常规样品的红外光谱分析解析
- 格式:doc
- 大小:25.00 KB
- 文档页数:6
红外光谱图分析步骤解析:从谱图到化合物的信息解读红外光谱图是一种常用的分析工具,可以帮助科学家们确定化合物的结构和功能。
通过分析红外光谱图,我们可以了解化合物中的官能团和化学键的存在与类型。
本文将详细介绍红外光谱图分析的步骤,帮助读者更好地理解和解读红外光谱图。
1.步骤一:获取红外光谱图在进行红外光谱图分析之前,首先需要获取待分析化合物的红外光谱图。
这可以通过红外光谱仪来实现。
红外光谱仪会向待分析样品中发射红外光,然后测量样品对不同波长光的吸收情况。
通过这个过程,我们可以得到一张红外光谱图。
2.步骤二:观察谱图的整体形态在获得红外光谱图后,我们首先要观察谱图的整体形态。
红外光谱图通常以波数为横坐标,吸收强度为纵坐标。
我们可以注意到谱图中的吸收峰和吸收带。
吸收峰通常表示特定官能团的存在,而吸收带则表示化学键的存在。
3.步骤三:确定吸收峰的位置接下来,我们需要确定红外光谱图中各个吸收峰的位置。
不同官能团和化学键在红外光谱图中有特定的吸收位置。
通过比对已知化合物的红外光谱图和待分析化合物的红外光谱图,我们可以初步确定各个吸收峰的位置。
4.步骤四:解读吸收峰的强度除了吸收峰的位置,吸收峰的强度也是红外光谱图分析的重要信息之一。
吸收峰的强度可以反映化合物中特定官能团或化学键的含量。
通过比较吸收峰的强度,我们可以推断化合物中不同官能团或化学键的相对含量。
5.步骤五:分析吸收带的形态除了吸收峰,红外光谱图中的吸收带也提供了重要的信息。
吸收带的形态可以帮助我们判断化学键的类型。
例如,C=O键通常表现为一个尖锐的吸收带,而-OH键则表现为一个宽而平坦的吸收带。
6.步骤六:结合上述信息解析化合物通过观察红外光谱图中吸收峰和吸收带的位置、强度和形态,我们可以逐步解析化合物的结构和功能。
我们可以根据已知的红外光谱图数据库,对比待分析化合物的红外光谱图,找到相似的谱图,从而确定化合物的结构和功能。
7.结论红外光谱图分析是一种重要的化学分析方法,可以帮助科学家们确定化合物的结构和功能。
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
实验七固体样品的红外光谱测试及分析一、实验目的:1、学习有机化合物红外光谱测定的制样方法。
2、学习红外光谱仪的操作技术。
3、了解傅立叶变换红外光谱仪的基本构造及工作原理。
二、实验原理红外光是一种波长介于可见光区和微波区之间的电磁波谱。
波长在0.78~300μm。
通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm (波数在12820~4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。
其中中红外区是研究、应用最多的区域。
红外区的光谱除用波长λ表征外,更常用波数(wave number)σ表征。
波数是波长的倒数,表示单位厘米波长内所含波的数目。
作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。
它最广泛的应用还在于对物质的化学组成进行分析。
用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。
其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。
它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。
而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。
因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。
根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。
因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。
只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。
如何进行红外光谱解析红外光谱解析是一种广泛应用于化学、生物、材料科学等领域的测试技术,通过分析物质在红外光波段的吸收和散射特性,可以获得物质的结构信息、成分组成以及其他相关性质。
本文将介绍红外光谱解析的基本原理、实验操作步骤以及数据分析方法,帮助读者了解如何进行红外光谱解析。
一、基本原理红外光谱解析的基本原理是物质分子在吸收红外光时,会发生振动和转动,并发生状态之间的转变。
这些振动和转动产生的谐振频率,与分子内部的键长、键角等结构参数有关,因此可以通过测量红外光谱图谱来了解物质的结构特征。
二、实验操作步骤1. 仪器准备:将红外光谱仪连接电源并打开。
根据待测物的性质,选择适当的样品盒(液态或固态)和检测模式(透射或反射)。
2. 样品处理:对于液态样品,取少量样品加入透射池中,移除气泡并将其密封;对于固态样品,将样品压制成片或粉碎并放置在反射盒中。
3. 启动仪器:根据仪器操作手册,进行光谱仪的启动和样品检测参数的设置。
4. 开始检测:点击仪器软件上的“开始”按钮,红外光谱仪开始发送红外光,并通过探测器接收返回的信号。
5. 数据采集:红外光谱仪会将接收到的信号转化为电信号,并通过数据采集软件记录下来。
采集过程通常需要数秒至数分钟。
6. 数据处理:获取红外光谱图谱后,使用特定的数据处理软件进行谱图展示和数据分析。
三、数据分析方法1. 谱图展示:使用数据处理软件将红外光谱图谱进行展示,在横轴上表示波数,纵轴表示吸收强度。
确保谱图的分辨率和信噪比足够高,以保证后续的数据分析准确性。
2. 峰值鉴定:根据谱图上的吸收峰,确定物质的各种官能团或键的存在。
通过比对已知物质的红外光谱数据库,寻找吸收峰的对应官能团或键。
3. 定量分析:利用谱图上的吸收峰的强度,可以进行物质的定量分析。
通过校正曲线或比色法等方法,计算物质的浓度或含量。
4. 结构确定:根据红外吸收峰的波数和强度,可以获得物质的结构信息。
通过对比不同官能团或键的红外吸收谱图,推测和确认物质的结构特征。
红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。
它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。
红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。
本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。
一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。
红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。
红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。
当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。
根据这些特征峰的位置和强度可以推断样品的化学组成和结构。
二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。
常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。
其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。
三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。
对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。
对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。
对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。
四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。
常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。
鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。
质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。
量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。
结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。
红外光谱分析报告引言红外光谱分析是一种常用的无损检测技术,通过对物质吸收、发射、散射红外辐射的特性进行测量,可以得到样品的红外光谱图谱,从而了解样品的组成、结构、功能等信息。
本报告将以步骤思路,介绍红外光谱分析的基本原理、仪器设备、样品制备和数据处理方法。
步骤 1:基本原理红外光谱分析是基于物质分子的振动和转动特性进行的。
物质分子在吸收红外辐射时,分子中的化学键会发生振动、伸缩或弯曲,产生不同频率的红外吸收峰。
根据这些吸收峰的位置和强度,可以推断出物质的结构和成分。
步骤 2:仪器设备进行红外光谱分析需要使用红外光谱仪。
红外光谱仪由光源、样品室、光谱仪和检测器等组成。
光源发出红外光,经过样品室后被光谱仪分解成不同波长的光,并通过检测器进行信号转换和记录。
步骤 3:样品制备在进行红外光谱分析之前,需要对样品进行适当的制备。
通常情况下,样品需要制备成薄片或粉末状,并将其置于样品室中进行测量。
对于液体样品,可以直接将其滴在红外透明的盘片上进行测量。
步骤 4:数据处理红外光谱仪会输出一张红外光谱图谱,其中横轴表示波数(或波长),纵轴表示吸光度。
通过对红外光谱图谱的解读和分析,可以获得样品的结构和成分信息。
数据处理的方法包括:1.峰位解析:根据吸收峰的位置,判断样品中存在的官能团或化学键。
2.峰强度分析:根据吸收峰的强度,推断样品中不同官能团或化学键的含量。
3.峰形分析:观察吸收峰的形状,判断样品的结构和分子对称性。
步骤 5:应用领域红外光谱分析在许多领域有着广泛的应用。
以下是一些常见的应用领域:1.化学品鉴定:通过对未知化合物的红外光谱分析,可以确定其分子结构和成分,帮助进行化学品鉴定。
2.药物研究:红外光谱分析可以用于药物的质量控制、相似性比较和稳定性研究。
3.环境监测:红外光谱分析可以用于检测和监测环境中有害物质的存在和浓度。
4.食品安全:红外光谱分析可以用于食品中添加物的检测和鉴定,帮助维护食品的安全性。
红外光谱分析红外光谱分析是一种重要的分析技术,广泛应用于化学、生物、材料等领域。
通过测量物质在红外光谱范围内的吸收和发射特性,可以得到物质分子的结构信息,实现物质的鉴定、定量分析和质量控制等目的。
本文将从红外光谱的基本原理、仪器设备、样品制备和数据解析等方面介绍红外光谱分析的相关知识。
一、基本原理红外光谱分析基于物质对红外辐射的吸收特性。
红外辐射是电磁波谱中的一部分,波长范围在0.78μm至1000μm之间,对应的频率范围在3000GHz至0.3THz之间。
物质分子由原子组成,原子核围绕电子运动,当受到外界的电磁波激发时,分子内部的键振动和转动将发生改变,导致物质吸收特定波长的红外辐射。
不同物质的分子结构和化学键在红外光谱图上表现出特征性的吸收峰,通过观察这些吸收峰的位置和强度可以确定物质的成分和结构。
二、仪器设备进行红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪包括傅立叶变换红外光谱仪(FTIR)和光散射式红外光谱仪(IR)。
FTIR光谱仪通过傅立叶变换技术将红外辐射转换为光谱图,具有高灵敏度和快速测量的优点,适用于定性和定量分析。
光散射式红外光谱仪则通过散射光信号进行检测,适用于固态样品和表面分析。
三、样品制备在进行红外光谱分析前,需要对样品进行适当的制备处理。
液态样品可以直接涂覆在透明吸收的样品基底上进行测试,固态样品通常需要将样品捣碎并与适当的载体混合后进行测试。
在取样和制备过程中需要避免空气和水分的干扰,避免发生氧化和水解反应,影响测试结果的准确性。
四、数据解析红外光谱分析得到的数据通常以吸收光谱图的形式呈现。
吸收光谱图的横轴表示波数或波长,纵轴表示吸收强度,吸收峰的位置和形状反映了物质的分子结构。
数据解析是红外光谱分析的关键步骤,需要借助专业的光谱库和软件进行分析和比对,以确定样品的成分和结构信息。
在实际应用中,红外光谱分析可用于鉴定有机化合物、无机物质、生物大分子等多种样品,广泛应用于医药、食品、环境、材料科学等领域。
红外光谱的定量分析红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。
红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。
原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。
Beer定律可写成:A=abc式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。
系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。
且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。
因此在测定或描述吸收系数时,一定要注意它的波数位置。
当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。
吸收系数是物质具有的特定数值,文献中的数值理应可以通用。
但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。
在定量分析中须注意下面两点:1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。
2)吸光度的另一可贵性使它具有加和性。
若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和;2.定量分析方法的介绍红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。
此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。
红外光谱分析红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。
在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。
根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。
分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。
利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库,人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
下面将对红外光谱分析的基本原理做一个简单的介绍。
红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动- 转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。
利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。
红外辐射是在1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。
一直到了1903 年,才有人研究了纯物质的红外吸收光谱。
常规样品的红外光谱分析
PB07206298龚智良
实验目的
1.初步掌握两种基本样品制备技术及傅立叶变换光谱仪器的简单操作;
2.通过图谱解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。
实验原理
红外光谱:红外光谱是分子的振动转动光谱,也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动引起的偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些区域的光透射强度减弱。
记录红外光的百分透射比或波长关系曲线,就得到红外光谱。
从分子的特征吸收可以鉴定化合物和分子结构,进行定性和定量分析。
红外光谱尤其在物质定性分析中应用广泛,它操作简便,分析速度快,样品用量少且不破坏样品,能提供丰富的结构信息,因此红外光谱法往往是物质定性分析中优先考虑的手段。
能产生红外吸收的分子为红外活性分子,如COଶ分子;不能产生红外吸收的分子为非红外活性分子,如Oଶ分子。
中红外区为基本振动区:4000-400cm-1研究应用最多。
红外吸收的波数与相应振动的力常数关系密切。
双原子分子的基本频率计算公式为
ߨඨߨ
ݒ=12ߨ
其中ߨ为约化质量
μ=mଵ∙mଶ
mଵ+mଶ
对于多原子分子,其振动可以分解为许多简单的基本振动,即简正振动。
一般将振动形式分为两类:伸缩振动和变形振动。
各种振动都具有各自的特征吸收。
仪器结构和测试技术
Fourier变换红外光谱仪(FTIR仪:能够同时测定所有频率的信息,得到光强随时间变化的谱图,称时域图,这样可以大大缩短扫描时间。
由于不采用传统的色散元件,其分辨率和波数精度都较好。
傅立叶变换红外谱仪主要由光源(硅碳棒、高压汞灯、Michellson干涉仪、检测器、计算机和记录仪组成。
测试样品时,由于样品对某些频率的红外光吸收,从而得到不同样品的干涉图。
红外光是复合光,检测器接收到的信号是所有频率的干涉图的加合。
对试样的要求:试样应该为纯物质,纯度大于98%,以便于和纯化合物进行比较;样品中不能含游离水;试样的浓度和测试厚度应选择适当,以使大多数吸收峰的透射比处于10%-80%。
制样方法:对于液体样品有液膜法、液体吸收池法;对于固体样品有压片法、糊状法;对于特殊的样品还有薄膜法(包括熔融法和热压成膜法、溶液制膜法;对于气态样品一般都灌注于气体池中进行测试。
除了常规的测试技术外,红外光谱测试还有衰减全发射和偏振红外光谱等特殊的测试技术。
实验步骤、现象及讨论
固体样品制备:使用KBr压片法。
用一个玛瑙研钵将少量KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀,并使其颗粒大小比所检测的光波长更小(约2μm以下。
在一个具有抛光面的金属模具上方一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。
KBr压片形成
后,用夹具固定测试。
注意样品制备过程中一定要将粉末研得足够细,判断的标准是粉末粘在研钵壁上比较紧。
整个操作过程在红外灯下进行,这样可以减少样品制备过程中吸水的量。
在制备固体样品之前,要用酒精棉球把刮勺、研钵、研杵擦干净。
液体样品的制备:取一对NaCl窗片,用刮勺沾一滴未知液体在一块窗片上,然后用另外一块窗片覆
盖在上面,形成一个没有气泡的毛细厚度薄膜,用夹具固定,即可放入一起光路中进行测试。
此法适用于高沸点的液体样品。
注意制样过程中同样要用酒精棉球把窗片擦干净。
取用液体的量不宜多,一小滴足够。
液体太多形成的液膜较厚,而且容易在测试过程中滴出污染仪器。
若液体粘性很大,也可以只用一个窗片。
仪器测试:将样品固定好后盖上样品室盖,然后按进入测试对话框→背景测试→样品测试→标峰值→打印图谱→取出样品室中样品的流程进行测试。
固体样品图谱分析:所测定的固体样品分子式为C ଷH ହNO ,通过网上数据库的搜索发现所得到的图谱
与丙烯酰胺的图谱一致。
认真分析之后确定它确实为丙烯酰胺。
表1列出了主要特征峰的归属。
表格1:固体样品红外光谱图的特征峰归属
波数
/cm
3355.743190.17
2813.241672.79
1614.26
1429.01归属N −H H −C =不对称H −C =对称C =O C =C =C −N
液体样品谱图分析:所测液体样品分子式为C ଵH ଶଶO ସ。
通过网上数据库的搜索发现所得到的图谱与邻
苯二甲酸二正丁酯的图谱一致。
认真分析之后确定它确实为邻苯二甲酸二正丁酯。
表2列出了主要特征峰的归属。
表格2:液体样品红外光谱图的特征峰归属波数 m 2960.731731.411458.18和1384.651286.141122.11和1073.82归属苯环氢羰基末端乙基=C −O −O −C −
得到的两张谱图在3600-4000波数之间存在和明显的背景杂峰,这主要是游离水的特征峰。
在样品制备过程中,不可避免的要代入一些水分,但是这些水分又不足以形成一个凝聚态,所以存在游离水的杂峰。
思考题
1.为什么测试红外光谱选用KBr 、NaCl 制样?有何优缺点?
答:KBr 在4000-400波数整个中红外区都没有特征吸收,因此选用KBr 制样可以很大程度上避免背景干扰而得到所测样品真实的红外谱图。
NaCl 在4000-600波
数这个范围内没有特征吸收,这个波段是常用的分析有机物官能团和结构的波段,因此用NaCl 制样可以得到4000-600波数范围内背景很小的谱图,有利于分析。
NaCl 和KBr 的首要缺点在于容易受到腐蚀,尤其是分析强极性物质如酸、醇、胺等类物质时容易受到腐蚀而造成透明度下降而背景增强等后果。
其次,分析无机物时常常需要用到600-400波数的数据,这时使用NaCl 制样就不合适了。
2.用FT-IR 仪测试样品为什么要先测试背景?
答:先测试背景是为了在测试样品得到的数据中扣除背景。
样品室中的物质如二氧化碳、水、残留的前面测试的样品蒸汽等对红外光有吸收,还有即使没有任何吸收仪器本身也会产生一些背景。
这些背景都会干扰数据的分析,因此要先测试背景然后在样品测试过程中扣除背景。
3.如何用红外光谱鉴定饱和烃、不饱和烃和芳香烃的存在?
答:饱和烃的红外光谱很简单,在 2 - m 内只有2 m 附近有C −H 振动吸收,若遇到这样的谱图,基本可以断定是饱和烃。
不饱和烃含有 m 以上的特征吸收峰,根据化合物的分子式,若分子
为碳氢化合物而具有一个及以上的饱和度,那么基本可以断定为不饱和烃。
芳香烃在- m 内有特征吸收,并并且同时在- m 有苯环的面外弯曲振动,根据面外弯曲振动的形式可以判定是否为芳香烃以及是什么取代形式的芳香烃。
4.醇类、羧酸和酯类的红外光谱有何区别?丙烯酰胺
邻苯二甲酸二正丁酯
答:醇类和羧酸具有活泼氢。
在凝聚态下,由于氢键的作用,醇类的活泼氢一般在 m附近有一个很大的吸收峰;而羧酸则在2 m附近有一个较大的吸收峰,羧酸还有其特征的酸羰基吸收峰在 – m之间。
游离态下
醇在- m有较强而尖锐的吸收峰,而酸在 2 2 m有强而尖锐的吸收峰。
酯类没有活泼氢。
醇在- 2 m有碳氧单键特征吸收,羧酸的碳氧单键吸收在-
m,而酯类的碳氧单键在- m。
酯类的碳氧单键吸收特别重要,=C−O−C的不对称吸收在- m,对称吸收在- m,常常用来作为酯类的判断依据。
酯类在 m左右有强的羰基吸收峰,游离酸的羰基吸收峰在 m左右,而缔合酸的羰基吸收峰在 m左右。
醇没有羰基吸收峰。