PW初始结构设计和像差优化
- 格式:ppt
- 大小:1.43 MB
- 文档页数:44
湖北第二师范学院《光学系统设计》题目:望远镜的设计姓名:刘琦学号:1050730017班级:10应用物理学目录望远系统设计............................................................................................... 第一部分:外形尺寸计算 .......................................................................... 第二部分:PW法求初始结构参数(双胶合物镜设计) ....................... 第三部分:目镜的设计 .............................................................................. 第四部分:像质评价 .................................................................................. 第五部分心得体会 ..................................................................................望远镜设计第一部分:外形尺寸计算一、各类尺寸计算 1、计算'f o 和'f e由技术要求有:1'4o Df =,又30D mm =,所以'120o f mm =。
又放大率Γ=6倍,所以''206o e f f mm ==。
2、计算D 出303056D D D mm =∴===Γ物出物 3、计算D 视场2'2120416.7824o o D f tg tg mm ω==⨯⨯=视场4、计算'ω(目镜视场)''45o tg tg ωωωΓ⨯=⇒≈5、计算棱镜通光口径D 棱(将棱镜展开为平行平板,理论略)该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图:将普罗I 型棱镜展开,等效为两块平板,如下图:如何考虑渐晕?我们还是采取50%渐晕,但是拦掉哪一部分光呢?拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。
光学课程设计——望远镜系统结构设计姓名:学号:班级:指导老师:一、设计题目:光学课程设计二、设计目的:运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PW法基本原理。
三、设计原理:光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。
为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
所以,望远镜是天文和地面观测中不可缺少的工具。
它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统.常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。
常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。
物镜组(入瞳)目镜组视场光阑出瞳1'1ω2'2'ω3 'f物—f目'l z'3上图为开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。
此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。
《应用光学》课程设计—望远镜设计计算指导说明:1、本指导将全面介绍带有普罗I型转像棱镜系统的望远镜设计过程以及计算,作为《应用光学》课程设计的实习范例。
实验报告需在此基础上完善和修改,严禁全盘抄袭本指导,否则作0分处理!2、本指导省略了理论分析部分,计算依据请参考有关资料。
题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率Γ=6倍;2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm);3、望远镜的视场角2ω=8°;4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm.6、lz′=8~10mm我们的工作将按照以下步骤进行:1、系统外形尺寸的计算:根据需求确定像差,选型;2、使用PW法进行初始结构的计算:确定系统的r、d、n;3、像差的校正:通过修改r、d、n,调整像差至容限之内;4、进行像质评价,总结数据图表,完成设计。
第一部分:外形尺寸计算一、各类尺寸计算1、计算'f o 和'f e由技术要求有:1'4o Df =,又30D mm =,所以'120o f mm =. 又放大率Γ=6倍,所以''206o e f f mm ==。
2、计算D 出303056D D D mm =∴===Γ物出物 3、计算D 视场2'2120416.7824o o D f tg tg mm ω==⨯⨯=视场4、计算'ω(目镜视场)''45o tg tg ωωωΓ⨯=⇒≈5、计算棱镜通光口径D 棱(将棱镜展开为平行平板,理论略) 问题:如何考虑渐晕?我们还是采取50%渐晕,但是拦掉哪一部分光呢?拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。
摘要:本文介绍了连续变焦光学系统的基本工作原理以及光学设计方法的全过程。
其中包括变焦和补偿方案的选择、高斯光学各组元焦距分配、外形尺寸计算、初级像差平衡、PW 求解、初始结构参数确定、系统实际像差自动平衡,直到凸轮曲线优化设计等。
文章以图形和公式说理,用OCAD光学自动设计软件为工具,全面介绍三组元连续变焦系统的设计方法及过程。
关键词变焦系统机械补偿像差平衡凸轮优化设计OCAD光学设计程序一、连续变焦光学系统的基本工作原理在日常生活或军事观察中有时会想在一定图象画面内了解较大范围的目标全貌,有时又需要在一个较小范围内观察目标图象的具体细节。
从光学设计的角度说,就是要求一个光学系统在像高大小不变时,可以改变物面尺寸大小。
由光学系统能量守衡定律,拉氏不变量可以看出,对同一个光学系统,无论在物方还是像方甚至中间任意一个光学表面都要遵循这个拉氏变量J不变的原则。
对于照相(望远)物镜而言,上式可以写成的形式。
又由于光学系统的焦距计算公式为这样又有关系式这就意味着要改变物方视场就必须通过改变系统焦距来实现。
这就是可变焦距光学系统的由来。
一个光学系统影响其焦距变化的因素也很简单,因为系统焦距只是组成该系统的各表面的表面半径(曲率)、间隔以及其光学材料的折射率的函数,即为此,要改变光学系统焦距必须通过改变组成系统的表面半径(曲率)、间隔以及其光学材料的折射率来实现。
为了实现光学系统变焦,最古老的也是最有效的方法就是提高改换光学系统内部分光学零件来实现。
比如对一个显微系统,可以更换不同焦距的显微物镜或不同焦距的目镜实现。
因为这样有限数量的整组物镜或目镜的更换,对一个显微镜而言,其放大倍率的改变自然也是有限的和不连续的。
还有一种是不改变光学系统内光学零件,也就是不改变光学系统的各表面半径和材料折射率,而仅是通过改变各光学零件之间的空气间隔,即改变参数d改变系统焦距,这样就可以连续无间断地获得一个变焦光学系统。
为此变焦光学系统就分为两大类。
PW法(即P和W法)是一种在光学设计中用于求解初始结构参数的方法,其主要依据是初级像差理论。
以下是使用PW法计算初始结构的一般步骤:
1.确定系统参数:首先需要明确光学系统的参数,包括曲率半径、
透镜的厚度、间隔、玻璃折射率和色散等。
这些参数将作为后续计算的输入。
2.建立像差方程式:根据初级像差理论,可以建立一系列与结构
参数相关的像差方程式。
这些方程式描述了不同透镜组的像差特性。
3.求解像差方程式:利用已知的像差要求,通过求解像差方程式,
可以得到满足条件的透镜组的P和W值(即初级像差的特性参数)。
4.确定初始结构:利用求解得到的P和W值,可以确定各个透镜
组的结构参数,包括透镜的形状、位置等。
这样就得到了整个光学系统的初始结构。
需要注意的是,PW法是一种近似方法,其近似程度取决于所设计的系统的视场和孔径。
因此,在实际应用中,可能需要对初始结构进行进一步的优化和调整,以达到更好的成像效果。
此外,具体的计算过程可能涉及复杂的数学运算和光学知识,需要具备一定的专业背景和计算能力。
因此,在实际操作中,可以参考相关的光学设计书籍、软件工具或咨询专业的光学设计师来获取更详细和准确的指导。
近紫外-可见光宽波段复消色差显微物镜设计陈姣;焦明印;常伟军;康文莉;胡博;张凤娟;崔海云【摘要】A customized microscope objective for near ultraviolet (UV)-visible spectrum was designed, which was used to observe the image of nuclear fusion irradiated by laser. The operation wavelength was 300 nm~500 nm, the magnification was 10* and the numerical aperture (NA) was 0.3. The transmission-mode structure was established in the microscope objective, by theoretical calculation with PW method and optimization with CODE-V, the apochromatism was achieved. Thus, the problems such as difficult aberration correction and low efficiency of optical system, resulted from the few kinds of UV optical materials and low refractive index, could be solved.%设计了波段300 nm~500 nm,放大倍率为10×,NA=0.3的近紫外-可见光显微物镜,用于观测激光照射核聚变的成像过程.该系统采用透射式结构,通过P、W设计方法和CODE-V软件的优化,实现了系统的复消色差,较好地解决了紫外光学材料种类少、折射率低带来的像差校正困难和光学系统效率不高的问题.【期刊名称】《应用光学》【年(卷),期】2011(032)006【总页数】5页(P1098-1102)【关键词】复消色差;近紫外-可见光;显微物镜;PW法【作者】陈姣;焦明印;常伟军;康文莉;胡博;张凤娟;崔海云【作者单位】西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065;西安应用光学研究所,陕西西安710065【正文语种】中文【中图分类】TN202;TH70引言激光照射核聚变是目前普遍采用的一种人工可控核聚变技术,该核聚变在300nm~500nm波段范围的发光最好,易于观测,在实验中迫切需要设计一个复消色差的近紫外-可见光显微物镜,对核聚变过程中微小物质的变化情况进行光学放大成像并实时观测。
《光学设计》PW 法求初始结构参数(双胶合物镜设计)姓名:李军 学号:12085212光学特性:已知焦距mm f 435=;通光孔径mm D 67= ; 入曈位置与物镜重合 0=z I展成玻璃板的总厚度mm d 175=。
(1)确定物镜形式:由于物镜相对孔径较小:1540.043567,==fD视场不大,物镜系统没有特殊要求,可以采用简单的双胶合物镜。
(2)求初始结构 1、求,,z h h J由设计条件,有:5.332672===D h ,由于瞳孔与物镜重合,所以0=zh注意:由于含有平板,平板会产生像差,所以要用物镜的像差来平衡平板的像差。
0770.04355.33,,===f h u 80.22)3tan(435tan ,.=-⨯-=⋅-=。
ωf y 756.180.220770.0,,,=⨯==y u n J2、计算玻璃的平板像差 ,两个平板:0524.0-3,0770.0=-==。
z u u ,6805.00770.00524.0-=-=u u z由已知条件:(n 为折射率,v 为阿贝常数)1.64,5163.1,175===νn d将上列数值带入初级相差公式得到:00233.00773.05163.115163.1175143232-=⨯-⨯-=--=n n d S I00158.0)6805.0(00233.0=-⨯-==uu S S zIII 00363.00770.05163.11.6415163.117512222-=⨯⨯-⨯-=--=u n n d S IS ν3、双胶合物镜像差双胶合物镜像差应该与平行平板像差等值反号,据此提出物镜像差。
(若不需平衡平板像差的话,取物镜像差都为0)(1)根据S I,求C 并规划成C 进行规化后:c h c h S IS 22∑==,所以000003234.0=C求规划后的C ,根据公式:00141.0435000003587.0,=⨯==Cf C(2)求P 、W : 由初级相差和数hp hp S I ∑==:得到0000695.05.3300233.0===h S P I 由公式:JW p h W J hp S Z I I -=-=∑∑,由于0=z h , 所以00090.0756.1)00158.0(=--=-=J S WII (3)求P ∞、W ∞:已知mm f 435=,,5.33=h000457.0)(00593.0,0770.032,====ϕϕϕh h fh h ,)(根据公式可以得到:152.0000457.00000695.0)(3===ϕh P P1518.000593.000090.0)(2===ϕh W W物体平面在无限远位置,无需再对规划后的物体位置进行规划:152.0==∞P P , 1518.0==∞W W4)求0P冕牌玻璃在前:1497.0)1.0(85.020=--=∞W P P4.查表,选玻璃对。
《应用光学》课程设计—望远镜设计计算指导说明:1、本指导将全面介绍带有普罗I型转像棱镜系统的望远镜设计过程以及计算,作为《应用光学》课程设计的实习范例。
实验报告需在此基础上完善和修改,严禁全盘抄袭本指导,否则作0分处理!2、本指导省略了理论分析部分,计算依据请参考有关资料。
题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率Γ=6倍;2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D =30mm);3、望远镜的视场角2ω=8°;4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。
6、lz′=8~10mm我们的工作将按照以下步骤进行:1、系统外形尺寸的计算:根据需求确定像差,选型;2、使用PW法进行初始结构的计算:确定系统的r、d、n;3、像差的校正:通过修改r、d、n,调整像差至容限之内;4、进行像质评价,总结数据图表,完成设计。
第一部分:外形尺寸计算一、各类尺寸计算 1、计算'f o和'f e由技术要求有:1'4o D f =,又30D mm =,所以'120o f mm =。
又放大率Γ=6倍,所以''206o e f f mm ==。
2、计算D 出303056D D D mm =∴===Γ物出物 3、计算D 视场2'2120416.7824o o D f tg tg mm ω==⨯⨯=视场4、计算'ω(目镜视场)''45o tg tg ωωωΓ⨯=⇒≈5、计算棱镜通光口径D 棱(将棱镜展开为平行平板,理论略) 问题:如何考虑渐晕?我们还是采取50%渐晕,但是拦掉哪一部分光呢?拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。
PW 法对连续变焦光学系统初始结构的求解崔恩坤;张葆;洪永丰【摘要】T he solving for the initial structure of continuous zoom optical system by using PW method was introduced .The structure was obtained by distributing the power and length be-tween them for each element on the base of the exchange principle of object and image .The PW values were changing for choosing best glass ,controlling aberration ,calculating the shape of glass .Finally an mid-wave infrared zoom system (50 mm~200 mm) was designed according to this method ,the system had 5 lenses with 2 aspherics ,satisfied 100% cold shield efficiency with simplestructure .Moreover ,the initial structure was optimized with Zemax .Result shows that the continuous optical system has high image quality and high energy transmission ,w hich can meet the requirements of practical applications .In conclusion ,the PW solution has practi-cal meaning for the initial structure of zoom optical system design .%介绍了PW法在连续变焦光学系统初始结构求解过程中的应用。