液体声速表
- 格式:xls
- 大小:24.00 KB
- 文档页数:1
Panametrics公司TransPort®PT878手持式超声波液体流量计简明使用手册概述1.以Panametrics公司提供的TransPort®PT878英文手册为准,中文简明手册仅供参考。
2.超声波时差法流量计通过使用一对传感器,每个传感器通过流体发射和接收超声波信号。
当流体流动时,顺流方向信号的传播时间短于逆流方向,这个时间差正比于流体流速。
TransPort®PT878流量计测量这个时间差,结合设置的管径参数来计算流体的流速。
3.TransPort®PT878采用管外夹装式传感器,安装简便,无需破管与接触介质。
4.TransPort®PT878采用了受专利保护的声信号编码技术,从而极大提高了信噪比,这使得TransPort®PT878不仅适用于绝大多数的纯净液体应用,也为众多包含气泡、液滴或夹带固体颗粒等传统时差法原理无法测量的两相流体提供精确、无漂的测量。
PT878新特点♦可方便地按照您想看的格式显示您想看的数据∙超大液晶显示屏▫电致背景发光▫分块显示屏可显示1到4个参数∙支持多种语言♦为恶劣的工业操作条件设计,不受地域限制∙潜水型,防护等级IP67∙配有橡胶护罩和内置支架,可保护仪表电子部分♦可方便地记录超过100,000点以上的数据,无需杂乱的电缆就可将其下载至您的PC机∙红外通讯♦易于设置与操作∙可调的手带,携带方便∙下拉式菜单与软式按键让设置瞬间完成♦FLASH闪存∙不需更换EPROMs就可通过红外通讯口升级PT878的软件程序传感器安装和测量管路要求1.考虑到管路中流体可能存在的固体颗粒和气泡的分布,传感器应水平安装。
2.管路内流体需满管。
3.选择测量管路时应该避免选用流体自上向下流动的竖直管线。
4.传感器安装位置应远离弯头,变径,阀门,节流装置,安装点直管段的要求至少要满足前10D后5D(D为管线直径)。
5.为保证超声波发射和接收稳定,管线表面应该平整光滑,传感器表面和管径接触部不允许含有空气,必须涂抹耦合剂。
用超声光栅测液体中的声速1932年,德拜(Debge)和席尔斯(Sears)在美国以及陆卡(Hucas)和毕瓜(Biguand)在法国,分别独立地首次观察光在液体中的超声波衍射的现象,从而提出了直接确定液体中声速的方法。
【实验目的】1、了解超声致光衍射的原理2、学会一种利用超声光栅测量超声波在液体中传播速度的方法。
【实验原理】单色光沿垂直于超声波传播方向通过这疏密相同的液体时,就会被衍射,这一作用,类似光栅,所以称为超声光栅。
超声波传播时,如前进波被一个平面反射,会反向传播。
在一定条件下前进波与反射波叠加而形成超声频率的纵向振动驻波。
由于驻波的振幅可以达到单一行波的两倍,加剧了波源和反射面之间液体的疏密变化程度。
某时刻,纵驻波的任一波节两边的质点都涌向这个节点,使该节点附近成为质点密集区,而相邻的波节处为质点稀疏处;半个周期后,这个节点附近的质点有向两边散开变为稀疏区,相临波节处变为密集区。
在这些驻波中,稀疏作用使液体折射率减小,而压缩作用使液体折射率增大。
在距离等于波长A的两点,液体的密度相同,折射率也相等,如图1所示。
图1 在t和t+T/2(T为超声振动周期)两时刻振幅y、液体疏密分布和折射率n的变化单色平行光λ沿着垂直于超声波传播方向通过上述液体时,因折射率的周期变化使光波的波阵面产生了相应的位相差,经透镜聚焦出现衍射条纹。
这种现象与平行光通过透射光栅的情形相似。
因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波(宽度为ι),槽中的液体就相当于一个衍射光栅。
图中行波的波长A 相当于光栅常数。
由超声波在液体中产生的光栅作用称作超声光栅。
当满足声光喇曼-奈斯衍射条件:202/L πλΛ<<时,式中L 为声束宽度,Λ 为声波在介质中的波长,0λ 为真空中的光波波长,这种衍射与平面光栅衍射类似,可得如下光栅方程(式中k 为衍射级次,φk 为零级与k 级间夹角):sin k k φλΛ= (1)在调好的分光计上,由单色光源和平行光管中的可调狭缝S 与会聚透镜(L 1)组成平行光系统,如图2所示。
超声光栅测液体声速【实验目的】1.理解超声光栅形成的原因,了解声光作用的原理。
2.调整光路,用超声光栅声速仪测量声波在液体中的传播速度。
【实验原理】一、超声光栅及其成像特点任何能对入射光相位、振幅给与周期性空间调制的装置,都可称为光栅。
载有超声波的液体(本实验是液体槽)具有上述作用,所以称为超声光栅,其光栅常数等于超声波波长。
当压电晶体被信号发生器激励产生超声波时,适当调节压电晶体与反射板之间的平行度,使槽内形成驻波。
这时如果用具有一定扩散角度的线光源垂直于声波方向照射透明液槽,在液槽的另一侧成像装置上可以观察到光线被超声驻波调制而产生的明暗相间的条纹,这是超声波驻波的自身放大像,即超声光栅的自身影像,其条纹间距对应于超声波的半波长。
二、测量基本原理当我们用点光源(球面波)照射超声光栅时,类似投影幻灯形式可看到被放大的超声光栅自身像,即超声驻波像。
由于超声波频率可由频率计测得,其波长可由驻波像的间隔测得,根据关系式v=L/Y(1)可得到超声波在该介质中的传播速度值,这种利用超声光栅测声速的方法,通常称为振幅栅法。
测定波长的方法及特点1. 振幅栅法(超声光栅驻波像法)在声波传播方向上利用测微装置测量液槽的移动,此时显示器上驻波的放大像也随着移动,利用显示屏上的十字标记,记录移过标记的条纹数。
如果液槽移动距离为L(利用数显卡尺测定),已过标记的条纹数为N,则待测液体的声波波长为(2)由公式(1)和(2)得到最后测量公式(3)2.干涉法、相位法(见空气声速测定实验介绍)【实验装置】1.载有超声波的透明液槽,透明液槽内装有产生超声振动的压电晶体。
2.稳频超声波信号源:1.710MHz。
3.微小平行移动距离的测微装置。
4.前置狭缝及光源。
5.观察超声驻波像的成像装置:CCD摄像镜头和显示器等。
A:超声波信号源 F:图像显示器 E:CCD摄像镜头 G:微小平移测微装置H:压电传感器 I:透明液体 J:前置狭缝及光源图2 实验装置图【实验步骤】1.把液槽放在测微测量装置上,装满待测透明液体,使超声波传播方向与测微装置移动方向一致。
利用超声光栅测定液体中的声速实验简介:光通过处在超声波作用下的透明介质时发生衍射的现象称作声光效应。
1922年布里渊(Brillouin,L.1889—1969)曾预言液体中的高频声波能使可见光产生衍射效应,10年后被证实。
1935年拉曼(Raman,C.V.1888—1970)和奈斯(Nath)发现,在一定条件下,声光效应的衍射光强分布类似于普通光栅的衍射。
这种声光效应称作拉曼—奈斯衍射,他提供了一种调控光束频率、强度和方向的方法。
本实验要求在理解超声光栅基本原理的基础上掌握实验的调节和测量方法。
实验目的:1、了解超声光栅产生的原理。
2、了解声波如何对光信号进行调制。
3、通过对液体(非电解质溶液)中的声速的测定,加深对其概念的理解。
实验仪器:超声光栅实验仪(数字显示高频功率信号源及内装压电陶瓷片的液槽)、分光计、低压汞灯、温度计。
实验原理:1、超声光栅的形成汞灯超声池分光计在透明介质中传播的超声波使介质的局部发生周期性的压缩与膨胀,以至密度随之发生相应的变化,某时刻,纵驻波的任一波节两边成为质点密集区,而相邻的波节处为质点稀疏区;半个周期后两个节点附近的质点又向两边散开变为稀疏区,相邻波节处变为密集区。
稀疏区作用使介质折射率减小,而压缩作用使介质折射率增大(如图1所示)。
单色平行光束沿着垂直于超声波传播方向通过槽中的液体时,因超声波的波长很短,只要槽足够宽,槽中的液体就像一个衍射光栅,途中的声波波长Λ就相当于光栅常数。
2、光栅常数的测量及声速的计算:根据光栅方程,衍射的主极大(光谱线)由下式确定:sin()(2,1,0,1,2,)k k k ϕλΛ==--其中λ为光源波长,k 为干涉级数,k ϕ为光栅衍射零级至k 级光谱的夹角。
超声的实验光路图如图2所示,实际上因ϕ角很小,可以认为k k ϕλΛ= 所以超声波波长/k k λϕΛ=t2T t + 图1 在t 和2T t +(T 为超声振动周期)两时刻振幅y ,液体疏密分布和折射率n 的变化图2 超声光栅衍射光路12超声光栅在液体中的传播速度V f式中:f是高频功率信号源与压电陶瓷的共振频率。
1.声速:超声波在不同介质中传输速度是不同的。
气体350m/s左右,液体中1500m/s左右;固体中5000m/s左右。
2.声衰减在空气中,超声波除了因扩散引起衰减外,由于空气中的粘滞性、热传导以及分子的吸收也会引起衰减。
在20℃时的空气中,衰减系数在20℃时的水中,衰减系数如换算成位移衰减到I/e的距离x(1/ɑ),则空气中x(m)=则水中x(m)=从表中可以看出:空气可水相比,其声衰减随频率的增大而急剧增加,即空气(各种气体均如此)不利于高频声传播,衰减很快,如500KHZ以上。
所以液体中超声一般选择1-5MHz,而气体中超声一般选择50-300KHz。
当然选择频率时还应考虑超声换能器之间的距离(声程)以及测量精度等要求。
3.特性阻抗与声反射、声折射、声散射特性阻抗由介质的密度和声速之积确定。
气体、液体和固体的特性阻抗之比约为1:3000:80000,差异很大。
超声从一种介质进入另一种介质的能力取决于特性阻抗。
流体中只存在纵波,纵波从流体向固体倾斜射入,在固体中除纵波外,还存在横波。
高频率的声波,如2MHZ,在照射到含有气泡和固体颗粒时液体时,会产生声散射。
4.超声换能器的指向性式中:--------指向性半角;--------波长;--------圆型辐射面直径气体介质中换能器的角一般取3-7度;液体介质中换能器的角一般取2-10度;可以上换能器的指向性均要求尖锐,以使能量较为集中。
5.温度特性在水中中,超声传播速度随温度升高而增大,但在90℃之后又开始减小。
1. 压电陶瓷片PZT用于测量液体流量的超声换能器,工作频率在0.5-5MHz.PZT压电片(圆形、半圆形、方形、矩形)是常用的形式,它的频率由下公式确定式中:-----------频率常数,PZT均为2200;-----------厚度(应远小于横向尺寸)。
1MHz的PZT圆片,直径10-12mm,厚度约2mm;1.5MHz的的PZT圆片,直径15mm左右,厚度约1.3mm;2. 换能器的基本结构压电圆片换能器一般结构有一下三种:液体换能器中,若在前后端设置匹配层,可有效提高电声转换效率和扩展频带宽度。
液体中超声波声速的测定人耳能听到的声波,其频率在16Hz 到20kHz 范围内。
超过20Hz 的机械波称为超声波。
光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。
利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。
一、实验目的1. 了解超声波的产生方法及超声光栅的原理 2. 测定超声波在液体中的传播速度 二、实验仪器分光计,超声光栅盒,钠光灯,数字频率计,高频振荡器。
三、实验原理将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。
把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。
超声波在液体介质中以纵波的形式传播,其声压使液体分子呈现疏密相同的周期性分布,形成所谓疏密波, 如图1a)所示。
由于折射率与密度有关,因此液体的折射率也呈周性变化。
若用N 0表示介质的平均折射率,t 时刻折射率的空间分布为()()y K t N N t y N s s -∆+=ωcos ,0式中ΔN 是折射率的变化幅度;ωs 是超声波的波角频率;K s 是超声波的波数,它与超声波波长λs 的关系为K s =2π/λs 。
图1b 是某一时刻折射率的分布,这种分布状态将随时以超声波的速度v s 向前推进。
图1 密度和折射率呈周期分布如果在超声波前进的方向上垂直放置一表面光滑的金属反射器,那么,到达反射器表面的超声波将被反射而沿反向传播。
适当调节反射器与波源之间的距离则可获得一共振驻波(纵驻波)。
设前进波与反射波分别沿y 轴正方向传播,它们的表达式为()y K t A s s -=ωξcos 1()y K t A s s +=ωξcos 2其合成波为()()y K t A y K t A s s s s +=+-=+=ωξωξξξcos cos 121利用三角关系可以求出t y K A s s ωξcos cos 2=此式就是驻波的表达式。
UFMULTRASONIC FLOW METER UFM型超声波流量计使用说明书UFM-DT-JS-1035-2019(A)感谢您选择丹东通博电器(集团)有限公司的产品。
本使用说明书给您提供有关安装、连接和调试以及针对维护、故障排除和贮存方面的重要信息。
请在安装调试前仔细阅读并将它作为产品的组成部分保存在仪表的近旁,供随时翻阅。
并可通过下载本说明书。
如未遵照本说明书进行操作,则本仪表所提供的防护可能会被破坏。
商标、版权和限制说明通博、通博电器、通博泵业、DDTOP、均为公司的注册商标。
本仪表的性能规格自发布之日起生效,如有更改,恕不另行通知。
丹东通博电器(集团)有限公司有权在任何时候对本说明书所述的产品进行修改,恕不另行通知。
质保丹东通博电器(集团)有限公司保证所有刮板流量计自出厂之日起,一年之内无材料和制造工艺方面的缺陷。
在质保期内,如产品出现质量问题而返回,提出的索赔要求经制造厂检验后确定属于质保范围内,则丹东通博电器(集团)有限公司负责免费为买方(或业主)维修或更换。
丹东通博电器(集团)有限公司对因设备使用不当,劳动力索赔、直接或后续损伤以及安装和使用设备所引起的费用概不负责。
除了关于丹东通博电器(集团)有限公司某些产品的特殊书面保修证明,丹东通博电器(集团)有限公司不提供任何明示或暗示的质量保证。
质量丹东通博电器(集团)有限公司通过了ISO9001质量体系认证,产品生产的全过程均严格依照质量体系的规定范围执行,对产品和服务质量提供最强有力的保证。
1安全提示 (4)1.1爆炸可能会导致死亡或严重伤害。
(4)1.2过程泄漏可能导致严重伤害或死亡。
(4)1.3不遵守安全安装准则可能导致死亡或严重受伤。
(4)2产品说明 (4)2.1 产品主要结构 (4)2.2工作原理 (4)2.5仓储 (4)3主要参数 (5)4开箱及检查 (5)4.1开箱验货注意事项 (5)4.2检查内容 (5)5界面与操作 (5)5.1主界面 (5)5.2菜单界面 (6)5.3键盘与操作 (6)6参数设置 (6)6.1参数设置 (6)6.2显示设置 (9)7调试 (9)7.1单点校准 (9)7.2两点校准和多点校准 (9)7.3校准方法 (9)8系统设置 (10)8.1语言 (10)8.2日期时间 (10)8.3恢复出厂设置 (10)8.4工厂设置 (10)9常见问题解答 (10)9.1怎样辨别管道中的流体流向 (10)9.2怎样设置零点切除避免无效累积 (10)9.3怎样设置4~20mA输出 (11)附录常用参数 (11)1安全提示出于安全的原因,明确禁止擅自改装或改变产品,维修或替换只允许使用由制造商指定的配件。
实验报告实验名称:超声光栅测液体中的声速专业班级:组别:姓名:学号:合作者:日期:2.根据表1中的测量数据得表2表2衍射条纹的平均间距与对应的声速mm/x ∆30--x x 21--x x 12--x x 03x x -x∆)s (m -1⋅υ)s (m 1-⋅声V 黄(y) 2.189 2.190 2.162 2.0810.71851427.741430.62绿(g) 2.027 2.041 2.000 2.0160.67371438.65蓝(b)1.6681.6171.6401.5860.54261425.46(1)声V 的计算过程)s (m 74.1427100.7185101701010.4410578.03--36-9=⨯⨯⨯⨯⨯⨯=∆=y y x f νλv )s (m 1438.65100.6737101701010.4410546.13--36-9=⨯⨯⨯⨯⨯⨯=∆=g x f νλg v )s m 1425.46(100.5426101701010.4410435.83--36-9=⨯⨯⨯⨯⨯⨯=∆=b b x f νλv )s m (62.430131425.461438.651427.743=++=++=b g y v v v V (2)V U 的计算过程z0.02MH U v =∆=仪4mm00.0=∆=仪x U )mm (00094.0004.0626212822=⨯===∆x x x U U U 根据,22⎪⎪⎭⎫⎝⎛∆-+⎪⎭⎫ ⎝⎛=∆x U v U U x v υυ)s m (3122.37185.00.0009410.440.021427.7422=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=yU υ颜色平行光通过透射光栅的情形相似。
因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波,槽中的液体就相当于衍射光栅。
2.如何解释本实验衍射的中央条纹与各级谱线的距离随超声信号源频率的高低变化而增加或减小的现象?答:由光栅方程:)m/s (sin )(λθk b a ±=+可知:频率越高声波长越短,光栅常数愈小,衍射角越大条纹间距增加。
实验三 空气、液体及固体介质的声速测量声速是一种在弹性媒质中传播的机械波,它是纵波,其振动方向与传播方向一致。
频率在20HZ ~20KHZ 之间的声波,能引起人的听觉,称为可闻声波,也简称声波。
频率低于20HZ 的叫做次声波,高于20KHZ 的叫超声波。
声波在媒质中的传播速度与传声媒质的特性及状态等有关,因而通过对媒质中声速的测定,可以了解被测媒质的特性或状态变化。
例如测量氯气、蔗糖等气体或溶液的浓度;氯丁橡胶乳液的比重以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。
可见,声速测定在工业上具有一定的实用意义。
本实验用压电陶瓷超声换能器来测定超声波在空气/液体及固体中的传播速度,它是非电量电测方法应用的一个例子。
一、实验目的:1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。
2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。
3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。
(声呐全称为声音导航与测距。
是一种利用声波在水下的传播特性,通过电声转换和信息处理完成水下探测和通讯任务的电子设备)二、实验仪器:1.“杭州精科仪器有限公司”生产的SV5声速测量组合仪(组合仪主要由储液槽、传动机构、数显标尺、两副压电换能器等组成。
测试架上部的一对压电换能器供测量固体介质声速用,储液槽中的一对压电换能器供测量空气、液体介质声速用,作为测量空气、液体介质声速用的发射换能器S 1固定在储液槽的左边, 另一只接收超声波用的接收换能器 S 2装在用丝杆移动的滑块 上,并由数显表头显示位移的距离。
S 1发射换能器超声波的正弦电压信号由 SV5 声速测定专用信号源供给,换能器 S2把接收到的超声波声压转换成电压信号,用示波器观察;时差法测量时则还要接到专用信号源进行时间测量,测得的时间值具有保持功能);2.“杭州精科仪器有限公司”生产的SV5声速测量专用信号源;3.“固维电子有限公司”生产的GOS-630FC 模拟示波器。
实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用 /v L t = (2) 表示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。
当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即(3)时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2.相位比较法波是振动状态的传播,也可以说是位相的传播。
沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。
70科技资讯 SCIENCE & TECHNOLOGY INFORMATIONDOI:10.16661/ki.1672-3791.2020.02.070溶液中溶质浓度及种类对超声声速的影响陈余行(上海工程技术大学数理与统计学院 上海 201620)摘 要:对氯化钠、葡萄糖以及两者混合溶液在超声光栅中形成的光栅光谱进行了测量, 并运用线性回归方法详细研究了超声波声速与溶液浓度及溶质种类的关系,结果显示3种溶液中声速与浓度均为线性关系,且混合溶液中的声速变化为另外两种溶液中声速变化之和。
关键词:超声光栅 超声波声速 溶液浓度 线性关系中图分类号:O426 文献标识码:A 文章编号:1672-3791(2020)01(b)-0070-02超声波在介质中传播的速度与介质的弹性有关,因此介质的比重、浓度及温度等物理量的变化对超声声速会有明显的影响[1],因此通过测量超声波波速可以检测介质的一些物理性质。
虽然超声检测技术已成功地应用于工业在线检测一些混合液液体浓度,并且达到了很高的精度,但到目前为止该方法一直未能得到大面积的推广使用,其主要原因是声速与不同溶质的关系不尽相同,导致可操作性降低。
该实验采用WSG-I型超声光栅声速仪观察测量不同溶液中超声光栅的衍射光谱,由此计算得到超声波在不同溶液中的传播速度,并运用线性回归方法详细研究了超声声速与溶液浓度及溶质种类的关系。
1 实验原理当一束平面超声波在液体中传播时,其声压会使液体的局部会产生周期性膨胀与压缩,从而使液体的密度在波传播方向上形成周期性分布,从而导致液体的折射率也做同样分布,形成了所谓疏密波。
同时当超声波在传播时,被液体边缘的槽面反射产生反射波,一定条件下,前进波与反射波叠加会形成超声驻波,这样就加剧了波源与反射面之间液体的疏密化程度。
此时,装置中的液体就等效为液体光栅,称为超声光栅。
此时,当一束平行光沿垂直于超声波传播方向通过超声光栅时,就会出现和平行光通过透射光栅的情形类似的衍射现象,该现象称为超声致光衍射。