径向应力σr 外,在内表面上作用着径向应力σr 内,由于径向应力σr总是力图减小其外表面,这就需要σr外大于σr内.距离中心层越远,表面积越大,所需要地力就越大.16、锥形拉拔模孔由哪几部分构成,各部分地主要作用?锥形模地模孔一般由四部分组成:润滑带、压缩带、定径带、出口带.各部分地主要作用:(1)润滑带作用:在拉拔时便于润滑剂带入模孔,保证制品得到充分润滑,减少摩擦;并带走产生地部分热量;防止划伤坯料.(2)压缩带作用:金属产生塑性变形,获得所需要地形状、尺寸.(3)定径带作用:使制品进一步获得稳定、精确地尺寸与形状;防止模孔磨损而很快超差,延长其使用寿命.(4)出口带作用:防止制品出模孔时被划伤;防止定径带出口端因受力而引起剥落.17、什么是残余应力?画图说明圆棒材拉拔制品中残余应力地分布及产生原因.由于变形不均,在拉拔结束、外力去除后残留在制品中地应力—残余应力(1)轴向残余应力—外层拉、中心层压在拉拔过程中,由于金属流动不均,棒材外层产生附加拉应力,中心层则出现与之平衡地附加压应力.拉拔结束后,由于弹性后效作用,制品长度缩短,而外层较中心层缩短得较大.但是,物体地整体性防碍了这种自由变形,其结果在外层产生残余拉应力,中心层则出现残余压应力.(2)径向残余应力—外表面为0外,整个断面上受压,中心最大在径向上,由于弹性后效地作用,棒材断面上所有地同心环形薄层,都欲增大其直径.在外表面这种弹性恢复不受限制,但由外向内所有环形薄层地弹性恢复均会受到其外层地阻碍,从而产生一残余压应力.中心层恢复地阻力最大.(3)周向残余应力—外层拉、中心层压由于棒材中心部分在轴向和径向上受到残余压应力作用,故此部分金属在周向上有涨大变形地趋势.但是,外层金属阻碍其自由涨大,从而在中心层产生周向残余压应力,外层则产生与之平衡地周向残余拉应力.18、影响管材空拉时地壁厚变化地因素有那些?各是如何影响地?(1)相对壁厚地影响对于外径D相同地管坯,增加壁厚S将使金属向中心流动地阻力增大,从而使管壁增厚量减小.对于壁厚相同地管坯,增加外径,减小了“曲拱”效应,使金属向中心流动地阻力减小,使管坯空拉后壁厚增加地趋势加强.(2)减径量地影响减径量越大,壁厚地变化也越大.在总减径量不变地情况下,多道次空拉地增壁量大于单道次地增壁量;多道次空拉地减壁量小于单道次地减壁量.(3)模角α地影响随着模角增大,拉拔应力发生变化,并且存在着一最小值,其相应地模角称为最佳模角.如果模角变化使拉拔应力σ l增大,就会导致增壁过程中地增壁趋势减小;减壁过程中地减壁趋势增大.(4)定径带长度h、摩擦系数f、拉拔速度v地影响增大h、f、v,都会使拉拔应力σl增大,导致增壁时地增壁趋势减小;减壁时地减壁趋势增大.(5)合金及状态地影响合金及状态影响到变形抗力σs 、摩擦系数f 、加工硬化速率等.通常, σs 大, σl 大.相同合金,硬度越高,增壁地趋势越弱.(6)拉拔方式地影响采用倍模(或称双模)拉拔,会使管壁增加时地增壁趋势减小,管壁减薄时地减壁趋势增大.相当于增加一个反拉力.19、空拉为什么能够纠正管材地偏心?对于存在偏心地管坯,经过几道次空拉,可使其偏心得到一定程度地纠正.主要原因:偏心管坯空拉时,假定在同一圆周上径向压应力σr 均匀分布,则在不同壁厚处产生地周向压应力σθ不同,厚壁处地σθ小于薄壁处地σθ ;薄壁处要先发生塑性变形,即周向压缩,径向延伸,使壁增厚,轴向延伸;而厚壁处还处于弹性变形状态;则在薄壁处,将有轴向附加压应力地作用,厚壁处受附加拉应力作用;促使厚壁处进入塑性变形状态,增大轴向延伸,显然在薄壁处减少了轴向延伸,增加了径向延伸,即增加了壁厚;σθ值越大,壁厚增加越多.薄壁处在σθ作用下逐渐增厚,使整个断面上地壁厚趋于均匀一致.20、滑动式多模连续拉拔过程建立地基本条件、必要条件和充分条件各是什么? 运动速度v n 与绞盘地圆周线速度u n : u n > v n建立拉拔过程地基本条件,即: u n > v n ,或 R >0 .当第n 道次以后地总延伸系数大于收线盘与第n 个绞盘圆周线速度之比,才能保证成品模磨损后不等式u n > v n 仍然成立.这就是带滑动多模连续拉拔配模地必要条件.任一道次地延伸系数应大于相邻两个绞盘地速比.这就是带滑动多模连续拉拔配模地充分条件.计算题:(1)确定模孔数目:10F F n λ=(2)计算填充系数:Pc F F 0=λ(3)计算挤压比:10nF F =λ (4)计算挤压制品地长度:⎪⎪⎭⎫⎝⎛-=c y h L l λλ0,每根制品地长度n l l ch =(1)计算拉伸系数10F F =λ(2)计算拉出管材地长度()λ夹l l l -= (3)该断面尺寸管坯地合理长度偏夹切l l l nl l +++=λ。
填充系数:挤压筒内孔断面积与锭坯的断面积之比,指金属发生横向流动,出现单鼓或双鼓变形时的变形指数。
挤压比:挤压筒腔的横断面积与挤压制品总横断面积之比,指金属不发生横向流动时的变形指数。
粗晶环与粗晶芯:反挤压棒材横截面边缘只有较轻微的粗晶环,深度较正向挤压的浅得多,晶粒尺寸也小得多。
反挤压棒材纵向低倍组织上,沿中心缩尾边缘一直向前延伸,有一个特殊的粗晶区—粗晶芯,这是正挤压所没有的组织特征。
在挤压后期,在中心金属补充困难的情况下,模孔侧面金属夹持着沿堵头表面径向流动的金属进入棒材尾部中心,这部分金属受表面摩擦作用,在淬火后形成粗大晶粒。
前端难变形区~死区:在基本挤压阶段,位于挤压筒与模子端面交界处的金属,基本上不发生塑性变形,故称为死区。
正挤压过程三阶段开始挤压阶段:金属承受挤压杆的作用力,首先充满挤压筒和模孔,挤压力急剧上深金属发生横向流动,出现单鼓或双鼓变形基本挤压阶段:①金属变形流动特点:不发生横向流动②挤压力的变化规律:随着挤压杆向前移动,金属不断从模孔中流出,挤压力几乎呈直线下降。
终了挤压阶段:①金属的横向流动剧烈增加,并产生环流②挤压力增加③产生挤压缩尾。
三大挤压缩尾的形成:1.中心缩尾:①筒内剩余的锭坯高度较小,金属处于紊流状态,径向流动速度增加。
②将锭坯表面的氧化物、油污等集聚到锭坯的中心部位。
③进入制品内部,形成中心缩尾。
随着挤压过程进一步进行,径向流动的金属无法满足中心部位的短缺,于是在制品中心尾部出现了漏斗状的空缺,即中空缩尾。
2.环形缩尾:①随着挤压过程进行,堆积在挤压垫与挤压筒角落部位中的带有各种缺陷和污物的金属会越来越多。
②挤压末期,当中间金属供应不足,边部金属开始发生径向流动时,这部分金属将沿着后端难变形区的边界进入锭坯的中间部位。
③流入制品中,形成环形缩尾。
挤压厚壁管材时,将形成内成层。
3.皮下缩尾:①死区与塑性流动区界面因剧烈滑移使金属受到很大剪切变形而断裂。
②表面层带有氧化物、各种表面缺陷及污物的金属,会沿着断裂面流出。
金属挤压与拉拔课程设计一、课程目标知识目标:1. 学生能理解金属挤压与拉拔的基本概念,掌握其定义、分类及应用场景。
2. 学生能掌握金属挤压与拉拔的主要工艺参数,了解其对金属加工性能的影响。
3. 学生能了解金属在挤压与拉拔过程中的变形规律,理解金属流动、应力与应变的基本原理。
技能目标:1. 学生能运用所学知识分析金属挤压与拉拔的工艺过程,具备解决实际问题的能力。
2. 学生能运用金属挤压与拉拔的工艺参数,进行简单工艺设计和优化。
3. 学生能通过实验、观察等方法,掌握金属挤压与拉拔的技能,提高动手实践能力。
情感态度价值观目标:1. 学生对金属挤压与拉拔产生兴趣,培养探究金属加工工艺的精神。
2. 学生通过学习金属挤压与拉拔的过程,认识到科学技术在工业生产中的重要性,增强科技创新的意识。
3. 学生在课程学习中,培养团队合作精神,提高沟通与协作能力。
课程性质:本课程为金属加工技术的实践性课程,旨在让学生了解金属挤压与拉拔的基本理论,掌握相关技能,提高解决实际问题的能力。
学生特点:学生具备一定的金属学基础知识,对金属加工工艺有一定了解,但实践经验不足。
教学要求:注重理论与实践相结合,强调学生动手实践,培养学生分析问题、解决问题的能力。
通过课程学习,使学生能够独立完成金属挤压与拉拔的工艺设计和操作。
二、教学内容本课程教学内容主要包括以下几部分:1. 金属挤压与拉拔基本概念:介绍金属挤压与拉拔的定义、分类及其应用场景,对应教材第3章第1节。
2. 金属挤压与拉拔的工艺参数:讲解金属挤压与拉拔的主要工艺参数,如挤压比、拉拔比、挤压速度、温度等,分析这些参数对金属加工性能的影响,对应教材第3章第2节。
3. 金属挤压与拉拔的变形规律:探讨金属在挤压与拉拔过程中的变形规律,包括金属流动、应力与应变的基本原理,对应教材第3章第3节。
4. 实践操作:组织学生进行金属挤压与拉拔的实践操作,让学生亲身体验工艺过程,提高动手实践能力。
1.挤压的定义所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。
2.正向挤压法定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法.特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。
引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的磨损。
3.反向挤压法定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。
特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。
特点:挤压力小;金属变形流动均匀;挤压速度快。
但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。
4.粗晶环与粗晶芯反挤压棒材横截面边缘只有较轻微的粗晶环,深度较正向挤压的浅得多,晶粒尺寸也小得多。
反挤压棒材纵向低倍组织上,沿中心缩尾边缘一直向前延伸,有一个特殊的粗晶区—粗晶芯,这是正挤压所没有的组织特征。
在挤压后期,在中心金属补充困难的情况下,模孔侧面金属夹持着沿堵头表面径向流动的金属进入棒材尾部中心,这部分金属受表面摩擦作用,在淬火后形成粗大晶粒。
5.正向挤压时金属的变形流动根据金属变形流动特征和挤压力的变化规律,可将挤压过程分为开始(填充) 、基本(平流)和终了(紊流)挤压三个阶段。
6.开始挤压金属变形流动特点金属发生横向流动,出现单鼓或双鼓变形。
其变形指数——用填充系数λc 来表示:λc =F0 / F p 挤压力的变化规律:随着挤压杆的向前移动,挤压力呈直线上升7.基本挤压金属变形流动特点不发生横向流动。
其变形指数——用挤压比λ来表示:λ = F0 / F18.终了挤压阶段特点:(1)金属的横向流动剧烈增加,并产生环流;(2)挤压力增加;(3)产生挤压缩尾。
9.挤压变形区:分别连接各条线的两个拐点,形成两个曲面。
把这两个曲面与模孔锥面或死区界面间包围的体积称为挤压变形区或变形区压缩锥。
压力加工:借助外力使金属产生塑性变形进而形成各种尺寸、形状和用途的零件和半成品。
(不同于机加工)工业中广泛使用的零件一般通过下列方法获得:铸造,如轧机牌坊;铸造——机加工,如轧辊;铸造——压力加工,如钢轨;铸造——压力加工——机加工,如螺栓等。
重要用途的零件一般均需通过压力加工。
压力加工的主要方法有:轧制;挤压与拉拔;锻造与冲压主要产品有:板、带、条、箔;轧制管、棒、型、线;挤压与拉拔各种零件如车轴、饭盒、洗衣机筒等;锻造与冲压1)挤压与拉拔产品简介A 管材按截面形状分:圆管、型管如方、六角形管等;按合金种类分:铝管、铜管、钢管等;按生产方法分:挤制管、拉制管、焊管、铸管、盘管、无缝管等;按用途分:空调管、压力表管、波导管、锅炉管、输油管、冷凝管、天线管等;按性能分:M(退火态)、R(热态)、Y(硬态)、Y2(半硬态)、C(淬火态)、CZ(淬火自然时效态)、CS(淬火人工时效态)等;此外:翅片管、蚊香管等。
B 棒、线材棒材:D>6mm;分类与管材类似;大多是半成品,进一步加工成各种零件,如弹簧,螺栓、螺母等;线材:D<6mm;多以盘状供货,广泛应用于仪器仪表、电子电力部门,如电线电缆等。
C 型材非圆截面材,又称经济断面材(可提高材料的利用率);铝、钢型材较多;许多型材只能用压力加工法生产,如钢轨、变断面型材2)产品的生产方法产品的生产一般可分两步;坯料制取(开坯):充分利用金属在高温时的塑性对其进行大变形量加工,如热挤、热轧、热锻。
制品的获得:进行目的在于控制形状、尺寸精度、提高综合性能的各种冷加工,如冷轧、拉拔、冲压。
目前研究:近终形成形技术、短流程生产技术挤压:生产灵活、产品质量好,适用于品种、规格多、产量小(有色金属)的场合,但成本高、成品率低;斜轧穿孔:生产率、成品率高;成本低;但制品形状尺寸精度差;尺寸规格受限制;多用于产量大的钢坯生产,有色金属厂基本没有;铸造:产品的尺寸规格少、质量差、性能低;主要用于生产大尺寸、性能要求不高的产品如下水管;轧管:道次变形量大,几何损失少,适于难变形合金,能缩短工艺流程,也是提供长管坯的主要方法(使盘管生产得以实现),但形状、尺寸精度差;拉拔:是获得精确尺寸、优质表面和性能的主要方法;焊管:效率高、成本低,但性能、质量差。
挤压拉拔知识点挤压拉拔,是一种常用于金属加工的工艺方法,通过施加压力,将金属材料从一种形状转变为另一种形状。
该工艺在各个行业中广泛应用,特别是在汽车、航空航天和建筑等领域。
本文将介绍挤压拉拔的基本原理、设备和应用。
一、基本原理挤压拉拔是一种塑性变形工艺,主要通过施加轴向力和凸模的作用,使金属材料在约束条件下发生塑性变形,从而改变其截面形状和尺寸。
在挤压拉拔过程中,材料会受到挤压力和摩擦力的作用,形成很高的局部应变,使材料产生塑性流动,最终达到所需的形状。
挤压拉拔通常使用金属材料作为原料,如铝、铜、钢等。
这些金属具有良好的塑性,能够在受力的情况下形成各种复杂的截面形状。
在挤压拉拔过程中,为了减少摩擦阻力和增加金属流动性,通常会使用润滑剂或加热材料。
二、设备介绍1. 挤压机挤压机是实施挤压拉拔工艺的主要设备。
它由压力系统、传动系统和控制系统组成。
压力系统提供所需的压力力量,传动系统将压力传递给凸模,控制系统控制整个挤压拉拔过程的运行。
2. 凸模凸模是挤压拉拔过程中的重要工具,它通过施加压力形成金属材料的塑性变形。
凸模通常由高硬度的材料制成,如合金钢或硬质合金,以保证其耐磨性和耐用性。
3. 夹具夹具用于固定金属材料,并确保其在挤压拉拔过程中的稳定性。
夹具的设计和制造需要考虑金属材料的形状、尺寸和质量要求。
三、应用领域1. 汽车行业挤压拉拔工艺在汽车制造中起着至关重要的作用。
它用于生产汽车车身、车门、车架等零部件。
由于挤压拉拔工艺具有高效、节能和灵活的特点,它能够满足汽车工业对于质量和生产效率的要求。
2. 航空航天行业航空航天领域对于零部件的重量和强度要求非常高,挤压拉拔工艺能够满足这些要求。
它在航空航天行业中广泛应用于飞机外壳、引擎零部件和航天器结构等领域。
3. 建筑行业挤压拉拔工艺也在建筑行业中得到广泛应用。
它可用于生产建筑结构材料,如铝合金门窗、铝合金幕墙等。
挤压拉拔工艺能够有效提高建筑材料的强度和耐久性,同时具有良好的装饰效果。
挤压与拉拔技术概述1.挤压技术概述挤压是指将金属坯料通过模具的压力作用,在一定的温度条件下挤出所需的形状。
它分为直接挤压和间接挤压两种形式。
直接挤压是指将金属材料直接置于模具中,通过模具施加压力,使材料发生塑性变形,进而形成所需的产品。
这种形式适用于各种断面形状的金属产品的生产。
间接挤压是指将金属材料放置在模具中,通过活塞或锻件将金属坯料挤压。
这种形式常用于生产较小的棒材或管材。
挤压技术有以下特点:1)高效率:挤压过程中材料的流动路径短,变形比较均匀,能够提高加工效率。
2)能耗低:挤压过程不需要切削副产生切屑,能耗低。
3)材料利用率高:挤压过程中金属材料没有损失,材料利用率高。
拉拔是指将金属坯料通过模具的拉力和压力,在一定的温度条件下拉伸变形,从而获得所需产品。
拉拔主要用于生产细长的棒材和线材。
拉拔技术有以下特点:1)拉伸比例大:拉拔过程中金属材料会发生明显的拉伸变形,能够获得较高的长度伸长率。
2)断面积减小:拉拔过程中金属材料的断面积减小,可以得到更细的棒材和线材。
3)机械性能提高:拉伸过程使金属材料得到较好的物理和力学性能,如强度、硬度等提高。
1)航空航天领域:挤压和拉拔技术能够生产出复杂的轴向零件和连接件,如涡轮叶片、发动机壳体等。
2)汽车制造:挤压和拉拔技术用于生产汽车零部件,如车身结构件、车门等。
3)电子电器领域:挤压和拉拔技术可生产电子元件的外壳、导线等。
4)建筑行业:挤压和拉拔技术可生产铝合金门窗、铝合金型材等。
总结起来,挤压和拉拔技术是一种高效、节能的金属塑性加工方法,在工业生产中应用广泛。
通过挤压和拉拔技术可以生产出形状复杂、尺寸精准的金属制品,满足各行各业的需求。
随着科技的发展和技术的提高,挤压和拉拔技术将会得到更广泛的应用和发展。
一、名词解释1.连续挤压:采用连续挤压机,在压力和摩擦力的作用下,使金属坯料连续不断地送入挤压模,获得无限长制品的挤压方法2.挤压比:挤压筒断面积与制品断面积之比3.比周长:是指把型材假想分为几部分后,每部分面积上的外周长与该面积的比值4. 粗晶环:某些金属与合金的挤压制品(棒材、型材),或者合金经淬火处理后,常在制品尾部靠外层出现粗大晶粒组织,通常称之为“粗晶环”5. 空拉:拉拔时管材内表面没有芯头限制,通过模孔后外径减缩,管壁厚度变化根据管坯的尺寸比例条件有增有减6. 拉拔配模:根据成品的要求和坯料尺寸来确定拉拔道次所需要的模孔形状、尺寸的工作7.填充系数:挤压筒内孔断面积与锭坯的断面积之比,指金属发生横向流动,出现单鼓或双鼓变形时的变形指数8. 层状组织:在铸锭组织中存在大量的微小气孔、缩孔或是在晶界上分布着未被溶解的第二相或者杂质等,在挤压时都被拉长,从而呈现层状组织。
(也称片状组织,其特征是制品在折断后,呈现出与木质相似的断口,分层的断口表面凹凸不平,并带有布状裂纹,分层的方向与挤压制品轴向平行,是挤压制品的一种组织缺陷)9. 辊模拉拔:坯料从自由旋转的2个或4个辊间隙中拉出来称为辊模拉拔。
可以增加道次压缩率,减少动力消耗,延长工具寿命10. 拉拔延伸系数:拉拔前的断面积与拉拔后的断面积的比值11.挤压速度:挤压机主柱塞运动速度,即挤压杆与垫片前进的速度12.挤压缩尾:是在挤压过程中铸锭表面的氧化物、油污脏物及其他表面缺陷进入制品内部或出现在制品的表皮层,而形成漏斗状、环状、半环状的气孔或疏松状态的缺陷13. 短芯头拉拔:把确定管材内径的短芯头固定在芯杆上,芯杆的另一端固定在拉拔机的后座上,把它插入管坯进行拉拔14.静液挤压:金属坯料不直接与挤压筒内表面产生接触,二者之间介以高压介质,施加于挤压轴上的挤压力通过高压介质传递到坯料上而实现挤压15.断面缩减系数ψ:拉拔后断面积与拉拔前断面积的比值二、简答题1.画出普通锥形拉拔模的示意图,并说明拉拔模各部分的作用润滑区1(入口区、润滑锥):作用:便于润滑剂进入模孔,保证制品润滑充分;减小摩擦和带走部分热量;避免入口处划伤金属。
1.挤压的定义所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。
2.正向挤压法定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法.特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。
引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的磨损。
3.反向挤压法定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。
特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。
特点:挤压力小;金属变形流动均匀;挤压速度快。
但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。
4.粗晶环与粗晶芯反挤压棒材横截面边缘只有较轻微的粗晶环,深度较正向挤压的浅得多,晶粒尺寸也小得多。
反挤压棒材纵向低倍组织上,沿中心缩尾边缘一直向前延伸,有一个特殊的粗晶区—粗晶芯,这是正挤压所没有的组织特征。
在挤压后期,在中心金属补充困难的情况下,模孔侧面金属夹持着沿堵头表面径向流动的金属进入棒材尾部中心,这部分金属受表面摩擦作用,在淬火后形成粗大晶粒。
5.正向挤压时金属的变形流动根据金属变形流动特征和挤压力的变化规律,可将挤压过程分为开始(填充) 、基本(平流)和终了(紊流)挤压三个阶段。
6.开始挤压金属变形流动特点金属发生横向流动,出现单鼓或双鼓变形。
其变形指数——用填充系数λc 来表示:λc =F0 / F p挤压力的变化规律:随着挤压杆的向前移动,挤压力呈直线上升7.基本挤压金属变形流动特点不发生横向流动。
其变形指数——用挤压比λ来表示:λ = F0 / F18.终了挤压阶段特点:(1)金属的横向流动剧烈增加,并产生环流;(2)挤压力增加;(3)产生挤压缩尾。
9.挤压变形区:分别连接各条线的两个拐点,形成两个曲面。
把这两个曲面与模孔锥面或死区界面间包围的体积称为挤压变形区或变形区压缩锥。
10.前端难变形区——死区(1)死区概念:在基本挤压阶段,位于挤压筒与模子端面交界处的金属,基本上不发生塑性变形,故称为死区。
死区的的大小和形状并非绝对不变化,如图2-7所示,挤压过程中,死区界面上的金属随流动区金属会逐层流出模孔而形成制品表面,死区界面外移,高度减小,体积变小。
(2)死区产生原因:a、强烈的三向压应力状态,金属不容易达到屈服条件;b、受工具冷却,σs增大;c、摩擦阻力大。
(3)影响死区大小的因素:a、模角α模角大,死区大;b、摩擦系数f 摩擦系数大,死区大;c、挤压比λ挤压比大,死区高度大,但总体积减小;d、挤压温度热挤压死区大,冷挤压死区小;e、挤压速度v 挤压速度快,死区小;f、金属的变形抗力σs 金属变形抗力大,死区大;g、模孔位置在多孔模挤压时,模孔靠近挤压筒内壁,死区减小(4)死区的作用:可阻碍锭坯表面的杂质、氧化物、偏析瘤、灰尘及表面缺陷进入变形区压缩锥而流入制品表面,提高制品表面质量11.挤压缩尾的形式三种:中心缩尾、环形缩尾、皮下缩尾。
12.挤压缩尾的概念:挤压快要结束时,由于金属的径向流动及环流,锭坯表面的氧化物、润滑剂及污物、气泡、偏析榴、裂纹等缺陷进入制品内部,具有一定规律的破坏制品组织连续性、致密性的缺陷。
反挤压时,金属的变形集中在模孔附近,并不波及整个锭坯,变形区是恒定的且随着挤压的进行由锭坯的前端逐渐向后端推移,前端的金属流出模孔,滞后的金属却没有发生挤压变形。
这种流动特征,不可能将边部带有脏物及缺陷的金属带进制品中,也就不会形成环形缩尾。
故反挤压只有中心缩尾和皮下缩尾。
13.减少挤压缩尾的措施(1)对锭坯表面进行机械加工——车皮。
(2)采用热剥皮挤压。
(3)采用脱皮挤压(4)进行不完全挤压——留压余。
(5)保持挤压垫工作面的清洁,减少锭坯尾部径向流动的可能性。
14.模角与死区模角大,死区大,金属流动不均匀,挤压力大,制品表面质量较好。
15.挤压力:挤压过程中,通过挤压杆和挤压垫作用在金属坯料上的外力。
单位挤压力:挤压垫片单位面积上承受的挤压力。
16.影响挤压力的主要因素(1)金属的变形抗力:挤压力大小与金属的变形抗力成正比。
(2)锭坯状态:锭坯组织性能均匀,挤压力较小。
不同的组织形态,其挤压力也不一样。
(3)锭坯的规格及长度:锭坯的越粗、越长,挤压力越大。
(4)变形程度:挤压力大小与变形程度成正比,即随着变形程度增大,挤压力成正比升高。
(5)变形温度:一般来说,随着变形温度的升高,金属的变形抗力下降,挤压力降低。
(6)变形速度变形速度对挤压力大小的影响,也是通过变形抗力的变化起作用的。
(7)外摩擦条件的影响(8)模角(9)挤压方式的影响17.穿孔力计算:(1)穿孔应力(3-8)(2)穿孔力(3)温度修正系数式中dZ 为穿孔针直径,d为管材外径,Lt为填充后锭坯长度,la为穿孔力达到最大时的穿孔深度,Z为温度修正系数,∆T为锭与针的温差,λ为金属导热率,Dt为挤压筒直径。
18.粗晶环(1)概念许多合金(特别是铝合金)热挤压制品,经热处理后,经常会形成异常大的晶粒,比临界变形后热处理所形成的再结晶晶粒大得多。
晶粒的这种异常长大过程称为粗化,这种组织称为粗大晶粒组织。
这种粗大晶粒在制品中的分布通常是不均匀的,多数情况下呈环状分布在制品断面的周边上,故称为粗晶环。
(2)粗晶环的形成机制如前所述,挤压制品外层金属、尾部金属的晶粒破碎和晶格歪扭程度分别比内部和前端严重。
晶粒破碎严重部分的金属,处于能量较高的热力学不稳定状态,降低了该部位的再结晶温度。
在随后的热处理过程中易较早发生再结晶,当其他部位刚开始发生或还没有发生再结晶时,该部位发生了晶粒长大。
20影响粗晶环的因素A 、合金元素的影响B 、锭坯均匀化的影响C 、挤压温度的影响D、合金中的应力状态的影响E 、挤压方式的影响F、变形程度的影响21. 挤压效应概念某些高合金化、并含有过渡族元素的铝合金(如2A11、2A12、6A02、2A14、7A04等)挤压制品,经过同一热处理(淬火与时效)后,其纵向上的抗拉强度比其他加工(轧制、拉拔、锻造)制品的高,而伸长率较低,这种现象称为挤压效应。
A 、内因—合金元素凡是含有过渡族元素的热处理可强化铝合金,都会产生挤压效应。
B 、外因—变形与织构结果,在淬火加热过程中不易发生再结晶或再结晶进行不完全。
22.挤压效应的本质:在淬火后的制品中仍保留着未再结晶组织。
23. 影响挤压效应的因素A 、其他添加元素的影响B 、锭坯均匀化的影响C 、挤压温度的影响D 、变形程度的影响E 、分散变形的影响F、淬火温度与保温时间的影响23. 挤压制品的质量控制质量包括:横断面上和长度上的形状与尺寸,表面质量以及组织与性能。
一、制品断面形状与尺寸1. 型材挤压时的流动不均匀性――拉薄,扩口,并口2. 工作带过短,挤压比和挤压速度过大――制品外形,尺寸不规则3. 模孔变形(热挤压高温):――断面形状与尺寸不合要求4. 工具模不对中或变形――管材偏心二、制品长度上的形状:1.弯曲2.扭拧24.挤压设备的类型(1)按传动类型分液压和机械传动两大类机械传动挤压机又分为传统机械传动挤压机和现代机械传动挤压机。
(2)按总体结构形式分为卧式和立式挤压机两大类。
卧式挤压机按挤压方法可分为正向、反向和联合挤压机,但其基本结构没有原则性差别。
(3)按其用途和结构分为型棒挤压机和管棒挤压机,或者称为单动式挤压机和复动式挤压机。
25.主要挤压工具挤压模—用于生产所需要的形状、尺寸的制品。
穿孔针(芯棒)—对实心锭进行穿孔或用空心锭生产管材。
挤压垫—防止高温金属与挤压杆直接接触,并防止金属倒流。
挤压杆—用于传递主柱塞压力。
挤压筒—用于容纳高温锭坯。
26. ★挤压模设计☆挤压模的结构类型挤压模可按模孔压缩区的断面形状、挤压产品的品种、模孔的数目、挤压方法及工艺特点、模具结构等不同形式进行分类。
归纳起来可分为四大类:整体模;拆卸模;组合模;专用模具A)整体模模子是由一块钢材加工制造成。
广泛用于挤压普通型材、棒材、管材。
整体模按模孔压缩区的断面形状可分为7种(见图5-14):平模、锥模、平锥模、双锥模、流线模、平流线模、碗形模。
最常用的是平模和锥模平模:挤压铝合金型材、棒材,镍合金,铜合金管、棒材。
锥模:挤压铝合金管材,高温合金钨、钼、锆等。
B)组合模:生产内径较小的管材,各种形状的空心型材。
舌形模:所需的挤压力较小,焊合室中延伸系数大,主要用于挤压硬合金空心型材。
但挤压残料较多。
平面分流模:多用于挤压变形抗力低、焊合性能好的软合金空心型材。
残料较少。
27. 单孔模设计(1)模角α平模:α=90°锥模:当α=45~60°时,挤压力最小;当α=45~50°时,死区很小,甚至消失。
挤压有色金属时通常选择α=60~65°。
(2)工作带(定径带)长度h工作带长度的确定原则:最小长度应按照挤压时能保证制品断面尺寸的稳定性和工作带的耐磨性来确定,一般最短1.5~3mm。
最大长度应按照挤压时金属与工作带的最大有效接触长度来确定。
铝合金一般最长不超过15~20mm。
通常情况下:挤压轻合金工作带长度为2~8mm,常用3~5mm。
黄铜、紫铜、青铜为8~12mm。
白铜、镍合金为3~5mm。
稀有难熔金属为4~8mm。
(3)工作带直径dg确定时应考虑标准允许的尺寸偏差、冷却收缩量、模孔尺寸的变化、张力矫直时的断面收缩率等因素影响。
对于只考虑直径负偏差时:dg=(1+k)d0 (5-1)式中:d0—棒材名义尺寸(六角棒为内切圆直径,方棒为边长),mm;k—综合系数。
黄铜、镁合金、纯铝及软铝合金,取k=1~1.2%;硬铝合金取0.7%;紫铜取1.5%;青铜取1.7%。
(4)模孔出口端直径dch为防止划伤制品表面,一般dch= dg+3~5mm(5)模孔入口圆角半径rr 的作用:防止低塑性合金挤压时产生表面裂纹;减轻金属在进入工作带时产生的非接触变形;减轻高温挤压时模子入口棱角被压秃而很快改变模孔尺寸。
r 的取值与合金的强度、挤压温度及制品尺寸有关。
r 的取值:一般紫铜和黄铜取r=2~5mm;白铜取4~8mm;蒙耐尔合金取10~15mm;钢与钛合金取3~8mm;镁合金取1~3mm;铝合金取0.2~0.5mm。
(6)模子外圆尺寸D模子的外圆直径主要是依据挤压机的吨位大小来确定,并考虑模具外形尺寸的系列化,便于更换、管理,一般在一台挤压机上最好只有1~2种规格。
对于棒材、管材、外接圆直径不大的型材和排材,一般取D=(0.8~0.85)D0 (D0挤压筒直径)。
对外接圆直径较大、形状较复杂的型材及排材,取D=(1.15~1.3)D0。